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A New Exact Low-Complexity MMSE Equalizer for
Continuous Phase Modulation

Romain Chayot , Student Member, IEEE, Nathalie Thomas, Charly Poulliat , Member, IEEE,

Marie-Laure Boucheret , Guy Lesthievent, and Nicolas Van Wambeke

Abstract— This letter introduces a new low-complexity
frequency-domain equalizer for continuous phase modulations
(CPM). The derivation of a fractionally spaced representation
for circular block-based CPM leads, without any approximation,
to a simple yet efficient frequency-domain equalization. The pro-
posed equalizer is compared to the state-of-the-art approaches.
Simulation results show the equivalence in terms of performance
with a lower or similar complexity.

Index Terms— Continuous phase modulation, frequency-
domain equalizer, frequency-selective channel.

I. INTRODUCTION

C
ONTINUOUS Phase Modulation (CPM) signals are

commonly known for their good spectral efficiency

and their constant complex envelop, which is robust to the

non-linearities introduced by embedded amplifiers. They are

mainly considered for applications such as deep-space, aero-

nautical or tactical communications and for IoT.

Compared to linear modulations, CPM transmission over 
frequency-selective channels is a challenging task. Optimal

joint channel equalization and detection using a Maximum

A Posteriori (MAP) trellis based detector is too prohibitive

as its complexity grows exponentially with both the CPM 
and the channel memory. Contrary to the single carrier (SC)

case using linear modulation, as the received signal is not a
linear function of the transmitted data symbols, sub-optimal 
linear equalization and detection using the minimum mean

square error (MMSE) criterion should be performed into two

steps: first linear equalization is usually performed over the

over-sampled complex signal envelop, then the output is fed to
a non linear detector for CPM for Gaussian channels. MMSE

based approaches mainly consider the generalization of SC 
frequency-domain equalization (FDE) for linear modulations

to the case of CPMs (using cyclic prefix or unique word 
block transmissions). SC-FDE using linear modulations leads

to a circular linear Gaussian model, linear with respect to

the transmitted data symbols whose Time-Domain (TD) and

Frequency-Domain (FD) auto-correlation matrices are usually

both diagonal, leading to, with some abuse of terminology, 
the so-called ‘one-tap’ FD equalizer. FDE for CPM signals
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also ends up with a circular linear Gaussian model, but with

respect to a vector of samples of the over-sampled complex

signal, which is correlated by nature. Therefore, without any

further hypothesis, both TD and FD auto-correlation matri-

ces of those samples are not diagonal, and having a ‘one-

tap’ FD equalizer highly depends on the structure of the

model used. The use of SC-FDE blindly drawn from the

linear case is a rough approximation leading to some heavy

performance degradations. In this letter, it is shown that by

carefully considering the model and the representation of the

received over-sampled CPM signal, a ‘one-tap’ FD equalizer

is achievable, by using the cyclic statistical properties of the

signal in case of circular block-based transmission and a

Fractionally-Spaced (FS) representation of the signal.

Concerning CPMs, Pancaldi and Vitetta [1] and

Thillo et al. [2] propose minimum mean square

error frequency-domain equalizers (MMSE-FDE).

Pancaldi and Vitetta [1] use the Laurent Decomposition

(LD) [3] of the binary CPM signals to describe the signal

as a sum of P linear Pulse Amplitude Modulations (PAM)

with complex pseudo-symbols and then equalizes those

pseudo-symbols and make use of a FS representation to

derive the equalizer’s expression. Without using the LD,

Thillo et al. [2] derive an equalizer based on an over-sampled

version of the continuous non-linear CPM using a polyphase

representation of the received signal and then outputs an

equalized over-sampled version to feed a classical non linear

receiver. It can be formally proved that those equalizers

are equivalent up to post-treatment and thus have the same

performance [4]. To further reduce the complexity of this

scheme, Thillo et al. [2] also describe a low-complexity

approximated MMSE-FDE. Tan and Stuber [5] propose a

symbol spaced FD equalizer based on the LD and another

one based on an orthogonal representation of the signal.

Unfortunately, it can be shown that those approaches cannot

cope with all types of multi-path channels [4] as they

assume the delays of the paths to be multiples of the

symbol duration. Those approaches have been studied for

aeronautical telemetry in [6]. Brown and Vigneron [7] also

use an orthogonal representation of the signal to perform a

FD equalization but, unlike the Gram-Schmidt procedure of

Tan and Stuber [5], it proposes to use Legendre Polynomials

to generate the orthogonal basis functions. A completely

different approach has been proposed in [8], using the

tilted-phase representation of CPM signals and working

on the over-sampled signal. Approximated low-complexity

filter-based equalizers based on the MMSE criterion are

proposed, in both the time and frequency domains, and the

turbo principle based on soft linear filtering as proposed

by Tüchler and Singer [9] is applied. Xu et al. [10] use a



FS representation of the signal which is strictly similar to 
the one proposed in [8]. However both of them do not take 
into account the auto-correlation of CPM signals, resulting 
in a loss of performance. Darsena et al. [11] develop a 
Zero-Forcing and a MMSE linear time-varying equalizer in 
the Time-Domain for CPM over doubly-selective channels 
based on the Basis Expansion Model (BEM) and a widely 
linear counterpart of those equalizers has been introduced 
in [12]. However, this approach has a high computational 
complexity as it requires full-matrix inversion, even if only 
time-invariant channels are considered in case of large channel 
spread whereas our approach has a constant computational 
complexity with the channel spread.

In this letter, we derive an exact low-complexity 
MMSE-FDE based on the FS representation of the CPM wave-

forms, only considering time-invariant frequency-selective 
channels. As in [2], we perform a linear MMSE-FDE over 
the over-sampled complex envelope of the CPM signals, but 
by using the FS representation, we can fully benefit from 
the properties of circular block-based CPM and reduce the 
complexity, without making any kind of approximation in 
the equalizer derivation. While performing the same as the 
equalizer proposed by Pancaldi and Vitetta [1] and the “full 
complexity” polyphase domain equalizer of Thillo et al. [2], 
we will show that the proposed approach has a significant 
lower complexity, of the same order as the approximated low 
complexity version of Thillo et al. [2]. Moreover, we will also 
prove that the MMSE-FDE from [8] is an approximation of 
the proposed FS equalizer.

This letter is organized as follows. Section II presents the FS 
representation for circular block-based CPM signals transmit-

ted over frequency-selective channels. In section III, the cor-

responding FS block MMSE-FDE is derived. In section IV, 
we compare the computational complexity of different equaliz-

ers of the same kind. Simulation results are given in section V, 
while conclusions are drawn in section VI.

II. BLOCK-BASED CPM REPRESENTATION

Let α = [α0, · · · , αN−1] ∈ {±1, ±3, . . . , ±M − 1}N be a 
block of N independent and identically distributed (iid) sym-

bols drawn from a M -ary alphabet. The equivalent baseband 
complex envelope s(t) of the transmitted CPM signal is:

s(t) =

√

2Es

Ts

exp
(

j2πh
N−1
∑

i=0

αiq(t − iTs)
)

(1)

where Es is the symbol energy, Ts is the symbol dura-

tion, h is the modulation index, Lcpm is the CPM memory,

q(t) =
∫ t

0
g(τ)dτ if t ≤ LcpmTs and q(t) = 1/2 if t > LcpmTs

and g(t) is the pulse response.

To perform efficient frequency domain equalization, we first

need to circularize the channel, as for linear modulation,

enabling the efficient use of a Fast Fourier Transform (FFT)

at the receiver. To this end, we can use several methods such

as the introduction of a Cyclic Prefix (CP) or a known Unique

Word (UW) (also called Training Sequence). We assume the

use of a UW despite its loss of spectral efficiency compared

to a CP as it can be used to increase the performance in

case of Decision Feedback Equalizer or to perform some

useful estimations, such as the carrier phase and frequency or

the channel parameters. However, the proposed method still

applies to CP-based equalization schemes.

After appending some termination symbols and

the UW [13], the CPM signal is transmitted over

a frequency-selective channel with impulse response

hc(t) =
∑L−1

l=0
alδ(t− τl) where L is the number of paths, τl

and al are the delay and the complex attenuation of the lth path.

As in [13], we assume that the transmitted CPM is roughly

bandlimited to B = k

2Ts

, k ≥ 2. Then it can be sampled

uniformly at a rate of Te = Ts/k, without a significant loss of

information. At the receiver, we assume ideal low-pass filtering

using the front-end filter Ψ(t). Denoting h(t) = Ψ(t) ∗ hc(t),
where ∗ is the convolution operator, the received signal can

be written as [13]:

r(t) = h(t) ∗ s(t) + w(t) =
∑

m

s(m
Ts

k
)h

(

t − m
Ts

k

)

+ w(t)

(2)

w(t) is a complex baseband additive white Gaussian noise

with power spectral density 2 N0.

In the following, in order to derive the analytic expression

of the auto-correlation of the over-sampled received signal,

we will consider the LD presented in [3] for binary CPM

signals with non-integer modulation indices, without loss of

generality and for ease of presentation. The LD allows us to

describe the CPM signal as a sum of P pulses modulated

by complex pseudo-symbols. Based on this decomposition,

exact expression of the time-averaged auto-correlation of the

transmitted signal can be easily derived [3], [14]. The results

presented in this letter can be extended as the LD has been

expanded in [15] for M -ary CPM signals or for integer

modulation indices in [16].

By simply reordering the samples, compared to the

representation given in [2], we can derive a classical

fractionally-spaced (FS) representation that does not make

use of the multi-channels representation (as for the polyphase

representation developed in [2]). In this FS representation,

by denoting Te = Ts/k, the received signal can be written as

follows r = [r(0), r(Te), r(2Te), . . . , r((kN −1)Te)]
T where,

from equation (2), we have

r[l] , r[lTe] =
∑

m

s(m
Ts

k
)h

(

(l − m)
Ts

k

)

+ w(l
Ts

k
) (3)

=
∑

m

s[m]h[l − m] + w[l] (4)

This can be rewritten as r = hs + w where h is a circulant

matrix with first column h = [h[0], h[1], . . . , h[Lc − 1],
0, . . . , 0]T and Lc is the over-sampled channel impulse length.

Note that s is the vector of collected samples from the

over-sampled complex envelop of the transmitted CPM signal

(which are correlated by nature), which is not to be confused

with the transmitted data symbols vector α as in SC-FDE

for linear modulations. Finally, this can be stated in the

frequency-domain as

R = F kNr = HS + W (5)

where F kN is the Fourier matrix of size kN × kN ,

H = F kNhF
H

kN
, S = F kNs and W = F kNw. By DFT

properties, H is a diagonal matrix with H = diag(F kNh).



TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN DIFFERENT EQUALIZERS FOR CPM WITH AN OVERSAMPLING FACTOR k = 2

III. MMSE EQUALIZATION FOR FS REPRESENTATION

The optimal equalization approach consists in performing

jointly the channel equalization and the detection of the

transmitted sequence. However, due to the non-linearity of

CPMs, the complexity of this approach is prohibitive. An usual

choice is to perform separately the channel equalization and

the CPM detection. In this context, we derive in the following

a linear FD equalizer based on the MMSE criterion. The output

of the equalizer is then used for classical MAP detection (see

for example [17]) as done in [2]. Let JMMSE be the matrix of

size kN × kN minimizing the following Mean Square Error

(MSE) criterion MSE = E

{

(S−JMMSER)H(S−JMMSER)
}

.

A straightforward derivation [18] shows that the matrix

JMMSE of size kN × kN minimizing the MSE is given by:

JMMSE = RSSH
H

K
−1 (6)

with K = HRSSH
H +N0IkN and RSS is the time-averaged

auto-correlation matrix of S. We note that the matrix RSS

can be precomputed using the LD [3] for binary CPM with

non-integer modulation indices as shown in [2] and thus stored

at the receiver side.

This equalizer is equivalent in its derivation to the one

using the polyphase representation presented in [2]. The only

difference is within the use of the FS representation: it leads

to a different ordering of the matrices elements implied in

equation (6), exhibiting nice properties. Indeed, we will show

in the following that RSS, as H , is a diagonal matrix for the

FS representation (contrary to the polyphase representation),

which enables a lower complexity for the equalizer. First,

as for linear modulation, the use of a UW or a CP introduces

an equivalence between the linear convolution and a circular

convolution in Eq.(2). Thus, the received sequence corresponds

to the circular convolution of the circularly extended

transmitted sequence (composed by the data block and

the xUW) and the channel impulse response. Therefore, over

a finite-time observation window corresponding to this block,

this circular convolution can be seen as a linear convolution

of h and a periodic version of s. Hence, by considering

this periodic version of s while deriving the statistical

properties, the time-averaged auto-correlation function of s is

periodic of period kN over this block. As s(t) is a complex

signal, the auto-correlation is Hermitian, i.e. r∗ss(l) = rss(−l).
We now obtain: r∗ss(l) = rss(−l) = rss(kN − l). Then, we can

show that the time-domain time-averaged auto-correlation

matrix is circulant:

rss

=









rss(0) r∗ss(1) r∗ss(2) . . . r∗ss(kN−1)
rss(1) rss(0) r∗ss(1) . . . r∗ss(kN−2)

...
...

...
. . .

...
rss(kN−1) rss(kN−2) rss(kN−3) . . . rss(0)









(7)

=











rss(0) rss(kN−1) rss(kN−2) . . . rss(1)
rss(1) rss(0) rss(kN−1) . . . rss(2)

...
...

...
. . .

...

rss(kN−1) rss(kN−2) rss(kN−3) . . . rss(0)











(8)

We can see that rss is finally circulant with first column rss

being [rss(0), rss(1), . . . , rss(kN − 1)]T . The auto-correlation

matrix in the frequency domain RSS is thus diagonal by

DFT property. We point out that this diagonalization is not

possible in case of [2] as they do not use a FS representation

of the received signal resulting in a different auto-correlation

matrix in the time-domain. Moreover the diagonal terms are

all real. Hence, the equalizer JMMSE is simply a diagonal

matrix with generic term given by J [l] = RSS[l]H
∗[l](RSS[l]

|H [l]|2 + N0)
−1.

If we impose the coarse approximation RSS = IkN

(i.e. neglecting the signal correlation and assuming the

signal energy normalized to 1), the equalizer becomes

Japprox[l] = H∗[l](|H [l]|2 + N0)
−1 which corresponds to the

highly suboptimal equalizer proposed in [8] with k = 2.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of

the proposed equalizer. The complexity will be expressed in

number of floating-point operations (flops) per block as in [2],

where a flop corresponds to one real multiplication plus one

real addition [1].

We have shown that Rss and K are diagonal matrices.

Hence, the computation of K
−1 requires 4kN real multipli-

cations and 2kN real additions, plus kN real divisions for

the inversion. The product RssH
H

K
−1 is done with 3kN

real multiplications. Thus, the computation of JMMSE requires

2kN real additions, 7kN real multiplications and kN real

divisions. The equalization is then performed with kN com-

plex multiplications as we only deal with a diagonal matrix

of size kN . So, we can conclude that the complexity of our

receiver is dominated by the DFT and IDFTs operations and

is in O
(

kN log(kN) + PN log(N)
)

. This is the same for the

low complexity MMSE-FDE proposed in [8] (only removing

2kN real multiplications), and comparing our equalizer with

equalizers leading to the same performance (as it will be

shown in the following section), TABLE I highlights that the

computational complexity of our receiver is lower.

V. SIMULATIONS RESULTS

We first compare, by the means of simulation, the pro-

posed equalizer (called “FS-MMSE-FDE”) with the following

other exact MMSE-FDE equalizers: (a) the equalizer proposed

in [2]. This equalizer uses the polyphase representation and

produces an estimated signal by only considering the channel

contribution. It will be called “PP-MMSE-FDE”; (b) the

equalizer proposed in [1]. This equalizer both considers the



Fig. 1. Achievable coding rate over chan 1.

Fig. 2. BER over the aeronautical channel by satellite.

contribution of the channel and the LD to produce an estimate

of the LD pseudo-symbols using the FS representation. It will

be called “LD-FS-MMSE-FDE”; (c) a modified version of the

equalizer proposed in [1], using a polyphase representation

instead of a FS. It will be called “LD-PP-MMSE-FDE”.

For the simulations, we consider two binary CPM schemes

with a raised-cosine pulse shape (noted RC), a memory of

Lcpm = 3 and a modulation index h ∈ { 1

4
, 1

2
}. The transmitted

signal is composed of 8 blocks of 512 symbols, where each

block is composed of data symbols, termination symbols and a

Unique Word of size 16. The channel is the channel proposed

in [5] as chan 1, but with modified delays: multiples of Ts/2
instead of Ts and the same Power Delay Profile.

Fig. 1 plots the obtained achievable rates for the 4 compared

MMSE-FDE. The achievable coding rate is estimated by

computing the area under the Extrinsic Information Transfer

Chart (EXIT chart) of the detector [19]. The results show

that the proposed equalizer has the same performance as

the equalizers [2] and [1] (actually both having the same

performance, as it has been shown in [4], up to post-treatment

which is applied here).

Fig. 2 plots obtained bit error rates for the binary RC CPM

scheme with h = 1/2, considering now a coded transmission

and an iterative concatenated scheme between the CPM MAP

detector and the channel MAP decoder. Used channel for

simulations is an aeronautical channel, modeled as a two-paths

channel with a second path delayed by 3.7Ts compared to the

first one. A convolutional code with polynomial generators

(5, 7)8 has been added and 20 iterations have been done in

the iterative procedure between the CPM MAP detector and

the channel MAP decoder. For the same complexity, the fact

that we do not approximate the auto-correlation matrix, as it is

done in [8], allows our equalizer to increase the performance

of 2dB at a BER of 10−3 and to achieve the same performance

of other state-of-the-art approaches.

VI. CONCLUSION

A new exact MMSE-FDE for CPM waveforms is presented,

having a lower complexity for the same performance compared

to the MMSE-FDE proposed in the literature. Indeed, based on

a FS representation for the circular block-based CPM, the pro-

posed frequency-domain equalizer only needs the inversion of

diagonal matrices as for linear modulations.
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