
HAL Id: hal-02192489
https://hal.science/hal-02192489

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Change Propagation-based and Composition-based
Co-evolution of Transformations with Evolving

Metamodels
Djamel Eddine Khelladi, Roland Kretschmer, Alexander Egyed

To cite this version:
Djamel Eddine Khelladi, Roland Kretschmer, Alexander Egyed. Change Propagation-based and
Composition-based Co-evolution of Transformations with Evolving Metamodels. 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, MODELS 2018, Oct
2018, Copenhagen, Denmark. pp.404-414, �10.1145/3239372.3239380�. �hal-02192489�

https://hal.science/hal-02192489
https://hal.archives-ouvertes.fr

Change Propagation-based and Composition-based
Co-evolution of Transformations with Evolving Metamodels

Djamel Eddine Khelladi, Roland Kretschmer, Alexander Egyed

Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria.

{djamel_eddine.khelladi,roland.kretschmer,alexander.egyed}@jku.at

ABSTRACT
Transformations constitute significant key components of an auto-

mated model-driven engineering solution. As metamodels evolve,

model transformations may need to be co-evolved accordingly.

A conducted experiment on transformations’ co-evolution high-

lighted the existing gap in the literature where only limited few

co-evolution scenarios are covered without supporting alternatives

that occur in practice. To make matters worse, when a developer

needs to drift apart from the proposed co-evolution, no automatic

support is provided to the developer. This paper first proposes a

change propagation-based co-evolution of transformations. The

premise is that knowledge of the metamodel evolution can be prop-

agated by means of resolutions to drive the transformation co-

evolution. To deal with particular cases where developers must

drift from the proposed resolutions, we introduce a composition-

based mechanism that allows developers to compose resolutions

meeting their needs. Our work is evaluated on 14 case studies

consisting in original and evolved metamodels and ETL Epsilon

transformations. A comparison of our co-evolved transformations

with the 14 versioned ones showed the usefulness of our approach

that reached an average 96% of correct co-evolution. On three other

case studies, our composition-based co-evolution showed to be use-

ful to eight developers in selecting resolutions that best meet their

needs. Among the applied resolutions, four developers applied six

resolutions that were the direct result of a composition.

ACM Reference Format:
Djamel Eddine Khelladi, Roland Kretschmer, Alexander Egyed. 2018. Change

Propagation-based and Composition-based Co-evolution of Transforma-

tions with Evolving Metamodels. In ACM/IEEE 21th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’18), October
14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3239372.3239380

1 INTRODUCTION
Model-Driven Engineering (MDE) has proven to be effective in the

development and maintenance of large scale and embedded sys-

tems [21, 22]. Today modeling languages play a significant role in

all phases of development processes [38]. The very foundation of

modeling languages are their metamodels [22]. The metamodels

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00

https://doi.org/10.1145/3239372.3239380

define the vocabulary and syntax construction of the language.

Metamodels are the foundation for the creation of model instances.

However, it is often overlooked that metamodels also serve for the

creation of other artifacts such as model transformations.

Model transformations play a significant role in MDE [32, 36]

by specifying and automating the transformation of source models

to either target models, i.e., model-to-model transformation (e.g.,

UML [33] to a database model) or to target texts, i.e., model-to-text

transformation (e.g., UML to LATEXor HTML documentation).

One of the foremost challenges to deal with in MDE is evolution

of metamodels and its impact on artifacts that use metamodels as a

foundation. As a result of metamodel evolution, transformations

may fail to execute. Hence, they may need to be co-evolved accord-

ingly to function properly. Knowing that model transformations

are used for different activities, such as code generation [16], model

refactoring [31] and migration [41]. It is essential to efficiently

co-evolve the transformations whenever the metamodel evolves.

An experiment on transformation co-evolution [28] highlighted

that only limited few co-evolution scenarios are covered in the

literature and no alternative co-evolutions are supported. For every

impacted transformation, only one co-evolution is enforced. Hence,

the performed co-evolution cannot meet the different developers

needs. To make matters worse, when a developer has to drift apart

from the proposed co-evolutions, no automatic support is provided.

Thus, limiting the usage of existing approaches in practice.

This paper first proposes a change propagation-based co-evolution

of model transformations. Change propagation showed to be effi-

cient in many domains, such as in the context of source code or

models co-evolution [5, 6, 13]. In this paper, change propagation

leverages on the knowledge provided by the metamodel changes

during evolution. We propagate those changes on the transforma-

tions. For example, knowing that a property p in the metamodel

is deleted or renamed, it is likely that the used property p will

also be respectively deleted or renamed in the transformations. We

thus propose a catalog of resolutions that is used as a basis for

our change propagation. However, in rare cases, the proposed co-

evolution may not meet the developer needs. For example, instead

of deleting the property p, the developer may need to replace it

by another property p’, possibly from another class. Thus, We also

propose a composition-based mechanism that allows developers

to freely select resolutions from our catalog. But also to compose

resolutions into a new one. Both of our co-evolution modes are

applied per impacted transformation.

Our change propagation is evaluated on 14 case studies consist-

ing of several versions of metamodels and ETL Epsilon transforma-

tions. A comparison of our co-evolved transformations with the 14

versioned transformations shows that our approach supports useful

alternative co-evolutions that developers have manually performed.

https://doi.org/10.1145/3239372.3239380
https://doi.org/10.1145/3239372.3239380

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark D.E. Khelladi et al.

Within our case studies, 83 resolutions were applied on the im-

pacted transformations leading to an average of 96% correctness of

co-evolution. Our composition-based co-evolution is evaluated on

additional three case studies with eight developers. The observed

results showed its usefulness to the developers in freely selecting

resolutions that best fist their needs. Among the applied resolutions,

four developers applied six resolutions that were the direct result

of a composition.

2 MOTIVATING EXAMPLE
To motivate our work, this section introduces an example of model

transformations taken from [2, 3]
1
. It illustrates a model trans-

formation from the SimplePDL process modeling language to the

PetriNet modeling language. Figures 1 and 2 depict an excerpt of

the SimplePDL and the PetriNet metamodels as defined in [2, 3].

SimplePDL is a language for specifying processes composed of

a set of work definitions representing the activities to be performed

during development. Work definitions are executed in a defined

work sequence with an ordering constraint specified by a link Type
between two work definitions. Resources to perform one work defi-

nition (e.g., designer, computer, server) can be defined in the process

as well as their parameters. PetriNetmodels are composed of nodes
which can be places or transitions. Nodes are linked together by arcs
that can either be normal or read-arcs. Both places and arcs con-
tains tokens that are consumed or produced during the petrinet

model execution. Listing 1 shows three simple transformation rules

among the specified ones in [2, 3]. The first transforms a process

to a petri net, the second transforms a resource to a place, and the

last transforms a parameter to arcs.

Consider that the SimplePDL metamodel evolves with the fol-

lowing changes: 1) Delete the properties minTime and maxTime in
Process (they can be deduced from the process’s work definitions),

2) rename the property name to URI in Resource, and 3) Move the

property isNormal from Resource to Parameter.

The first arising issue is that some existing editors (e.g., ATL
2

and ETL
3
editors) do not show the impact of metamodel changes

on transformations, i.e., do not highlight errors. For example, even

though the the properties minTime and maxTime are deleted no

errors are raised by the transformation editors. Only once exe-

cuted the errors are detected. Therefore, it is essential to support

an impact analysis to identify the impacted transformations [23].

Alternatively, static checker can be used, such as anATLyzer [4].
The three above changes are known to be impacting transforma-

tions from [29]. The impacted parts of the three transformations

are underlined (in red) in Listing 1 and their co-evolution is under-

lined (in green) in Listing 2. For some impacts, the co-evolution

can be straightforward. For example, the renamed property name
to URI in class Resource is propagated to the transformation as

well (line 11). However, some other impacts can be co-evolved in

many different ways. Indeed, in the first transformation rule, the

elementsminTime andmaxTime can be deleted from the statements

as shown in Listing 2 (line 5). But the whole assignment can be

deleted as well. Imagine the property name from the PetriNet

1
The transformation is detailed in https://www.eclipse.org/atl/usecases/SimplePDL2Tina/

2
https://www.eclipse.org/atl/

3
https://www.eclipse.org/epsilon/doc/etl/

class is deleted, then it makes more sense to delete the complete

assignment since the target of the assignment is pn.name (line 5).
In case the whole class is deleted, then the whole transformation

rule should be deleted. Here we already see that a delete change

in the metamodel can be co-evolved in different manners to cover

different possible co-evolutions.

Similar situation can even occur for the same impacting change.

Take the moved property isNormal from Resource to Parameter.

In the second transformation the navigation path to isNormal is
extended with parameter.first() to access it from its first parame-

ter (line 11). Whereas in the third transformation, for the same

impacted isNormal, its navigation path is rather reduced from pa-
rameter.resource.isNormal to parameter.isNormal (lines 19 and 27).

This emphasizes the fact that developers must be involved to decide

which alternative co-evolutions should be applied.

An additional issue arises, if none of the proposed co-evolutions

fits the developer intent. Then manual co-evolution is the only re-

maining option. However, a new co-evolution can still be proposed

by composing the basic supported resolutions into a new one. It

can be seen as analogous to how atomic changes are composed

into complex changes. The next section presents our approach

that addresses the above mentioned challenges by supporting a

change propagation-based and a composition-based co-evolution

of transformations

Listing 1: Excerpt of original transformation rules.
1 / / Transform a P ro c e s s to P e t r i N e t

2 rule Process2PetriNet
3 transform p : s imp l e pd l ! P r o c e s s

4 to pn : p e t r i n e t ! P e t r i N e t {

5 pn . name = p . name + " [" + p . minTime + " , " + p . max-

Time + "] " ;

6 }

7 / / Transform a Resource to P l a c e

8 rule Resource2PetriNet
9 transform r e s ou r c e : s imp l e pd l ! Resource

10 to p_ r e sou r c e : p e t r i n e t ! P l a c e {

11 p_ r e sou r c e . name = r e s ou r c e . name + " [" + r e s ou r c e . is-

Normal + "] " ;

12 p_ r e sou r c e . tokensNB = r e s ou r c e . q u an t i t y ;

13 p_ r e sou r c e . p e t r i N e t = r e s ou r c e . g e t P r o c e s s () ;

14 }

15 / / Transform a Parameter to Arcs

16 rule Parameter2PetriNet
17 transform paramete r : s imp l e pd l ! Parameter

18 to a_ r 2 s : p e t r i n e t ! Arc , a _ f 2 r : p e t r i n e t ! Arc {

19 i f (pa ramete r . r e s ou r c e . isNormal == true) {
20 a _ r 2 s . k ind = '# normal ' ;

21 } e l se {

22 a _ r 2 s . k ind = '# read_a rc ' ;

23 }

24 a_ r 2 s . tokensNB = 1 ; a _ r 2 s . s ou r c e = p . r e s ou r c e ;

25 a_ r 2 s . t a r g e t = th i sModu le . reso lveTemp (p .

workDe f in i t i on , ' t _ s t a r t ') ;

26

27 i f (pa ramete r . r e s ou r c e . isNormal == true) {

Change Propagation-based and Composition-based Co-evolution of Transformations with Evolving Metamodels D.E. Khelladi et al.

Figure 1: Excerpt of the SimplePDL metamodel.

Figure 2: Excerpt of the PetriNet metamodel.

28 a _ f 2 r . k ind = '# normal ' ;

29 } e l se {

30 a _ f 2 r . k ind = '# read_a rc ' ;

31 }

32 a _ f 2 r . tokensNB = 1 ; a _ f 2 r . t a r g e t = p . r e s ou r c e ;

33 a _ f 2 r . s ou r c e = th i sModu le . reso lveTemp (p .

workDe f in i t i on , ' t _ f i n i s h ') ;

34 }

Listing 2: Excerpt of original transformation rules.
1 / / Transform a P ro c e s s to P e t r i N e t

2 rule Process2PetriNet
3 transform p : s imp l e pd l ! P r o c e s s

4 to pn : p e t r i n e t ! P e t r i N e t {

5 pn . name = p . name + "[" + "," + "]" ;

6 }

7 / / Transform a Resource to P l a c e

8 rule Resource2PetriNet
9 transform r e s ou r c e : s imp l e pd l ! Re s sou r ce

10 to p_ r e sou r c e : p e t r i n e t ! P l a c e {

11 p_ r e sou r c e . name = r e s ou r c e . URI + " [" + r e s ou r c e . pa-

rameter.first().isNormal + "] " ;

12 p_ r e sou r c e . tokensNB = r e s ou r c e . q u an t i t y ;

13 p_ r e sou r c e . p e t r i N e t = r e s ou r c e . g e t P r o c e s s () ;

14 }

15 / / Transform a Parameter to Arcs

16 rule Parameter2PetriNet
17 transform paramete r : s imp l e pd l ! Parameter

18 to a_ r 2 s : p e t r i n e t ! Arc , a _ f 2 r : p e t r i n e t ! Arc {

19 i f (pa ramete r . isNormal == true) {
20 a _ r 2 s . k ind = '# normal ' ;

21 } e l se {

22 a _ r 2 s . k ind = '# read_a rc ' ;

23 }

24 a_ r 2 s . tokensNB = 1 ; a _ r 2 s . s ou r c e = p . r e s ou r c e ;

25 a_ r 2 s . t a r g e t = th i sModu le . reso lveTemp (p .

workDe f in i t i on , ' t _ s t a r t ') ;

26

27 i f (pa ramete r . isNormal == true) {
28 a _ f 2 r . k ind = '# normal ' ;

29 } e l se {

30 a _ f 2 r . k ind = '# read_a rc ' ;

31 }

32 a _ f 2 r . tokensNB = 1 ; a _ f 2 r . t a r g e t = p . r e s ou r c e ;

33 a _ f 2 r . s ou r c e = th i sModu le . reso lveTemp (p .

workDe f in i t i on , ' t _ f i n i s h ') ;

34 }

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark D.E. Khelladi et al.

Figure 3: Overall co-evolution process of transformations

Table 1: Mapping table used for the impact analysis.

Metamodel Elements Transformations References to AST Nodes

e1[type, container] trans1, ... ast1,ast2, ...

...

en [type, container] transm , ... astj ,astj , ...

3 OVERALL APPROACH
Figure 3 shows our overall co-evolution process of model trans-

formations. It first identifies the metamodel changes to be propa-

gated and then runs an impact analysis on the transformations 1 .

Then a change propagation-based co-evolution is applied 2 . The

developer is involved throughout the co-evolution and in case a co-

evolution does not fit her intent, a composition-based co-evolution

is provided as an alternative. Finally, the chosen resolutions are

applied to co-evolve the transformations 3 .

3.1 Change Detection and Impact Analysis
Before we start co-evolving transformations, we run an impact

analysis to detect the transformations that must be co-evolved. In

particular the impacted parts of the transformations as a single

transformation may be impacted several times in different parts.

The first pre-requisite for the impact analysis is to identify the

performed metamodel changes that can occur both in the source

and target metamodels. The detection of the metamodel changes is

performed with our previous work [26, 27]. It detects both atomic
and complex changes [19]. Atomic changes are additions, removals,

and updates of a metamodel element. Complex changes consist in a

sequence of atomic changes combined together. For example, push
property is a complex change where a property is moved from a

superclass to its subclasses. This is composed of two atomic changes:

delete property and add property.

With the detectedmetamodel changes, we run an impact analysis

[23] to localize the impacted transformations. To this end, we parse

the transformations to access their Abstract Syntax Tree (AST).

We then establish a mapping between the metamodel elements

e1, ..., en (with their types and containers) and the AST nodes using

e1, ..., en in the transformations. Table 1 illustrates the content of

our computed mapping table.

Algorithm 1 Transformations co-evolution

1: function TransformationsCo-Evolution(Set<changes>

changes, MappingTable MT, ResolutionCatalog RC)

2: for all c ∈ changes do
3: impacts←MT.getAllCausedImpacts(c)

4: for all i ∈ impacts do
5: if changePropagationMode then
6: resolution← ChangePropagation(i, c, RC)

7: else ◃ compositionMode

8: resolution← ComposeResolution(RC)

9: end if
10: i.apply(resolution)

11: end for
12: end for
13: end function

We know from Kusel et al. [29] the changes that are impacting

transformations (shown in column in Table 2), such as delete, up-

date, and move changes. Hence, the impact analysis consists in

accessing for each impacting metamodel change on a element ei ,
the set of impacted transformations and their impacted AST nodes

in Table 1. Note that during the co-evolution, Table 1 is also up-

dated accordingly with the applied resolutions. For instance, when

a rename element e occurs, it is also renamed in the table.

3.2 Transformation Co-evolution
Ourwork supports twomodes of co-evolution: 1) a change propagation-

based and 2) a composition-based co-evolution of transformations.

Algorithm 1 illustrates the overall co-evolution process. It first

retrieves the impacted transformation parts by a given metamodel

change. Then for each impact, developers can choose to either use

our change propagation co-evolution (line 6) or our composition

mechanism (line 8). Finally, the chosen resolution is applied on

the impacted transformation part. These two possible co-evolution

modes are further explained in the next two sections.

3.2.1 Change Propagation-based Co-evolution. -

Algorithm 2 illustrates our change propagation-based co-evolution.

For a given impact on a transformation by a given change, we first

retrieve the appropriate resolutions that can propagate the impact-

ing change.

Table 2 shows the resolutions that propagate each impacting

change to the transformations. The resolutions are inspired from

the co-evolution of other artifacts, such as models [14] or con-

straints [25], where they showed to be efficient and useful. In case

alternative resolutions can be applied, we involve the developer in

deciding which one fits her needs. This acts as a user acceptance of

the resolution to be applied.

Note that we do not claim completeness of our catalog of resolu-

tions. It rather represents possible propagations of the metamodel

changes at the transformations level. To assess whether the catalog

is sufficient and useful in practice, we will further evaluate to what

extent our catalog of resolutions can correctly co-evolve impacted

transformations w.r.t. the developers intent.

Change Propagation-based and Composition-based Co-evolution of Transformations with Evolving Metamodels D.E. Khelladi et al.

Table 2: Catalog of resolutions that propagates the metamodel changes.

Metamodel Changes Resolutions

� Delete element e

◃[R0] Remove e used as part of statement in the transformation rule (e.g., t.label = s.name + s.e→ t.label = s.name)

◃[R1] Remove the statement using e in the transformation rule (i.e., a whole IF/loop/assignment statement, etc.)

◃[R2] Remove the whole transformation rule

◃[R3] Replace e with another one in the transformation rule

� Rename element e ◃[R4] Rename e in the transformation rule

� Generalize property p
multiplicity from a single

value to multiple values

◃[R5] Introduce a For loop statement to iterate on a collection

◃[R6] Introduce operation first() on a collection (e.g., lng.p→ lng.first().p)
◃[R7] Introduce operation last() on a collection (e.g., lng.p→ lng.last().p)
◃[R8] Introduce operation at(index) on a collection, where index is an expression given by the user

(e.g., lng.p→ lng.at(lng.size()-1).p. or lng.at(0).p.)

�Move property p
from class S to T

◃[R9] Extend navigation path of p (e.g., lng.p→ lng.path.p)
◃[R10] Reduce navigation path of p (e.g., lng.path.p→ lng.p)

� Push property p from

class Sup to Sub1,...,Subn

◃[R11] Introduce a type test with an If

(e.g., t.name = s.p.name→ i f (s .p.istypeo f (Sub1) or ...or s .p.istypeo f (Subn)){t .name = s .p.name})

� Extract class S to T
with properties p1, ...,pn

◃[R9] Extend navigation path of pi (e.g., lng.pi → lng.path.pi)
◃[R10] Reduce navigation path of p (e.g., lng.path.pi → lng.pi)

� Inline class S to T
with properties p1, ...,pn

◃[R12] Change the class type in the transformation rule from S to T
(e.g., transform s:S to o:O {...}→ Transform s:T to o:O {...})

◃[R2] Remove the whole transformation rule

◃[R10] Reduce navigation path of p

� Flatten hierarchy from

class Sup to Sub1,...,Subn
with properties p1, ...,pn

◃[R14] Duplicate the transformation rule while changing the source or target class type from Sup to Subi (i ∈ [1...n])
◃[R2] Remove the whole transformation rule

Algorithm 2 Change propagation-based co-evolution

1: function ChangePropagation(Impact i, Change c, Resolu-

tionCatalog RC)

2: resolutions← RC.getAppropriateResolutions(i, c)

3: if resolutions.size > 1 then
4: res← UserDecision(resolutions)

5: else
6: if resolutions.size = 1 then
7: res← resolutions.first()

8: end if
9: end if
10: return res

11: end function

3.2.2 Composition-based Co-evolution. -

Our resolutions from Table 2 can be composed together, leading

to a possible set of 2
n
new resolutions (n ∈ CatalдO f Resolutions).

It would be overwhelming for developers to then choose the ap-

propriate resolution to apply. Thus, we rather allow developers to

compose their needed resolutions. This already showed to be useful

in the context of models co-evolution by Herrmannsdoerfer et al.

[17, 18, 20] who supported compositions of model resolutions.

Algorithm 3 illustrates our composition-based co-evolution, which

has two main goals. First, it allows developers to freely select

resolutions that would not have been proposed by our change

propagation-based co-evolution Algorithm 2. For example, instead

of propagating a change move property id by extending its path

([R9]). Developers may decide to deviate and apply another resolu-

tion that is not suggested to them, such as to delete id ([R0]), or to
replace id with another element ([R3]).

Second, it also allows developers to compose resolutions to-

gether that would result in a new resolution that is not in our

catalog in Table 2. For example, composing the resolutions replace

an element with an add of the operation first() (e.g., var.parent.id→
var.ancestors.id→ var.ancestors.first().id). Another example would

be composing the resolutions reduce path and then extend it with

another path (e.g., var.student.name→ var.name→ var.person.name).
Note that not all possible compositions are valid. Hence, we

define incompatible compositions that cannot be performed and we

check them before to compose the developer’s chosen resolutions

(line 5). For example, an incompatible composition of resolutions is

between delete resolutions and the rest of resolutions.

3.3 Prototype Implementation
Our approach’s Java implementation handles Ecore/EMF meta-

models and transformations from the Epsilon Transformation Lan-

guage (ETL). It interfaces with our detection approach [24, 27] of

metamodel changes to then run an impact analysis on the trans-

formations. For each impacted part we propose resolutions. The

resolutions are implemented with Java working on the ETL AST

classes. In case of alternative resolutions, the developer can then

choose the appropriate ones to be applied automatically.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark D.E. Khelladi et al.

Algorithm 3 Composition-based Co-evolution

1: function ComposeResolution(ResolutionCatalog RC)

2: resolution←�

3: while ¬f inished do
4: cr← RC.getChosenResolution()

5: if isComposable(resolution, cr) then
6: resolution← resolution ∪ cr

7: end if
8: end while
9: return resolution

10: end function

4 EVALUATION
This section presents the evaluation results of our co-evolution

approach. We first present the dataset and evaluation process. Then,

we present the research questions and discuss the obtained results.

Time performance of the co-evolution is measured as well.

4.1 Data Set
This section presents the used data set in our evaluation. Our case

studies are divided in two groups. The first group is used to evaluate

the change propagation-based co-evolution and the second is used

to evaluate our composition-based co-evolution.

The first group consists of 14 case studies where each case study

contains: 1) original and evolved source/target metamodels, 2) orig-
inal and evolved ETL transformations. All evolutions in our case

studies of the metamodels and ETL transformations have been

performed manually by developers. We thus consider the manual

transformations’ co-evolution as the reference (i.e., ground truth)

to which we compare our automatic co-evolution.

The source metamodels cover different domains of competitions

(e.g., sport, e-game, etc.) and the target metamodels cover a betting

domain, where bets are put on games from the source competitions.

These case studies come from our last year Master’s MDE lecture

performed over 4 months. Those 14 case studies are from students

who had a past developer experience or who were working as part

time developers (making an average of 1 year experience). Students

built their own modeling languages and used different modeling

technologies (Sirius and GMF
4
). Evolution and co-evolution were

part of the maintenance phase of the modeling languages.

The second group consists of three case studies taken from the

catalog of ETL Epsilon
5
. The three case studies transform a tree

model to a graph model, an object oriented model to a data base

model, and a flowchart model to an HTML model.

Table 3 gives the selected case studies and the number of the

transformation rules. Table 4 further gives details on the size of

the metamodels and the transformations, both for original and

evolved versions. Note that in the first group of case studies, only

the source metamodels evolved, whereas in the second group the

target metamodels evolved.

The data set is archived in the FigShare platform
6
to be used for

reproducibility and comparison purposes.

4
https://www.eclipse.org/sirius/ and http://www.eclipse.org/modeling/gmp/

5
git://git.eclipse.org/gitroot/epsilon/org.eclipse.epsilon.git

6
https://figshare.com/s/13230c5cef89d854a295

Table 3: Co-evolution case studies.

Case studies

N o
of original

rules+helpers

N o
of evolved

rules+helpers

G
r
o
u
p
1

CS1:PokerTournament 4 4

CS2:DanceTournament 4 4

CS3: eSportsLeague 4 4

CS4:SpaceRace 4 4

CS5:SoccerEmModel 5 5

CS6:languageolympics 5 5

CS7:BasketballLeague 9 9

CS8:Hackathon 4 4

CS9:soccer_Tournament 4 4

CS10:codingcontest 4 4

CS11:nfl 12 12

CS12:basketball 3 3

CS13:golf_competition 8 8

CS14:MPRPS 6 6

G
r
o
u
p
2 CS15:tree2graph 1 1

CS16:oo2db 9 9

CS17:flowchart2html 19 19

4.2 Evaluation Process
To run this experiment, we first evaluate our change propagation-

based co-evolution on the first group of case studies. Here, we

measure the accuracy of our co-evolution tool by comparing for the

same set of transformations how they were manually co-evolved

by developers against how they are automatically co-evolved by

our tool. This allows us to measure the correctness percentage

reached by our co-evolution approach. The correctness metric of

our co-evolution is computed as follows:

correctness =
ProposedResolutions ∩ ExpectedResolutions

ExpectedResolutions

The ProposedResolutions are the resolutions applied by our ap-

proach (from Table 2) and the ExpectedResolutions are the actual
manually performed resolutions by developers. The correctness

varies from 0 to 1, i.e., 0% to 100%.

After that we evaluate our composition-based co-evolution by

asking developers to apply it on the second group of case studies.

Herein we do not have versioned metamodels and ETL trans-

formations. Thus, we evolved the metamodels by applying im-

pacting changes from Table 2. We asked eight developers to use

our composition-based co-evolution on five impacted transforma-

tions, one for CS15:tree2graph, and two for both CS16:oo2db
CS17:flowchart2html. We then analyzed the applied 40 resolu-

tions. Finally, note that the metamodel changes from version 1 to
version 2 are known for both groups. Based on those changes we

run an impact analysis to identify the impacted transformations

that will be co-evolved.

4.3 Research Questions
This section defines three research questions (RQ) to assess in

particular the applicability, correctness, and the usefulness of our

work. The three research questions are as follows:

Change Propagation-based and Composition-based Co-evolution of Transformations with Evolving Metamodels D.E. Khelladi et al.

Table 4: Detailed co-evolution case studies of the used metamodels and ETL transformations.

Size of source Metamodels

in N o
of elements

Size of target Metamodels

in N o
of elements

Size of Transformations

in N o
of LOC

Case Study

/Domains Original Evolved Original Evolved Original Evolved

G
r
o
u
p
1

CS1:PokerTournament 89 85 219 n/a 143 143

CS2:DanceTournament 86 84 219 n/a 46 46

CS3: eSportsLeague 57 52 219 n/a 54 54

CS4:SpaceRace 55 59 219 n/a 47 49

CS5:SoccerEmModel 73 76 219 n/a 77 77

CS6:languageolympics 84 83 219 n/a 97 97

CS7:BasketballLeague 74 78 219 n/a 85 85

CS8:Hackathon 57 55 219 n/a 27 27

CS9:soccer_Tournament 63 54 219 n/a 57 57

CS10:codingcontest 119 108 219 n/a 54 57

CS11:nfl 109 113 219 n/a 132 129

CS12:basketball 75 73 219 n/a 56 56

CS13:golf_competition 49 49 219 n/a 94 94

CS14:MPRPS 56 66 219 n/a 100 100

G
r
o
u
p
2 CS15:tree2graph 7 n/a 15 20 15 n/a

CS16:oo2db 67 n/a 30 34 142 n/a

CS17:flowchart2html 28 n/a 321 333 169 n/a

RQ1: To what extend and how fast can our change propagation-

based co-evolution handle the impacted Transformations? If we

cannot propose a co-evolution for all impacted transformations, we

can conclude that our change propagation-based co-evolution is

insufficient. This assesses the overall applicability of our change-

propagation.

RQ2:What is the correctness percentage of our change propagation-

based co-evolution? This measures the correctness level of our co-

evolution approach, i.e., to which extent it proposes the expected

resolutions. In so doing, we also assess its usefulness.

RQ3: To what extent can our composition-based co-evolution be

useful to developers in customizing their co-evolution? Here we aim

to assess its usability and usefulness when used as an alternative

to our change propagation-based co-evolution.

4.4 Results
We now discuss the results for our research questions.

4.4.1 RQ1. -

With our impact analysis we were able to find all impacted

transformations’ parts for which resolutions were proposed by our

change propagation-based co-evolution. All impacted parts were

co-evolved and a total of 83 resolutions were applied during the

change propagation. This shows the applicability of our change

propagation-based co-evolution that was able to handle all impacted

transformations. Table 5 shows the applied resolutions for each

case study during co-evolution. In total, the 83 applied resolutions

were covered by 8 resolution types from our catalog in Table 2, i.e.,

[R0], [R1], [R3], [R4], [R5], [R6], [R9], [R10].
The detection of an impacted transformation part and the appli-

cation of its resolution was a matter of milliseconds (ms) with an

average of 3ms. The evaluation was run on a Windows 7 PC with a

Core i7 3.4GHz and 16GB RAM.

4.4.2 RQ2. -

During co-evolution, when alternative resolutions were possi-

ble to apply, we selected the one that is as close as possible to the

expected resolution. Hence, after that we could measure the cor-

rectness of our co-evolution.

Figure 4 shows the measurement of the correctness metric on

our 14 case studies. On average, our change propagation-based co-

evolution was able to reach 96% correctness. This means that our

applied resolutions propagating the impacting metamodel changes

were the ones expected by the developers, in 96% of the cases.

This shows the usefulness of using change propagation-based co-

evolution while meeting the developer’s co-evolution needs.

In 12 out of the 14 case studies from the first group, a 100% cor-

rectness was reached. In the CS7:BasketballLeague case study we
reached an 83% correctness (10/12). Due to a delete of the property

name in the class PlayOffs, the developer’s manual co-evolution

was different from our proposed resolutions ([R0], [R1], [R2], [R3]).
Instead, the property name and its navigation path, used in the two

below ETL statements, was replaced entirely. The first p.name was
replaced by a call to a helper operation getGroupIndex(p). Whereas,

the second p.name was replaced to another element with another

navigation path gr.title, as shown below.

gr.title = p.name; =⇒ gr.title = ’Playoffs’ + getGroupIndex(p);

gr.description = ’...’ + p.name; =⇒ gr.description = ’... ’ + gr.title;

In the CS10:codingcontest case study, we reached a 57% cor-

rectness (4/7). Herein, in response to the move property localDate

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark D.E. Khelladi et al.

Table 5: Number of applied resolutions in our change
propagation-based co-evolution for each case study.

Case studies

Applied

resolutions

N o
of

application

G
r
o
u
p
1

CS1:PokerTournament ◃[R0] 2

CS2:DanceTournament

◃[R4]
◃[R10]

6

1

CS3: eSportsLeague ◃[R4] 2

CS4:SpaceRace ◃[R5] 1

CS5:SoccerEmModel

◃[R4]
◃[R9]

8

7

CS6:languageolympics

◃[R4]
◃[R6]

1

1

CS7:BasketballLeague

◃[R3]
◃[R4]
◃[R9]

2

3

7

CS8:Hackathon ◃[R4] 2

CS9:soccer_Tournament ◃[R4] 7

CS10:codingcontest

◃[R4]
◃[R6]
◃[R9]
◃[R10]

2

1

3

1

CS11:nfl

◃[R1]
◃[R3]
◃[R4]

1

1

4

CS12:basketball ◃[R4] 2

CS13:golf_competition

◃[R4]
◃[R6]
◃[R10]

3

3

1

CS14:MPRPS

◃[R4]
◃[R6]
◃[R9]

4

3

4

from class Contest to class Location. The three below ETL state-

ments were impacted for which we extended their navigation path

with the resolution [R9]. However, the developer simply decided to

delete (�) them with the resolution [R1] as shown below.

grp.startDate = cc.localDate; =⇒ �

grp.endDate = cc.localDate; =⇒ �

online.date = cc.localDate; =⇒ �

4.4.3 RQ3. -

The composition-based co-evolution targets two main goals. The

first one is to allow developers to freely select a resolution that

meets their needs, regardless the impacting metamodel changes.

For example, in the case of CS10:codingcontest case study, the
developer could have directly chosen the resolution [R1] instead
of the proposed [R9] and [R10]. Thus, improving the co-evolution

correctness from 57% to 100% in this case.

Figure 4: Correctness measurement for our change
propagation-based co-evolution.

The second goal is to allow developers to compose new res-

olutions together out of our catalog in Table 2. To evaluate our

composition-based co-evolution, we used the second group of case

studies and asked eight developers (working in our Computer Sci-

ence Department at the Johannes Kepler University) to use it when

co-evolving the transformations. Their professional programming

experience, was an average of 2 years and 1 month as developers

(with minimum of half year to a maximum of 5 years). All par-

ticipants were given the metamodel evolution, the five impacted

transformations (with highlighted impacted parts), and they were

asked to use our catalog of resolutions to co-evolve the transfor-

mations. We did not make it mandatory to compose resolutions to

avoid bias in the resulting resolutions. We only asked them to select

resolutions for each transformation. Hence, we avoid irrelevant

composed resolutions that would have been proposed just for the

sake of composition. Before we started the experiment, we took 15

minutes to explain the three case studies so that the participants

get an understanding of the transformations. Below we report on

the observed results.

In the CS15:tree2graph the applied resolutions were: [R9] × 7
(i.e., applied seven times), {[R9] ∪ [R8]} × 1. In the CS16:oo2db
the applied resolutions were: [R1] × 1 , [R11] × 8 , [R12] × 2 ,

[R14] × 2 , {[R14] ∪ [R1]} × 2 , {[R14] ∪ [R11]} × 1. Finally, in

the CS17:flowchart2html the applied resolutions were: [R1] × 1 ,
[R2] × 2 , [R5] × 1 , [R9] × 9 , [R14] × 1 , {[R9] ∪ [R3]} × 2.

Most of the applied resolutions (34/40) were not the result of

compositions. Among those, 18 resolutions were applied by all

developers propagating the impacting metamodel changes. For ex-

ample, due to a push property in CS16:oo2db, the resolution [R11]
was applied eight times by five developers. However, seven develop-

ers applied other 15 resolutions but not from the ones propagating

the impacting metamodel changes. For example, due to same push

property in CS16:oo2db, the resolution [R12] was applied twice by

one developer who changed the target super class to the subclass

where the property is pushed. This already shows that our composi-

tion mechanism is a useful complement to our change propagation

mechanism. Moreover, four developers chose to compose six res-

olutions in order to co-evolve six impacted transformations. The

applied composed resolutions are: 1) {[R9]∪ [R3]}, 2) {[R9]∪ [R8]},

Change Propagation-based and Composition-based Co-evolution of Transformations with Evolving Metamodels D.E. Khelladi et al.

3) {[R14] ∪ [R1]}, and 4) {[R14] ∪ [R11]}. The first and the second

compositions were each applied two times. These results show that

our composition-based co-evolution is also useful for developers

to compose resolutions in particular cases. This is further high-

lighted in a post questionnaire where seven participants judged

our composition mechanism as useful and one judged it as very

useful
7
.

4.5 Discussion and Limitations
Our change propagation-based co-evolution was stress tested on

14 case studies. It showed to be efficient and useful in co-evolving

model transformations with an average correctness of 96%. The

main advantage is to not overwhelm developers with a large set of

possible resolutions per impacted transformation. This is due to the

concept of change propagation that leverages on the metamodel

changes to reflect them on the transformations.

The main drawback is that the change propagation-based co-

evolution is limited to our catalog in Table 2. However, in our

evaluation it showed to be sufficient to deal correctly with most

cases of co-evolution (96%). Nonetheless, to address this limitation,

we proposed a composition-based co-evolution to deal in particular

with cases where transformations are co-evolved in different and

unexpected way. In our experiment with eight developers, half com-

posed resolutions at least once to co-evolve their transformations.

Hence showing the usefulness of supporting a composition-based

co-evolution.

Moreover, we also observed two cases of refactorings that oc-

curred in addition to the expected co-evolutions. For example, the

multiplicity of the property organizer was increased from 1 to *.

Thus, we proposed resolution [R6] that introduces the operation
first(). This was indeed the expected resolution. However, an If

statement was also introduced to distinguish the cases of single

value and multiple values in the property organizer, as shown below.
This paper focused on the co-evolution of impacted transformations

and refactoring was out of the scope.

grp.description = "Organized by " + cc.organizer.name;

=⇒

if(cc.organizer.size() > 1) {
grp.description = "Jointly organized";

} else {
grp.description = "Organized by " + cc.organizer.first().name;

}

5 THREATS TO VALIDITY
This section discusses internal, external, and conclusion threats to

validity after Wohlin et al. [42] w.r.t. our three research questions.

5.1 Internal Validity
The first group of used case studies comes from our last year master

students. However, recent studies [35, 37] have shown that stu-

dents are valid subjects for experiments and that students are well

representative when it comes to new developing tasks. This was

the case by building modeling languages and maintaining them.

7
Between ’useless – little useful – neutral – useful – very useful’.

Nonetheless, to further reduce this threat we selected case studies

from master students that already had a working experience and

that were working in parallel in a half time programming job. Thus,

we aimed at selecting participants near to a junior experienced de-

veloper with an average of one year experience. In the second group

of case studies we performed the metamodel evolution to cause

impacts on transformations. To reduce the risk of applying non-

realistic changes, we performed changes that are similar to those

applied by developers in the well-knowmetamodel evolutions, such

as those in UML[33] or GMF[12].

Moreover, our participants in our experiment are from our Com-

puter Science Department. To mitigate the threat of results from

our participants being in our favor. We only asked them to select

resolutions to co-evolve transformations without informing them

about the goal of the experiment. We also selected participants

who are not working in the field of model transformations and

metamodel evolution/co-evolution. They were experts in software

product lines, traceability, collaboration, and cyber physical pro-

duction systems, yet, with modeling knowledge.

5.2 External Validity
We implemented and evaluated our approach for EMF/Ecore and

ETL. Other languages, such as ATL, use different syntax but con-

ceptually use the same constructions as in ETL (e.g., transforma-

tion rules, from source to target elements, etc.) Although we are

confident that the co-evolution would be applicable for other trans-

formation languages, we cannot generalize our results to all trans-

formation languages. Further experimentation on other languages

is necessary. However, the only requirement to apply our approach

to other languages is to have access to the ASTs of the parsed trans-

formations and to adapt our resolutions to the new ASTs’ structure.

5.3 Conclusion Validity
Our evaluation gave promising results, showing that our change

propagation-based co-evolution is fast and useful with an average

of 96% of correctness. The evaluation results also show that our

composition-based co-evolution showed to be a useful in supporting

compositions of new resolutions that are not in our catalog in Table

2. However, we only evaluated it on three case studies with eight

developers. To have more insights and evidence, further evaluation

is needed on more case studies with more participants.

6 RELATEDWORK
The main idea of change propagation was already proposed and

used for different purposes, such as by Hassan et al. [13] who used

change propagation in the context of source code, Cubranic et al.

[5] who used it to suggest relevant software development artifacts,

or Demuth el al. [6] who used it for models co-evolution. In our

work we use change propagation to co-evolve transformations.

Many approaches addressed the co-evolution of models [15, 34].

As transformations are different from models, the existing tech-

niques [15, 34] cannot necessarily be used for transformations.

Indeed, as transformations refer to both the source and target meta-

models. A change in either one can have heavier consequences on

transformations, e.g., leading to creation of new transformation

rules. However, few approaches only focused on Transformations’

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark D.E. Khelladi et al.

co-evolution. In this section, we present the main approaches that

co-evolve transformations and we compare them w.r.t. our work.

Alkhazi et al. [1] proposed an automatic refactoring approach of

ATL transformations . They supported 10 types of refactorings that

are different from our resolutions in Table 2, which is expected since

the purpose of co-evolution and refactoring is different. However,

other approaches focused on the co-evolution of transformations.

Vieira et al. [39, 40] proposed an impact analysis approach of ATL

transformations, but without proposing any co-evolution. Other

approaches proposed to co-evolve transformations [1, 9–11, 29, 30].

All those approaches include an impact analysis to identify the

impacted transformations and do not delegate it to the users, which

is similarly performed in our approach as well.

Mendez et al. [30] was the first attempt to handle this issue. They

proposed a set of resolutions to be applied on the impacted transfor-

mations, similarly as in our approach. Ruscio et al. [8, 9] proposed

an approach where in addition to the impact analysis, they also

evaluate the co-evolution cost of the transformations. If the cost is

not expensive, then an automatic co-evolution is performed with

EMFMigrate. Ruscio et al. [7] further explored the variability of the

co-evolution due to the possible alternative resolutions. Garcia et

al. [11] presented a change propagation-based co-evolution of ATL

transformations. They implemented their co-evolution by means

of ATL transformations, where each transformation is a resolution.

Garces et al. [10] proposed an approach that computes a chain of

adaptations to co-evolve ATL transformations based on the meta-

model changes. They further explored different orders of the chain

of adaptations, in particular to filter incorrect orders. Garcia et al.

[11] and Garces et al. [10] also proposed their own approach for

change detection in contrast to other existing approaches. Kusel,

et al. [29] proposed an approach that performs transformations

co-evolution based on impacting atomic changes. They further pro-

posed a composition mechanism from atomic changes a1, ...,an to

complex changes, which triggers the composition of the resolutions

associated with the atomic changes.

To the best of our knowledge, apart from Ruscio et al. [7], all

existing approaches support unique resolution per impacted trans-

formation part. They do not offer alternatives to developers. We

also investigated their catalog of resolutions. We found that the sup-

ported resolutions are different from an approach to another with

some resolutions that are common to all approaches (e.g., [R9]). We

further found that no existing approach supports all the resolutions

that we were able to apply on our case studies, as shown in Table

6. This means that the existing approaches cannot fully automate

the performed co-evolution in our case studies. For example, they

would have reached a lower correctness co-evolution % than our

reached 96% in the first group of case studies.

Furthermore, except from Ruscio et al. [8, 9], none allows to

deviate from the proposed co-evolution and to choose a different

one. Only Ruscio et al. [8, 9] allow developers to manually replace or

refine the supported resolutions. However, none allows to compose

their own resolutions. The composition mechanism proposed by

Kusel, et al. [29] support specific compositions, i.e., resolutions from

atomic changes to a complex change. In contrast, our composition

mechanism allows all possible combinations of resolutions that are

not in conflict with each other. Our composition-based co-evolution

is similar to the one proposed byHerrmannsdoerfer et al. [17, 18, 20].

Table 6: Supported resolutions used in our case studies by
the existing approaches for transformations’ co-evolution.

Resol-

utions

Kusel,

et al. [29]

Garcia

et al. [11]

Ruscio et

al. [8, 9]

Garces

et al. [10]

Mendez

et al. [30]

Our

work

[R0] × X × × × X

[R1] X X × X X X

[R2] X X X X X X

[R3] × × X × X X

[R4] X × X X X X

[R5] × X × × × X

[R6] × X × × × X

[R9] X X X X X X

[R10] × × × X × X

[R11] × × × × × X

[R12] X × X × × X

[R14] × X × × × X

They allowed developers to compose existing resolutions into a

new one. However, they proposed it for the co-evolution of model

instances and not transformations as in our work. Resolutions

for transformation are different from those for model instances.

To the best of our knowledge, no existing approach could have

supported the composed resolutions ({[R9] ∪ [R3]}, {[R9] ∪ [R8]},
{[R14] ∪ [R1]}, and {[R14] ∪ [R11]}) that were applied by four of

our eight developers.

7 CONCLUSION
We presented a co-evolution approach of model transformations

when metamodels evolve. It supports a change propagation-based

co-evolution and a competition-based co-evolution. The former

leverages on the metamodel changes and propagate them on the

transformation. The latter allows developers to freely select which

revolutions to apply and further to compose resolutions together.

Our change propagation-based co-evolution was evaluated on

14 case studies. It showed to be useful by reaching a correct co-

evolution of 96%. The evaluation of our competition-based co-

evolution with eight developers showed to be useful. It allowed

developers to apply resolutions that do not necessary propagate

the impacting change. But more importantly it allowed half of the

developers to compose resolutions during co-evolution.

As future work, we plan to explore further the composition of

resolutions and investigate what is the minimum set of resolutions

that can be sufficient for a wide range composition. We further

plan to use meta-heuristic algorithms to search for possible useful

compositions of resolutions. Thus, we could directly suggest them

to developers. Finally, we will evaluate our approach with more

participants to investigate the frequency of composed resolutions.

Then we could even add the more frequent compositions to our

catalog of Table 2.

Acknowledgment. We would like to thank Horacio Hoyos Ro-

driguez for his feedback and help with ETL implementation. The

Change Propagation-based and Composition-based Co-evolution of Transformations with Evolving Metamodels D.E. Khelladi et al.

research leading to these results has received funding from the

Austrian Science Fund (FWF) under the grants P25289-N15.

REFERENCES
[1] Bader Alkhazi, Terry Ruas, Marouane Kessentini, Manuel Wimmer, and William I

Grosky. 2016. Automated refactoring of ATL model transformations: a search-

based approach. In The ACM/IEEE 19th MODELS. 295–304.
[2] Benoît Combemale, Pierre-Loïc Garoche, Xavier Crégut, Xavier Thirioux, and

François Vernadat. 2007. Towards a Formal Verification of Process Model’s

Properties-SimplePDL and TOCL Case Study. In 9th International Conference on
Enterprise Information Systems. 80–89.

[3] Xavier Crégut, Benoit Combemale, Marc Pantel, Raphaël Faudoux, and Jonatas

Pavei. 2010. Generative technologies for model animation in the TopCased

platform. In European Conference on Modelling Foundations and Applications.
Springer, 90–103.

[4] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2016. Quick fixing

ATL transformations with speculative analysis. Software & Systems Modeling
(2016), 1–35.

[5] Davor Čubranić and Gail C Murphy. 2003. Hipikat: Recommending pertinent

software development artifacts. In Proceedings of the 25th international Conference
on Software Engineering. IEEE Computer Society, 408–418.

[6] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E Lopez-Herrejon, and

Alexander Egyed. 2016. Co-evolution of metamodels and models through consis-

tent change propagation. Journal of Systems and Software 111 (2016), 281–297.
[7] Davide Di Ruscio, Juergen Etzlstorfer, Ludovico Iovino, Alfonso Pierantonio, and

Wieland Schwinger. 2017. A feature-based approach for variability exploration

and resolution in model transformation migration. In European Conference on
Modelling Foundations and Applications. Springer, 71–89.

[8] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2011. What is

needed for managing co-evolution in mde?. In Proceedings of the 2nd International
Workshop on Model Comparison in Practice. ACM, 30–38.

[9] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2013. A methodolog-

ical approach for the coupled evolution of metamodels and atl transformations.

In ICMT. Springer, 60–75.
[10] Kelly Garcés, Juan M Vara, Frédéric Jouault, and Esperanza Marcos. 2014. Adapt-

ing transformations to metamodel changes via external transformation composi-

tion. Software & Systems Modeling 13, 2 (2014), 789–806.

[11] Jokin García, Oscar Diaz, and Maider Azanza. 2013. Model transformation co-

evolution: A semi-automatic approach. SLE 7745 (2013), 144–163.

[12] GMP. 2015. Graphical Modeling Project. Graphical Modeling Framework (GMF).

http://www.eclipse.org/modeling/gmp/. (2015).

[13] Ahmed E Hassan and Richard C Holt. 2004. Predicting change propagation in soft-

ware systems. In Software maintenance, 2004. proceedings. 20th ieee international
conference on. IEEE, 284–293.

[14] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. 2015. Surveying

the corpus of model resolution strategies for metamodel evolution. In 2015 Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 135–142.

[15] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. 2017. Approaches to

co-evolution of metamodels and models: A survey. IEEE Transactions on Software
Engineering 43, 5 (2017), 396–414.

[16] Zef Hemel, Lennart CL Kats, DannyMGroenewegen, and Eelco Visser. 2010. Code

generation by model transformation: a case study in transformation modularity.

Software and Systems Modeling 9, 3 (2010), 375–402.

[17] Markus Herrmannsdoerfer. 2011. COPE–A Workbench for the coupled evolution

of metamodels and models. In Software Language Engineering. Springer, 286–295.
[18] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. 2009. COPE-

automating coupled evolution of metamodels and models. In ECOOP 2009–Object-
Oriented Programming. Springer, 52–76.

[19] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth. 2011.

An Extensive Catalog of Operators for the Coupled Evolution of Metamodels

and Models. In Software Language Engineering, Malloy, Staab, and Brand (Eds.).

163–182.

[20] Markus Herrmannsdörfer and Guido Wachsmuth. 2014. Coupled evolution of

software metamodels and models. In Evolving Software Systems. Springer, 33–63.
[21] John Hutchinson, Mark Rouncefield, and Jon Whittle. 2011. Model-driven engi-

neering practices in industry. In Proceedings of the 33rd International Conference
on Software Engineering. ACM, 633–642.

[22] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011.

Empirical assessment of MDE in industry. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 471–480.

[23] Ludovico Iovino, Alfonso Pierantonio, and Ivano Malavolta. 2012. On the Impact

Significance of Metamodel Evolution in MDE. Journal of Object Technology 11, 3

(2012), 3–1.

[24] Djamel Eddine Khelladi, Reda Bendraou, and Marie-Pierre Gervais. 2016. Ad-

room: a tool for automatic detection of refactorings in object-oriented models. In

ICSE Companion. ACM, 617–620.

[25] Djamel Eddine Khelladi, Reda Bendraou, Regina Hebig, and Marie-Pierre Gervais.

2017. A semi-automatic maintenance and co-evolution of OCL constraints with

(meta) model evolution. Journal of Systems and Software 134 (2017), 242–260.
[26] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, and Marie-

Pierre Gervais. 2015. Detecting complex changes during metamodel evolution.

In CAISE. Springer, 263–278.
[27] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, and Marie-

Pierre Gervais. 2016. Detecting complex changes and refactorings during (meta)

model evolution. Information Systems (2016).
[28] Djamel Eddine Khelladi, Horacio Hoyos Rodriguez, Roland Kretschmer,

and Alexander Egyed. 2017. An Exploratory Experiment on Metamodel-

Transformation Co-Evolution. In Asia-Pacific Software Engineering Conference
(APSEC), 2017 24th. IEEE, 576–581.

[29] Angelika Kusel, Jurgen Etzlstorfer, Elisabeth Kapsammer, Werner Retschitzegger,

Wieland Schwinger, and Johannes Schonbock. 2015. Consistent co-evolution of

models and transformations. In ACM/IEEE 18th MODELS. 116–125.
[30] David Mendez, Anne Etien, Alexis Muller, and Rubby Casallas. 2010. Towards

transformation migration after metamodel evolution. ME Wokshop@MODELS
(2010).

[31] Tom Mens, Gabriele Taentzer, and Olga Runge. 2007. Analysing refactoring

dependencies using graph transformation. Software and Systems Modeling 6, 3

(2007), 269.

[32] Tom Mens and Pieter Van Gorp. 2006. A taxonomy of model transformation.

Electronic Notes in Theoretical Computer Science 152 (2006), 125–142.
[33] OMG. 2015. Object Management Group. Unified Modeling Language (UML).

http://www.omg.org/spec/UML/. (2015).

[34] Richard F Paige, Nicholas Matragkas, and Louis M Rose. 2016. Evolving models

in Model-Driven Engineering: State-of-the-art and future challenges. JSS 111

(2016), 272–280.

[35] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students repre-

sentatives of professionals in software engineering experiments?. In ICSE-Volume
1. IEEE Press, 666–676.

[36] Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation: The heart

and soul of model-driven software development. IEEE software 20, 5 (2003),

42–45.

[37] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 2008. Using students as

subjects-an empirical evaluation. In 2nd ESEM. ACM, 288–290.

[38] Juha-Pekka Tolvanen and Steven Kelly. 2009. MetaEdit+: defining and using inte-

grated domain-specific modeling languages. In The 24th ACM SIGPLAN conference
companion on OOPSLA. 819–820.

[39] Andreza Vieira and Franklin Ramalho. 2014. Metrics to measure the change

impact in ATL model transformations. In International Conference on Product-
Focused Software Process Improvement. Springer, 254–268.

[40] Andreza Vieira and Franklin Ramalho. 2016. Towards Measuring the Change Im-

pact in ATLModel Transformations. International Journal of Software Engineering
and Knowledge Engineering 26, 02 (2016), 153–181.

[41] Guido Wachsmuth. 2007. Metamodel adaptation and model co-adaptation. In

ECOOP. Springer, 600–624.
[42] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/UML/

	Abstract
	1 Introduction
	2 Motivating example
	3 Overall Approach
	3.1 Change Detection and Impact Analysis
	3.2 Transformation Co-evolution
	3.3 Prototype Implementation

	4 Evaluation
	4.1 Data Set
	4.2 Evaluation Process
	4.3 Research Questions
	4.4 Results
	4.5 Discussion and Limitations

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity
	5.3 Conclusion Validity

	6 Related Work
	7 Conclusion
	References

