
HAL Id: hal-02191852
https://hal.science/hal-02191852v1

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

chronVAL/chronSIM: A Tool Suite for Timing
Verification of Auto-motive Applications

Saoussen Anssi, Karsten Albers, Matthias Dörfel, Sébastien Gérard

To cite this version:
Saoussen Anssi, Karsten Albers, Matthias Dörfel, Sébastien Gérard. chronVAL/chronSIM: A Tool
Suite for Timing Verification of Auto-motive Applications. Embedded Real Time Software and Sys-
tems (ERTS2012), Feb 2012, Toulouse, France. �hal-02191852�

https://hal.science/hal-02191852v1
https://hal.archives-ouvertes.fr

chronVAL/chronSIM: A Tool Suite for Timing Verification of Auto-
motive Applications

Saoussen Anssi1, Karsten Albers2, Matthias Dörfel2, Sébastien Gérard3

1Continental Automotive France SAS, PowerTrain E IPP
1 Avenue Paul Ourliac - BP 83649, 31036 France

saoussen.ansi@continental-corporation.com
2Inchron GmbH, August-Bebel-Str. 88, 14482 Potsdam, Germany

{karsten.albers, matthias.doerfel}@inchron.com
3CEA LIST, Laboratory of model driven engineering for embedded systems,

Point Courrier 94, Gif-sur-Yvette, F-91191 France
sebastien.gerard@cea.fr

Abstract: Automotive software systems become more
and more complex presenting tougher safety require-
ments and tighter timing constraints. On the other
hand, today, timing verification of automotive systems
is considered late in the development process, mainly
at the implementation stage. Consequently, this leads
generally to late detection of design mistakes involving
extra costs. In this paper, we present a tool suite dedic-
ated for timing analysis of automotive systems,
chronSIM/chronVAL. We propose to evaluate the cap-
abilities of this tool suite against the timing analysis
needs of automotive applications.

Keywords: Automotive applications, scheduling ana-
lysis, scheduling analysis tools requirements & capab-
ilities, chronSIM/chronVAL.

1. INTRODUCTION

Today, embedded automotive systems often involve
hard real-time constraints intended to ensure full sys-
tem correctness [1]. Power train and chassis applica-
tions, for example, include complex (multi-variable)
control laws, with different sampling periods, for use
in conveying real-time information to distributed
devices. One hard real-time constraint controlled in
power train applications is ignition timing, which var-
ies with engine position. The latter is defined by a
sporadic event characterizing the flywheel zero posi-
tion. End-to-end response times must also be bounded,
since a too long control loop response time may not
only degrade performance, but also cause vehicle in-
stability. These constraints have to be met in every pos-
sible situation.
Automotive software development costs are sharply
impacted by wrong design choices made in the early
stages of development but often detected after imple-
mentation. Most timing-related failures are detected
very late in the development process, during imple-

mentation or in the system integration phase. Timing
verification is usually addressed by means of measur-
ing and testing rather than through formal and system-
atic analysis. For this reason, innovative and complex
functionalities are not implemented in a cost-efficient
way1. The needs for techniques and tools that permit
early and accurate timing verification for automotive
systems are thus obvious. Such techniques and tools
would enable early prediction of system timing behavi-
or and allow potential weak points in design to be cor-
rected as early as possible.
To perform timing verification for automotive systems,
approaches based on both analytical and simulation
techniques are good candidates. In this context, we aim
in this paper to verify to what extent a particular tool
suite for timing analysis: chronSIM/chronVAL allows
performing accurate timing analysis for automotive
systems. This tools suite is based on both analytical
verification (chronVAL) and simulation of timing be-
haviour (chronSIM).
The paper is organized as follows: In section 2, related
work is presented as a general overview about analytic-
al techniques, mainly scheduling analysis techniques
and tools, developed in the context of real time verific-
ation. Section 3 is dedicated to the characterization of
various aspects of automotive applications and invent-
orying their scheduling needs. This inventory serves
for determining the requirements that scheduling ana-
lysis tools should meet. Section 4 gives a presentation
of the studied tool suite. Section 5 highlights the cap-
abilities and limitations of the tool suite with regard to
the determined requirements. The conclusion summar-
izes the study and examines perspectives for use of the
INCHRON tool suite within the automotive software
development process.

1 These statements are based on the study of current
automotive software development practices and partic-
ularly in the case of Continental

2. RELATED WORK

During last decades many techniques and ap-
proaches have been developed to enable timing verific-
ation for real time systems. In this context analytical
techniques, such as schedulability analysis are good
candidates for analyzing non-functional properties at
early design stages.

The first exact schedulability test for the preempt-
ive monoprocessor scheduling of a set of periodic
tasks, each with its deadline equal to its period, was in-
troduced by Lehoczky et al. [2]. The test determines
whether a set of tasks is schedulable using the rate
monotonic algorithm of Liu and Layland [3]. The re-
sponse time of each task is calculated, and checked
against its deadline. Later, other tests were developed
relaxing a number of assumptions: Audsley et al. [4]
developed a feasibility test for sets of tasks in which
deadlines can be less than periods, and which are
scheduled using the deadline monotonic algorithm [5].
Lehoczky [6] provided a feasibility test for periodic
tasks with arbitrary deadlines. For distributed systems
a number of tests have also been developed, e.g. [7],
[8] and [9]. To take into account dependencies between
tasks, Tindell proposed in [8] a test for fixed priorities
in which offsets among release times of dependent
tasks can be taken into account. The test has been later
extended to distributed systems by Palencia and
González [10].

Another approach for real-time analysis is the real-
time calculus. It was developed by Thiele et al. ([17],
[18], [19]) and is based on the network calculus ([22],
[23]). There interval-based curves are defined with a
set of basic functions which are combined to the com-
plex functions required for the analysis. The properties
are modeled by curves and the method provides an al-
gebra based on these curves.

The stimulation of the tasks and functions are
modeled with upper and lower incoming event curves
and the resources available for the tasks are given by
available upper and lower capacity curves. The real-
time calculus provides the calculation for the outgoing
event curves and the remaining capacity curves taking
the incoming events curves, the available capacity
curves and the scheduling into account.

The advantages of this methods are that the curves
allow the accurate modeling of complex stimulations,
more accurate than only with period and jitter, and that
it is based on a powerful algebra. Disadvantages are
long calculation times.

The development of scheduling analysis tools lies
at the very core of the schedulability analysis issue.
While the number of such tools is constantly increas-
ing, they also vary widely in terms of analysis capabil-
ities and supported features. MAST [11] and Cheddar

[12], two open source tools are based on classical feas-
ibility tests allowing schedulability analysis of fixed-
priority and EDF-based monoprocessor and distributed
systems. Cheddar gives also the possibility for the user
to specify new schedulers and task models that cannot
be described by classical approaches. However, Ched-
dar focuses only on tasks and does not support a func-
tion-level characterization as MAST does. Rapid-RMA
[13] is a commercial tool that is based on classical rate
monotonic and deadline monotonic algorithms assum-
ing, hence, tasks to be independent.

In [14] the authors show that, in despite the nu-
merous schedulability tests that has been developed
during last decades (and implemented in the aforemen-
tioned tools), a gap still exist between the assumptions
considered in these schedulability tests and the auto-
motive task model. Hence, to be able to perform accur-
ate timing analysis for automotive systems, one needs
to extend these tests to take into account automotive
task model specificities. However, as shown in [14]
and [15] many of these extensions seem to be intract-
able and inefficient. Thus, for analytical timing verific-
ation, new techniques should be used.

In addition, for complex real time systems, analyt-
ical techniques, in spite of their high verification qual-
ity, have restricted capacity and leads to pessimistic
results. In contrast, simulation techniques are able to
handle large and complex designs (but with lower
quality). Hence to perform accurate timing verification,
a better solution would be to apply the different verific-
ation approaches where they perform best. For in-
stance, calculate analytically the safe worst-case re-
sponse times of module components, but use perform-
ance simulation for obtaining average times at system
level.

In this context, the tool suite chronVAL/chronSIM
has been developed to enable performing timing veri-
fication based both on analysis (chronVAL) and simu-
lation (chronSIM). In the remaining of this paper, we
suggest to evaluate the capabilities of this tool suite to
enable accurate timing verification for automotive ap-
plications.

3. AUTOMOTIVE NEEDS AND TOOLS RE-
QUIREMENTS

This section characterizes the architecture of auto-

motive applications. Such characterization suffices for
the purpose of the present paper, which is to identify
the timing analysis needs of automotive systems and
hence the requirements that should be met by timing
verification tools. It serves, finally, to provide an in-
formal review of capabilities provided by the studied
tool suite. For a better understandability, we will assign

an identifier to each requirement that we denote REQx
where x is the requirement number.
Today's automotive systems have evolved constantly
and now offer ever more challenging features that can
be summed up as follows:

Limited hardware resources: Today, CPU load, has
become day-to-day issue and is the very basis for the
design of automotive systems. For these reasons,
scheduling analysis is required to determine, or at least
estimate, the processor performance needed for a given
design. Hence, Timing verification tools should have
techniques to determine the processor utilization
[REQ1].

Timing Constraints: In addition to limited hardware
resources, automotive applications must deal with
many kinds of timing constraints. These may concern
task or function deadlines or maximum jitters on task
activation instants. Automotive tasks may have hard
deadlines (e.g. for safety functions) or soft deadlines
(for body comfort functions). In addition, the end-to-
end delay after data is read by a sensor and the output
generated from it and passed to an actuator (known as
“data age”) is crucial to control model stability.
Scheduling analysis is hence needed to verify if those
constraints are met or not. To enable this verification,
scheduling analysis tools have to meet certain require-
ments that we summarize as follows:
When describing the system under analysis
• Timing verification tools should allow specifying

task or function deadlines [REQ2]
• Timing verification tools should allow specifying

jitters related to the function or task activation in-
stants [REQ3]

• Timing verification tools should allow specifying
end-to-end timing constraints [REQ4]

When analysing the system
• Timing verification tools should have techniques

to verify if a deadline is respected [REQ5]
• Timing verification tools should have techniques

to verify if end-to-end constraints are respected
[REQ6]

Triggering paradigms: Automotive applications often
involve event-triggered and time-triggered tasks.
Event-triggered means that tasks are executed or mes-
sages are transmitted by the occurrence of significant
events. Time-triggered means that tasks are executed or
messages transmitted at predetermined points in time.
In automotive, the arrival pattern of an event may be
periodic, sporadic or singular (arrives only once). Peri-
odic tasks may involve timing recurrence (e.g. 10ms
time base), angle recurrence (e.g. each 50 degree crank

based on the crankshaft position) or external activation
(e .g. can message). By angle recurrence, we mean the
activation of some tasks that depend on the crankshaft
and camshaft position. (The camshaft is the element of
the engine that allows the opening and the closure of
intake and exhaust valves. The crankshaft is the part of
the engine that translates reciprocating linear piston
motion into rotation). For a good analysis, it is thus ne-
cessary that analysis tools account for this diversity in
triggering of automotive systems. We formalize this
capability by the following requirements:
• Timing verification tools should allow specifying

periodic, sporadic and singular events/tasks
[REQ7]

• For periodic events/tasks, timing verification tools
should allow specifying angular recurrences
[REQ8]

Distributed architecture: In conventional automotive
system design, externally supplied software is integ-
rated by the car manufacturer into ECUs (Electronic
Control Units). Its functionality is then distributed over
many ECUs into a network that may even use multiple
protocols. Most used protocols are CAN, LIN and
FlexRay [16]. For such distributed functions, it is im-
portant to guarantee end-to-end response times. In ad-
dition, in such complex architectures, optimization of
network resource consumption and message scheduling
requires knowledge of the impact of network properties
such as network overheads and driver overheads, and
of different communication protocols. Consequently,
scheduling analysis tools have to satisfy the following
requirements:
• Timing verification tools should allow easy de-

scription of distributed systems with multiple
ECUs and communication buses [REQ9]

• Timing verification tools should have techniques
to analyze multiprocessor systems [REQ10]

• Timing verification tools should have techniques
for CAN, LIN and FlexRay [REQ11]

• Timing verification tools should allow taking into
account processors overheads (basically context
switch overhead) and network overhead (network
driver overheads) [REQ12]

Task concurrency and dependency: In automotive
systems, tasks may be dependent. This dependency res-
ults basically from task chaining which means that a
task is activated by the termination of its predecessor.
Concerning the concurrency issue, in automotive
design, although tasks are concurrent, different tasks
may have the same priority level. As automotive ap-
plications are based on OSEK, these tasks are sched-
uled using the FIFO algorithm (First In First out) as a

second scheduling protocol. Moreover, automotive
tasks are of three kinds: preemptive tasks, cooperative
tasks and interrupts. Cooperative tasks may be inter-
rupted by higher priority cooperative tasks only in pre-
defined points called schedule points. The non-pree-
mptible sections of a cooperative task are used to en-
sure data consistency in case of shared data. To enable

an accurate scheduling analysis, analysis tools have to
support the description and analysis of such a task
model and hence:
• Timing verification tools should allow describing

task dependency resulting from task chaining [RE-
Q13]

• Timing verification tools should allow using FIFO
as second scheduling algorithm for tasks having
the same priority level [REQ14]

• Timing verification tools should allow specifying
pre-emptive, cooperative tasks and interrupts [RE-
Q15]

• Timing verification tools should allow specifying
and analyzing tasks with static and variable offset
[REQ16].

Table1 Timing verification tools requirements

Requirement Description
REQ1 Timing verification tools should have techniques to determine the processor utilization

REQ2 Timing verification tools should allow specifying task or function deadlines

REQ3 Timing verification tools should allow specifying jitters related to the function or task
activation instants

REQ4 Timing verification tools should allow specifying end-to-end timing constraints

REQ5 Timing verification tools should have techniques to verify if a deadline is respected

REQ6 Timing verification tools should have techniques to verify if end-to-end constraints are
respected

REQ7 Timing verification tools should allow specifying periodic, sporadic and singular
events/tasks

REQ8 For periodic events/tasks, Timing verification tools should allow specifying angular re-
currences (engine-synchronous tasks)

REQ9 Timing verification tools should allow easy description of distributed systems with
multiple ECUs and communication buses

REQ10 Timing verification tools should have techniques to analyze multiprocessor systems

REQ11 Timing verification tools should have techniques for CAN, LIN and FlexRay

REQ12 Timing verification tools should allow taking into account processors overheads (basic-
ally context switch overhead) and network overhead (network driver overheads)

REQ13 Timing verification tools should allow describing task dependency resulting from task
chaining

Requirement Description
REQ14 Timing verification tools should allow using FIFO as second scheduling algorithm for

tasks having the same priority level

REQ15 Timing verification tools should allow specifying preemptive, cooperative tasks and in-
terrupts

REQ16 Timing verification tools should allow specifying and analyzing tasks with static and
variable offsets

4. CHRONSIM/CHRONVAL PRESENTATION

The chronSIM/chronVAL tool suite allows a detailed
investigation of the timing issues of complex embed-
ded systems by means of model-based real-time simu-
lation (chronSIM) and analysis (chronVAL). It sup-
ports many stages of the development process starting
with abstract models requiring only some information
up to complete implemented C-code.

Modeling in chronSIM:
The simulator chronSIM takes the stimuli of tasks and

interrupts, the distribution and the execution times of
tasks and ISRs together with the selected scheduling
policies into account to determine the concrete and de-
tailed scheduling and timing execution of the tasks and
runnables.
The modeling can solely be done model-based or in
combination with c-functions. The model can therefore
have a adjustable degree of abstraction.
In the user interface the model elements are represen-
ted by a hierarchical tree. The modeling starts with
adding the resources, schedulers, tasks, interrupts and
runnables (if applicable). The activation between tasks
and interrupts can be set up by adding connections
between them. Each resource has an initial scheduler
for which a scheduling strategy, like fixed-priority,
TDMA or OSEK can be selected. It is possible to add
sub-schedulers below these first level schedulers. So
for example the first level scheduler can be set to
TDMA and a fixed priority scheduler for one slot of
the TDMA cycle can be added as second level sched-
uler.
The external stimulation of the tasks and interrupts is
defined in a separate widget. There are several kinds of
patterns like the periodic pattern or the burst pattern.
In the periodic pattern the stimulus is defined by para-
meters like a repetition time, a possible limit on the
number of events, a relative jitter value, an initial offset
and so on. For the simulation not only the size of the
jitter value is required but also its type of random dis-
tribution.

It is possible to add C-code to the simulation model.
Tasks can have dedicated C-functions to model the be-
havior of the task in more details. During the simula-
tion the c-code is executed on the host computer but
the timing behavior is considered by the simulation as
if it would run on the target platform. In the C-code
special macro commands are integrated to model and
track the timing behavior. Estimated execution time are
often sufficient to reproduce errors and identify their
root causes as well as other effects due to timing is-
sues.

Execution times: To model the execution time there
are several options. First they can be modeled in the
GUI on task and runnable level with best-case/wor-
st-case execution time and optionally a selectable ran-
dom distribution. Secondly, for functions for which c-
code is provided, the estimator chronEST can be used
to calculate execution times. The calculation is per-
formed on a basic block level taking the hardware ar-
chitecture, the compiler and the operating system into
account.

Finally the third option is to use c-code with a special
macro modeling the execution time (Fig. 1). The macro
takes a value, a unit and, optionally, the kind of random
distribution. It models the execution time taken into ac-
count by the simulation in this C-function. A function
may contain several execution time macros simultan-
eously, the call of the macro can depend on conditions
and the value can be calculated using variables.

Fig 1: Definitions for execution time macro

All these different modeling options can be mixed in
the same simulation model. For example it is possible
to model most of a system in a simple GUI-based way
and provide only for one or two critical functions a
more detailed concrete implementation in C. Or to start
in an early development phase with a simple GUI-
based model, and step-by-step substitute parts of the
model with more detailed modeling or c-code. Also for
the c-code itself the user can start with simple func-
tions containing only the execution-time macro and
substitute them later with more detailed functions up to
the real used implementation code.
Note that with the use of the execution time macros
only those parts of the code are relevant which can af-
fect the timing behavior. This is code modifying vari-
ables required for the calculation of the execution time
in the macros and code influencing the further path of
the program, the number of loop iterations or the call
of functions. In many cases the concrete calculation of
execution time can be substituted by selecting a ran-
dom distribution.
In addition to the execution-time macro, macros are
available for other timing-related activity like the gen-

eration and receiving of events, sending and receiving
communication messages like for CAN or FlexRay-bus
systems, tracking event chains and so on.
The simulation allows to model different clocks for the
different resources in the system. So the stimulus and
the execution time does not necessarily depend on a
global ideal time base but on a local time base. The
time bases can be correlated to each other, especially
there can be an offset, drift, etc. between different
clocks. For example the real FlexRay bus has its own
time base which is derived from the different time
bases of the ECUs connected to the bus. Such systems
can be modeled accurately and it allows finding effects
originating from not completely synchronized time
bases.

Simulation results:
During the simulation timing relevant information is
stored in a trace file. This is the base for a lot of useful
diagrams depicting the details of the simulation runs.
The state diagram (Fig. 2) shows for each task at any
time its actual state (running, waiting, idle, preempted,
…). So the user can observe for each concrete point of
time which task is running and which other tasks are
available for execution. The effects of the scheduling
policy and of the selected priorities are visible. It is
easy to investigate the effects of changes in the priorit-
ies and scheduling policies or of mapping tasks to other
resources.
The load diagram gives not only the overall load of the
system but also load of a gliding window over time
based on a selectable range and granularity. It visual-
izes whether the resource utilization is distributed
evenly or whether there are areas with high (or full)
utilization on the one hand and areas with low utiliza-

Fig. 2: State diagram for chronSIM

Fig. 3: Event chain diagram

tion (or idle time) on the other hand. This allows the
user to systematic shift tasks in the areas with low util-
ization to reduce response times.
Other available diagrams are the stack diagram, the call
nesting diagram, event chain diagram and others.
For a quick overview histograms give statistical in-
formation on the probability for different values of an
indicator based on the concrete simulation trace. Indic-
ators can be for example the response time or the jitter
of a task or of an event, the distance between two con-
secutive events of the same or of different kinds and
other more.
The results for event chains are visualized in a special-
ized event chain diagram. Each event chain shows the
different steps of the processing and propagation of a
specified data over time and through the system. The
diagram shows the multiple usages of the same data or
the loss of data (Fig. 3).
The event chains can also be visualized directly in the
state diagram.
With a histogram all kind of data for event chains can
be collected. Examples for histogram values are the re-
sponse time between every first and last step of an
event chain or of the time between the same steps of
two event chains of the same type.

chronVAL:
The chronVAL analysis is mainly based on the real-

time calculus with the necessary supplements for a bet-
ter support of realistic systems. These are for example
analysis methods for cooperative scheduling, support
of offset analysis and so on.

Background of the analysis:
The real-time calculus was developed by Thiele et al.

([17], [18], [19]) and is based on the network calculus
([22], [23]). The real-time calculus is an approach for
compositional real-time analysis based on the concepts
of min-plus and max-plus algebra. It splits the whole
distributed system into processing components having

each an incoming upper and lower arrival and upper
and lower capacity curve. The curves give for each
time interval length the maximum respectively minim-
um value which can occur in any time interval of this
length in any possible schedule. The theory provides
the equations necessary to calculate the outgoing upper
and lower arrival curves and the remaining capacity
curves out of these incoming curves.
A processing component can for example be a task.
The incoming arrival curve is than the stimulus of the
task. In chronVAL it is denoted as incoming event
spectrum. The upper incoming event spectrum repres-
ents for all time interval length the maximum number
of activations of the task occurring within each time in-
terval of a certain length. The lower incoming event
spectrum represents the minimum number of activa-
tions for each time interval length.
The upper available capacity curve or capacity spec-
trum represents for each interval length the maximum
computation time available for this task. For example
in a simple fixed-priority scheduling, the available ca-
pacity is the available capacity for the resource of the
task reduced by the sum of computation time required
by all tasks with a higher priority than the task in ques-
tion. The capacity spectra are not only calculated for
tasks but also for scheduler and resources. The lower
remaining capacity of a resource gives for each interval
length the minimum amount of computation time left
in any interval of this length. For very large intervals
the fraction between the required computation time and
the available computation time for the resource leads
directly to the maximum utilization of the resource.

Approximation: One extension of the real-time calcu-
lus for chronVAL is an approximative representation
([20], [21]) for the curves or spectra which enables a
fast and efficient analysis. The degree of exactness for
the approximation is selectable and a trade-off between
the run-time of the analysis and the degree of exactness
is possible. The basic concept behind the approxima-
tion is to consider the number of stimuli for a task ex-
actly for intervals with only a few stimulations for the
task and to approximate it for intervals with many
stimulations. The approximation is done separately for
each task so that for a certain interval a task occurring
very often will be approximated whereas a task occur-
ring more seldom will still be considered exactly.
The approximation limits the number of elements re-
quired to represent a spectrum. It is directly related to
the number of exactly considered activations for the
tasks. The effort required for the operations of the real-
time calculus directly depends on the number of ele-
ments required for the representation of the spectra.
Therefore the approximation reduces the effort and al-
lows using the analysis for realistic systems.

Fig. 4: Response time composition for chronVAL

Modeling for chronVAL:
For the analysis an initial definition of tasks, their dis-
tribution on resources, their stimuli and their execution
times are necessary.
The stimuli for the analysis are the same as for the sim-
ulation.
The modeling for the analysis is nearly the same as the
models for the simulation, one exception is c-code
which is at the moment only supported by simulation.
The random distributions of the jitter or the execution
time is not relevant for the analysis and therefore not
used. The analysis always has to consider the wor-
st-case (which can for the jitter also be the middle
value).

Analysis results: chronVAL calculates for example
worst-case and best-case response times, their compos-
ition and various event spectra giving detailed informa-
tion on the stimuli and capacities within the system.
The best- and worst-case response time for tasks and
runnables are not only presented with their specific
value but also with their composition (Fig. 4). So it is
visualized which part the response time the task is run-
ning, which part it is preempted and by which other
task and so on. Additionally a trace leading to the wor-
st-case response time can be visualized in a simulation
state diagram.
The event spectra (fig 5) provides more detailed in-
formation generated by the analysis. For each task,
runnable, scheduler and resource the maximum and
minimum available and the remaining capacity and, if
applicable, maximum and minimum incoming and out-
going stimulation is calculated.
An event spectrum is a mathematical function which
describes the specific value over time intervals. This
definition is identical to the definition of curves in the
network / real-time calculus. So the spectrum for the
maximum stimulus of a task gives for each inter-
val-length the maximum amount of events which can
activate this task within any interval of this length.

In the same way the available capacity spectrum de-
picts for each interval-length the maximum resp. min-
imum capacity available for the task or resource within
any interval of this length within any concrete possible
schedule. So with the event spectra all worst-case situ-
ations which can happen within any possible schedule
of the system are concentrated in one function and are
visible at first glance.

5. TOOL SUITE EVALUATION

This section presents the capabilities of the studied
tools suite based on the requirements determined on
section 3.

REQ1: chronVAL does not display a value showing
the global utilization of the processor by the different
tasks. However, through a graph called “event spec-
trum viewer”, it is possible to visualize the variation of
the available and the remaining processor capacity for
each task. The utilization is the value of the event spec-
trum “minimum remaining capacity” for the infinite in-
terval. The utilization value is also shown in the report.
For chronSIM the load diagram shows the utilization
for a sliding window over the simulation trace. The
user can choose the size and the granularity of this
window. This diagram shows whether the utilization is
distributed evenly or whether there are large hotspots
with high utilizations together with ranges of low util-
ization or idle time.

REQ2: To describe task deadlines, chronSIM/chron-
VAL allows assigning a timing requirement to a task.
This requirement allows specifying a bound on the
delay between the activation event of the task and its
termination event.

REQ3: To describe the activation of a task, chronSIM
and chronVAL uses the concept of “stimulation”. A
stimulation is an element that is connected to a task to
describe its activation patterns such as its period, the
minimum inter-arrival time, the offset, its activation jit-
ter and the jitter of further occurrences, a possible lim-
itation for the number of occurrences and so on. Im-
portant for the simulation is the kind of random distri-
bution for the jitter values. There are additional stimu-
lation patterns for other kind of activations like bursts.

Fig. 5: Event spectrum viewer for chronVAL

REQ4: Specifying end-to-end timing constraints is
also supported through the concept of requirement in
chronSIM/chronVAL. To specify an end-to-end con-
straint on a flow of tasks, one can specify a require-
ment between the activation event of the first task and
the termination event of the last task in the flow.

REQ5: To verify if a deadline is respected or not,
chronVAL calculates the worst-case response time for
each task and compares it with the deadline. For
chronSIM the requirement is compared with every oc-
currence of the task and additionally to the overall res-
ult a statistic is provided on how often and in which ex-
tend the response time is missed together with links to
the specific occurrences of the task in the state dia-
gram.

REQ6: As for deadlines, chronSIM and chronVAL cal-
culates end-to-end response times and compare them
with end-to-end requirements.

REQ7: When describing task activation, chronSIM
and chronVAL allows describing periodic and sporadic
tasks either with or without jitters. Singular tasks can
also be described by specifying no repetition for them.

REQ8: The graphical interface of chronVAL uses only
a timing base, hence the activation of engine synchron-
ous tasks cannot be specified e.g. in CRK degrees but
in time units. So, the dependency of the period of these
tasks on the engine speed cannot be described directly
and the analysis may be done only for a fixed engine
speed. It is possible to use induced stimulations to
model such a scenario. The base is a periodic stimula-
tion which generates one event for every single CRK
degree as a base time. The induced stimulations can be
configured to propagate only one out of x events and
can get also the offset for this event. Therefore it can
be ensured that the events propagated by different in-
duced stimulations are separated. For chronSIM addi-
tionally the model of clocks can be used. A drift can be
specified modeling increasing speed. Or a few lines of
C-code together with the simulation macros allow the
modeling of even complex scenarios.

REQ9: chronSIM and chronVAL allows modeling and
analyzing distributed systems. When describing the
system under analysis, the tool allows describing mul-
tiple ECUs and buses.

REQ10: chronSIM and chronVAL allows analyzing
multiprocessor systems (distributed systems).

REQ11: The tool has dedicated analysis and simula-
tion techniques for CAN and simulation techniques for
FlexRay. The upcoming version covers CAN, FlexRay,
LIN and additional switched Ethernet for both simula-
tion and analysis.

REQ12: Context switch overheads and network over-
heads can be described in chronSIM and chronVAL
separately for each resource.

REQ13: In chronVAL, task chaining can be described.
In fact, each task has got a “connection” field. In this
field, it is possible to describe an activation source for
the task or to specify that this task is activated by an-
other task.
Additionally the concept of event chains is available
allowing to model data dependencies more accurately.
For chronVAL it is possible to define event (data)
chains for runnables of tasks. For chronSIM the steps
of the event chains can be defined in C-Code by an
event chain macro. An event chain diagram gives de-
tailed information on multiple data usage, lost data or
the jitter of the data chain.

REQ14 & REQ15 & REQ16: The Tool allows spe-
cifying offsets, interrupts as well as preemptive and co-
operative tasks. Cooperation aspect is described
through specifying non-preemptible sections and their
execution times for each task.
chronVAL analysis is based on the “real time calculus”
technique. The tool allows specifying the different as-
pects described in REQ14, REQ15 and REQ16 includ-
ing offsets and tasks with the same priority, and these
aspects are taken into account by the analysis.

6. CONCLUSION

In this paper, we discussed crucial capabilities that
need to be available in tools for timing verification in
automotive applications. We evaluated the extent to
which a commercial tool suite, chronVAL/chronSIM2,
satisfies such requirements. This evaluation reveals
that for an accurate timing verification for automotive
systems, both analytical and simulation techniques are
needed. Thus, a complete timing verification approach
(such as the case for the evaluated tool suite) should
combine the two techniques enabling hence to apply
each one where it would perform best.3

2 The development of the underlying technology of the IN-
CHRON Tool-Suite was funded by financial means of the
Ministry of Economics of the State Brandenburg and the
European Union. The responsibility for the content is solely
with the authors.

3The work has been partly funded by the German Ministry
for Education and Research (BMBF) under the funding ID

.

7. REFERENCES

[1] N. Navet, F. Simonot-Lion, editors: The Automotive
Embedded Systems Handbook. Industrial Information
Technology series, CRC Press / Taylor and Francis,
ISBN 978-0849380266, December 2008.

[2] Lehoczky, J., L. Sha and Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterisation and Aver-
age Case Behaviour,” Proceedings of the Real-Time
Systems Symposium (1989).

[3] Liu, C. L., J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”
Journal of the ACM, 20, 1 (1973), 46-61

[4] Audsley, N., Burns, A., Richardson, M., Tindell, K., and
Wellings, A. Applying new scheduling theory to static
priority preemptive scheduling. Software Engineering
Journal 8, 5 (1993), 285–292.

[5] Leung, J., and Whitehead, J. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation 2 (1982), 237–250.

[6] Lehoczky, J. “Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines,” Proceedings 11th
IEEE Real-Time Systems Symposium (5-7 December
1990) pp.201-209.

[7] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed real-time systems. Microprocessing and
Microprogramming - Euromicro Journal (Special Issue
on Parallel Embedded Real-Time Systems), 40:117–
134, 1994

[8] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Technical Report YCS 221, Dept. of Com-
puter Science, University of York, England, January
1994.

[9] J.C. Palencia Gutiérrez and M. González Harbour,
"Schedulability Analysis for Tasks with Static and Dy-
namic Offsets". Proceedings of the 18th. IEEE Real-
Time Systems Symposium, Madrid, Spain, December
1998.

[10] J.C. Palencia Gutiérrez and M. González Harbour,
"Schedulability Analysis for Tasks with Static and Dy-
namic Offsets". Proceedings of the 18th. IEEE Real-
Time Systems Symposium, Madrid, Spain, December
1998.

[11] MAST website (http://mast.unica.es)
[12] Cheddar website (https://beru.univ-brest.fr)
[13] Rapid-RMA website (http://www.tripac.com/rapid-rma)
[14] Saoussen Anssi, Sébastien Gérard, Stefan Kuntz,

François Terrier, "On the Gap between Schedulability
Tests and Automotive Task Model", International Work-
shop on Analysis Tools and Methodologies for Embed-
ded and Real time Systems, In conjunction with the
ECRTS conference, Porto, Portugal, July 5th-8th, 2011

[15] P. Hladik, A. Deplanche, S. Faucou, and Y. Trinquet,
Schedulability analysis of OSEKNVDX applications, in

01IS10034 as part of the TIMMO-2-USE research project in
the framework of the ITEA2, EUREKA cluster program
3674.

15th International Conference on Real-Time and Net-
work Systems, 2007.

[16] M. Traub, V. Lauer, J. Becker, M. Jersak, K. Richter and
M. Kuhl: Using timing analysis for evaluating commu-
nication behaviour network topologies in an early
design phase of automotive electric/electronic architec-
tures. SAE World Congress, Detriot, MI, USA, April
2009.

[17] S. Chakraborty, S. Künzli, L. Thiele, Performance eval-
uation of network processor architectures: Combining
simulation with analytical estimations, Computer net-
works, 41(5), pp. 641-665, 2003

[18] L. Thiele, S. Chakraborty, M. Naedele, Real-time calcu-
lus for scheduling hard real-time systems, Proceedings
of the IEEE Conference on Circiuts and Systems, 2000.

[19] E. Wandler, Modular performance analysis and inter-
face-based design for embedded real-time systems, Phd-
thesis nr. 16819, ETH Zürich, 2006

[20] K. Albers: Approximative Real-Time Analysis, Phd.
Thesis, University of Ulm, 2011

[21] K. Albers, F. Slomka: An event stream driven approxim-
ation for the analysis of real-time systems, in Proceed-
ings of the 16th Euromicro Conference on Real-Time
Systems, pp. 187-195, 2004

[22] L. Cruz, A calculus for network delays, in IEEE Trans-
actions in Information Theory, vol. 37, pp. 114-141,
1991

[23] J.-Y. Le Boudec, P. Thiran, Network calculus: A theory
of deterministic queuing systems for the internet, Lec-
ture Notes in Computer Science, Springer, 2001

