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1. Introduction

Obesity, with its constellation of related metabolic diseases,

such as type 2 diabetes (T2D), has become a major public health

problem worldwide in view of its associated morbidity and

mortality, and the increasingly large number of individuals

affected. Greater consumption of energy-dense foods and an

overall shift towards more sedentary lifestyles are important

factors contributing to this unprecedented rise in prevalence [1],

with genetic predisposition apparently playing a relatively minor

role [2,3]. More recently, the gutmicrobiome has elicited a surge of

interest as a possible contributor to the pathogenesis of obesity

and T2D. Obesity appears to be associated with reduced bacterial

diversity and changes in the relative abundance of different

bacterial species [3,4]. Studies have indicated differences in gut

microbiota between obese and lean individuals [2], as well as

between diabetic and non-diabetic individuals [5,6]. Experiments

in various animal models have consistently demonstrated that the

gut microbiota affects host metabolism in numerous ways. In

particular, it can modify the amount of energy harvested from the

diet, the integrity of the intestinal barrier, the qualitative

composition and metabolism of fatty acids in adipose tissue and

the liver, the secretion of gut-derived peptides, and lipopolysac-

charide (LPS)-induced inflammation [7].

Keywords:

Probiotics

High fat diet

Body weight gain

Insulin resistance

Inflammation

C57/BL6J mice

A multispecies Lactobacillus- and Bifidobacterium-containing probiotic mixture significantly reduced the adverse metabolic and 
inflammatory effects of a 14-week high-fat diet in wild-type C57/BL6J mice gavaged 5 days a week with the probiotic mixture or 
vehicle. Recent evidence indicates that the gut microbiome may play a decisive role in the onset of obesity and associated chronic 
metabolic diseases, such as type 2 diabetes, by modulating nutrient absorption and factors conducive to development of a persistent 
low-grade inflammatory state. By modifying the gut microbiome, probiotics might constitute an effective dietary strategy for 
managing these metabolic disorders. The tested probiotic mixture significantly attenuated the increase in body weight, serum 
glucose concentration and insulin resistance induced by the high-fat diet. Furthermore, it significantly reduced the up-regulation of 
expression of several genes encoding pro-inflammatory adipokines and leukotriene pathway enzymes (CCL-2, IL-6 and leukotriene 
C4 synthase in adipose tissue, leukotriene C4 synthase and leukotriene A4 hydrolase in the gut). It also significantly counteracted the 
down-regulation of adipose tissue gene expression related to the anti-inflammatory adipokine adiponectin in mice fed the high-fat 
diet. These results suggest that the mechanism underlying the beneficial metabolic effects of the probiotic mixture might involve 
inhibition of gut and adipose tissue inflammation.

Abbreviations: CLAs, conjugated linoleic acids; CT, control diet; FIAF, fasting-

induced adipocyte factor; GLP-1, glucagon-like peptide-1; HF, high-fat diet; HF-Pb,

high-fat diet with probiotic mixture; 5-HPETE, 5-hydroperoxyeicosatetraenoic

acid; IBS, inflammatory bowel syndrome; LPS, lipopolysaccharide; LTA4H,

leukotriene A4 hydrolase; LTC4S, leukotriene C4 synthase; Pb, probiotic mixture;

SREBP-1, sterol regulatory element-binding protein 1; T2D, type 2 diabetes; Treg

cells, T regulatory cells.
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Metabolic disorders, including obesity and T2D, are associated

witha state of chronic, low-grade inflammation inperipheral tissues

and the circulation [8]. Expansion of adipose tissue is accompanied

by enhanced secretion of pro-inflammatory adipokines, e.g. IL-6 and

CCL-2, and reduced secretion of the anti-inflammatory and insulin-

sensitizing adipokine, adiponectin [9]. This results in chronic, low-

grade inflammation affectingmultiple tissues and organs, including

the liver, skeletal muscle and heart [10]. Adipose and peripheral

inflammation may favour the development of debilitating beha-

vioural symptoms, including depressive symptoms and cognitive

impairment [11], as well as various chronically painful conditions,

suchasosteoarthritis [12]. Spinal adiponectinmRNAexpressionwas

found to bemodified in obese rats, suggesting that adiponectinmay

also promote centrally mediated pathological changes underlying

obesity-related exacerbation of pain and inflammation [13].

A logical corollary of these observations is that manipulation of

the gut microbiota by qualitative and quantitative changes in the

intake of specific food components, such as fatty acids [14], high-

protein diets [15], probiotics [16,17] and prebiotics [18,19] could

be an effective dietary strategy to manage lifestyle-related

metabolic disorders such as obesity and T2D. Besides decreasing

abdominal adiposity and total cholesterol, probiotics can normal-

ize low-grade inflammation and favour mucosal integrity [20].

Recent studies have indicated that certain bacterial strains may

prevent diet-induced obesity and related disorders. Lactobacillus

rhamnosus PL60 and L. plantarum PL62, bacterial species capable of

producing conjugated linoleic acids (CLAs) conducive to body fat

reduction, have been shown to exert beneficial effects on diet-

induced obesity inmice. Consumption of fermented skimmedmilk

containing Lactobacillus gasseri SBT2055 regulated adipose tissue

growth in rats, possibly through inhibition of dietary fat

absorption. Lactobacillus curvatus HY7601 and L. plantarum

KY1032 reduced weight gain and fat accumulation in diet-induced

obesity in mice by modulating pro-inflammatory genes in adipose

tissue and fatty acid oxidation-related genes in the liver [16].

In the study presented here, we investigatedwhether treatment

with a multispecies probiotic mixture comprising five bacterial

strains (Lactobacillus acidophilus, L. plantarum, L. salivarius and two

strains of Bifidobacterium lactis) could attenuate experimental

obesity induced in mice by a high-fat diet. Previous studies

conducted by our group demonstrated the anti-inflammatory

properties of this probiotic mixture [21] and also showed that it

can prevent disruption of the gut epithelial barrier and up-regulate

the expression of tight-junction proteins [22]. Our objective was to

further explore the metabolic effects of the probiotic mixture and

the potentialmechanisms underlying its anti-inflammatory action.

2. Materials and methods

2.1. Probiotic mixture

The tested probiotic dietary supplement (Lactibiane Tolér-

ance1, PiLeJe, France) comprises a mixture of five viable

lyophilized lactic acid bacterial strains (B. lactis LA 303, B. lactis

LA 304, L. acidophilus LA 201, L. plantarum LA 301 and L. salivarius

LA 302) at a total concentration of 1 � 1010 colony-forming units

(CFU) per capsule. Fresh suspensions of the lyophilized probiotic

mixture (Pb) were prepared daily in sterilized phosphate-buffered

saline (PBS) and administered intragastrically to mice at the dose

of 1 � 109 CFU/mouse (in 0.2 mL of PBS) on 5 consecutive days a

week for 14 weeks.

2.2. Animals and experimental diets

The study was performed according to French government

guidelines for animal experiments (protocol number 12/1048/03/

15). Twenty-seven male C57/BL6J mice aged 6 weeks at the

beginning of the experiment (Charles River Laboratories, France)

were housed in groups of three per cage in a controlled

environment (12-h daylight cycle) with free access to food and

water. After twoweeks of acclimatization, themicewere randomly

allocated to receive for 14 weeks one of three different

experimental diets (n = 9/group): (1) a control (CT) diet (A04,

SAFE, Villemoison-sur-Orge, France) containing (w/w) 16.1%

protein, 60% carbohydrate and 3.1% fat (total energy supply:

2.9 kcal/g consumed); (2) a high-fat (HF) diet (Research Diet Inc.)

containing 26% protein, 26% carbohydrates and 35% trans-type

saturated fats (total energy supply: 5.2 kcal/g consumed); (3) the

HF diet plus the probiotic mixture (1 � 109 CFU/mouse adminis-

tered in 0.2 mL sterilized PBS by oral gavage on 5 consecutive days

per week) (HF-Pb diet). The groups allocated to the CT and HF diets

received the same volume of sterilized PBS alone by oral gavage on

5 consecutive days a week during 14 weeks.

At the end of the experiment, the mice were killed by cervical

dislocation. The small intestine (from duodenum to ileum), colon,

and subcutaneous and perigonadal adipose tissues were excised,

rinsed with physiological saline solution, weighed and stored at

ÿ70 8C pending further analysis.

2.3. Body weight and fat mass measurement

Body weights were recorded in all three groups of mice once a

week. Body fat percentage was measured at week 13 by nuclear

magnetic resonance (NMR) using an EchoNMRTM 100H apparatus

(Echo Medical Systems LLC, New York, USA). Mice were placed in a

clear plastic holder for scanning, without sedation. Fat and lean

masses were determined on the basis of the differences in

relaxation times of the hydrogen proton spins in disparate

environments. Fat mass corresponds to the mass of all fat

molecules in the body and is expressed as the equivalent weight

of canola oil. Lean (muscle tissue) mass corresponds to all water-

containing body parts excluding fat, boneminerals, hair, claws, etc.

At the end of the study (week 14), perigonadal and subcutaneous

adipose tissues were excised and weighed separately.

2.4. Determination of blood glucose, insulin and homeostasis index

(HOMA-IR)

Blood samples (5mL)were taken from the tail, after a 6-h fast, at

baseline (before allocation to the experimental diets) and at weeks

6 and 12. Serum glucose and insulin concentrations were

determined using a glucometer and by ELISA, respectively. The

glucometric assay was chosen for measurement of serum glucose

concentrations as it requires small blood volumes, reducing stress

on the animals. Insulin resistance was determined as HOMA-IR,

calculated according to the equation HOMA-IR = fasting serum

glucose concentration (mg/mL) � fasting serum insulin concen-

tration (mIU/mL)/22.5.

2.5. Expression of genes encoding pro- or anti-inflammatory agents in

adipose (perigonadal or subcutaneous) and gut (small intestine or

colon) tissues

Tissues were disrupted using a tissue homogenizer (Precellys1,

Ozyme, France) in the presence of lysis buffer (QIAzol1, Qiagen,

France; 1 mL per 100 mg of tissue). Total mRNA was isolated from

adipose tissues and gut using a solid-phase RNA purification kit

(GenJET1, Fermentas, France) and by classical liquid/liquid (phenol/

chloroform) extraction, respectively. Reverse transcriptionwas then

performed on 1mg samples of mRNA from each tissue using a

SupersScript II kit (Invitrogen, France), according to themanufac-

turer’s protocol. Samples were prepared for high-throughput



real-time qPCR on a BioMark 96.96 Dynamic Array (Fluidigm,

France) according to themanufacturer’s protocol. Real-time qPCR

was chosen for this analysis as being the most appropriate means

of assessing several genes in a single real-time experiment.

2.6. Statistical evaluation

Data are expressed as means � standard deviation (SD). CT, HF

and HF-Pb treatment groups were compared using one-way ANOVA

for multiple comparisons with Tukey’s post hoc test. Repeated

measures ANOVAwas used to determine the statistical significance of

intergroup differences in body weight at successive time points. The

95% confidence interval was calculated and statistical significance

was concluded at p < 0.05.

3. Results

3.1. Anti-obesity effect of the probiotic mixture

As expected, body weight increased to a greater extent in mice

fed the high-fat diet than in those consuming the control diet, the

difference between these two groups being significant from 6

weeks onwards. However, the bodyweight increase induced by the

high-fat diet was reduced by concomitant administration of the

probioticmixture, the difference between theHF andHF-Pb groups

being statistically significant from week 10 to the end of the study

at week 14 (Fig. 1). Themean bodyweight gains during the total 14

weeks of experimental diet consumption were 6.23 � 1.67 g,

18.71 � 1.53 g and 15.20 � 0.65 g in the CT, HF and HF-Pb groups,

respectively, the difference between the HF and HF-Pb groups being

statistically significant. Themean total weight gain determined at the

end of the study (week 14) was 41.9 � 3.1% higher in the HF group

and 28.3 � 4.4% higher in the HF-Pb group than in the CT group. The

HF-Pb group showed a lower proportion of fat mass (30.7 versus

36.1%) and a higher proportion of lean mass (54.4 versus 49.1%),

compared to the HF group (Fig. 2, panels A and B), but the differences

between the two groups were not significant (p > 0.05). Perigonadal

and subcutaneous adipose tissue weights were significantly de-

creased, by 22.1% and 21.2% respectively, in HF-Pb mice compared to

HF mice (Fig. 2, panels C and D).

3.2. Serological analyses

Mean serum glucose and insulin concentrations determined at

week 12were significantly higher in the HF and HF-Pb groups than

in the CT group, but significantly lower (by 17 and 37%,

respectively) in the HF-Pb group compared to the HF group

(Table 1). Similarly, mean HOMA-IR, a representative index of

insulin resistance, was significantly higher in both the HF and HF-

Pb groups than in the CT group, but significantly reduced by 47% in

the HF-Pb group compared to the HF group (Table 1).

3.3. Expression of genes encoding pro- or anti-inflammatory agents in

adipose and gut tissues (high-throughput real-time qPCR analysis)

3.3.1. Effect of the probiotic mixture on adipokine gene expression in

adipose tissue

Compared to the CT group, the HF group showed 12.6-fold and

7.2-fold higher expression levels of the gene encoding the pro-

inflammatory adipokine CCL-2 in the perigonadal and subcutane-

ous adipose tissue, respectively (Fig. 3). These elevations in CCL-2

gene expression induced by the high-fat diet were significantly

reduced (2.6- and 1.7-fold, respectively) by concomitant intake of

the probiotic mixture (Fig. 3). In contrast, CCL-2 gene expression in

the small intestine and colon did not differ significantly between

the HF and HF-Pb groups. The elevation of IL-6 gene expression

induced by the HF diet in the perigonadal adipose tissue was

significantly (1.6-fold) reduced by concomitant intake of the

probiotic mixture. Expression of the gene encoding the anti-

inflammatory adipokine, adiponectin, in this tissue was signifi-

cantly (1.8-fold) increased in the HF-Pb group compared to the HF

group, approaching the level observed in the control group (Fig. 4).

In the perigonadal adipose tissue, no significant differences were

observed between the CT and HF-Pb groups with regard to CCL-2,

IL-6 and adiponectin gene expression.

3.3.2. Effect of the probiotic mixture on the expression of genes

encoding enzymes of the leukotriene pathway

The mRNA expression of leukotriene A4 hydrolase (LTA4H),

implicated in the production of LTB4, and that of leukotriene C4

synthase (LTC4S), an enzyme involved in the synthesis of the

cysteinyl leukotrienes C, D and E, were also evaluated (Fig. 5,

panels A and B respectively). Statistically significant inhibition

of LTA4H gene expression in adipose and colon tissues was

observed in the HF-Pb group compared to the HF group. LTC4S

gene expression was also significantly inhibited in the HF-Pb

group compared to the HF group with regard to gut (small

intestine and colon) tissues. The level of LTC4S gene expression

in the perigonadal and subcutaneous adipose tissues did not

differ significantly between the HF and HF-Pb groups. Adminis-

tration of the probioticmixture in conjunctionwith the high-fat

diet also led to significantly (1.5-fold) up-regulated expression

of the gene encoding the LXA4 receptor Fpr2 in the colon,

compared to that observed in mice receiving the high-fat diet

alone (Table 2).

3.3.3. Effect of the probiotic mixture on T regulatory gene expression

The mRNA expression of three T regulatory genes encoding

agentsmodulating inflammation, namely Foxp3, CD25 and IL-10 in

colon tissue was up-regulated in the group consuming the high-fat

diet compared to their expression in the control group. Concomi-

tant administration of the probioticmixture significantly increased

the expression of these T regulatory genes in colon tissue by 1.5–

2.3-fold compared to the HF group (Table 2). A trend towards

enhanced (1.6-fold) expression of CD25 in perigonadal adipose

tissue and small intestine tissue was observed in the HF-Pb group

compared to the HF group.

4. Discussion

The role of the gut microbiota in the pathogenesis of obesity-

related disorders is increasingly recognized and may involve the

provision of additional energy by the conversion of dietary fibres to

[(Fig._1)TD$FIG]

Fig. 1.High-fat diet and probiotic effect on bodyweight (g). Themice fed the control

diet (CT) (^), the high-fat diet (HF) (~), and the high-fat diet plus the probiotic

mixture (HF-Pb) (4) were weighed once a week and the results averaged. Data are

presented as the mean � SD. a p < 0.05 HF versus CT; b p < 0.05 HF-Pb versus HF.



short-chain fatty acids, effects on gut-hormone production, and

increased intestinal permeability leading to elevated systemic

lipopolysaccharide (LPS) levels [23]. The ability of probiotics and

prebiotics to reduce intestinal permeability has been tested in

various animal models of metabolic disorders [24]. The aim of our

study was to investigate the effects of concomitant administration

of a probiotic mixture to mice fed a high-fat diet on body weight,

glucose metabolism and the expression of genes encoding agents

modulating inflammatory processes, as obesity is known to be

associated with a state of chronic low-grade inflammation [8].

Previous studies have demonstrated the anti-inflammatory

properties of the tested probiotic mixture [21] as well as its

capacity to restore epithelial barrier disruptions induced by LPS,

stress or soluble factors associated with irritable bowel syndrome

(IBS) and to down-regulate the response mediated by the

inflammatory cytokine TLR-4 in vitro and in vivo [22]. In this

study, administration of this probiotic mixture for 14 weeks to

mice fed a high-fat diet diminished the increase in body weight

gain and body fat mass observed in mice receiving the same high-

fat diet alone. It also protected mice from the insulin resistance

induced by the high-fat diet as shown by the HOMA-IR values

determined in the HF and HF-Pb groups.

The chemokine CCL-2, produced by adipocytes, has a pivotal

role in the recruitment of macrophages into the peripheral adipose

tissue and contributes to the insulin resistance and hepatic

[(Fig._2)TD$FIG]

Fig. 2.High-fat diet and probiotic effects on fat mass (A), leanmass (B), perigonadal adipose tissue (C) and subcutaneous adipose tissue (D) weights. a p < 0.05 HF versus CT; b

p < 0.05 HF-Pb versus HF; cp < 0.05 HF-Pb versus CT.

Table 1

Serum glucose and insulin concentrations and HOMA-IR determined 12weeks after

the start of experimental diet consumption.

Control diet

(CT) (n=9)

High-fat diet

(HF) (n=9)

High-fat diet +probiotic

mix (HF-Pb) (n=9)

Glucose (mg/dl) 124�7 176�6a 146�8b

Insulin (pmol/mL) 484�15 1315�167a 835�94b

HOMA-IR 1.209�0.076 4.705�0.747a 2.483�0.359b

Data are presented as the mean� SD.
a p<0.05 versus the CT group.
b p<0.05 versus the HF group.

[(Fig._3)TD$FIG]

Fig. 3. Relative expression of CCL-2 mRNA in adipose and gut tissues mice fed a

control diet (&), a high-fat diet alone ( [TD$INLINE] ) or a high-fat diet plus the probiotic

mixture (&). a p < 0.05 HF versus CT; b p < 0.05 HF-Pb versus HF; c p < 0.05 HF-Pb

versus CT.



steatosis associated with obesity. Previous studies have shown

enhanced expression of the CCL-2 gene in genetically obese

diabetic (db/db) mice and in wild type mice with obesity induced

by a high-fat diet [25], in obesemice compared to normalmice [26]

and in adipose tissues of obese patients compared to lean controls

[27]. In our study, the increase in CCL-2 mRNA expression in

perigonadal and subcutaneous adipose tissue observed in mice

consuming the high-fat diet compared to the control diet was

significantly reduced by intake of the probiotic mixture. Concomi-

tant administration of the probiotic mixture also significantly

inhibited the up-regulation of IL-6 and down-regulation of

adiponectin in perigonadal adipose tissue observed in mice fed

a high-fat diet.

Inflammation of the intestine, which is closely connected to the

visceral adipose tissue via blood vessels has also been observed in

the early phase of developing obesity [28]. In this study, the

expression of genes implicated in inflammatory processes in the

gut was explored using microfluidic tools. Real-time PCR analysis

revealed a significant impact of the tested probiotic mixture on the

expression of genes encoding enzymes of the leukotriene pathway

and Treg genes in colon tissue from mice fed a high-fat diet,

demonstrating its effect on inflammatory processes. The leukotri-

ene precursor arachidonic acid 5-hydroperoxide (5-hydoperox-

yeicosatetraenoic acid; 5-HPETE) may be converted into either

LTB4, via the activation of LTA4H, or into LXA4, via inhibition of this

enzyme, LTC4, LTD4 and/or LTE4 being produced via activation of

LTC4S. Our study showed a decrease in LTA4H and LTC4S mRNA

expression in mice receiving the probiotic mixture in addition to

the high-fat diet. This suggests that inhibition of both enzymes

might lead to enhanced LXA4 production in gut tissue. The

hypothesis that probiotics affect the expression of genes involved

in immunosuppression and resolution of inflammation is sup-

ported by the increase in expression of Fpr2 (LXA4 receptor) mRNA

observed inmice receiving the tested probiotic mixture in addition

to the high-fat diet.

Chen et al. recently investigated the effects of LTB4 on the

differentiation of immunosuppressive CD4+CD25+Foxp3+Treg cells

in vitro and found that LTB4 dose-dependently decreased the

percentage of Treg cells and the mRNA expression of Foxp3 [29].

Foxp3+Treg cells, defined by expression of the forkhead family

transcription factor p3 (Foxp3) and high levels of the IL-2 receptor-

a chain (CD25), constitute a subset of CD4+Treg cells with the

function of suppressing immune responses and maintaining self-

tolerance [30]. The proportion of circulating CD25+CD127ÿFoxp3+-

+Treg cells in the total CD4+ cell population is inversely correlated

with indices of adiposity such as bodyweight, bodymass index and

circulating leptin levels, particularly in obese subjects. Moreover,

significantly fewer Treg cells are seen in individuals exhibiting

elevated markers of systemic inflammation (hsCRP) or impaired

glucose tolerance (HbA1c) [31]. A link between the leukotriene

pathway enzymes and Treg cells was observed by Börgeson et al.

[32] who showed that LXA4 increased expression of the anti-

inflammatory cytokine IL-10 in adipose tissue explants from

perigonadal fat depots of mice. In our study, we demonstrated that

probiotic supplementation not only modified the expression of

genes encoding enzymes implicated in the leukotriene pathway in

mice fed a high-fat diet but also significantly increased Foxp3,

CD25, and IL-10 mRNA expression in colon tissue.

In conclusion, probiotic supplementation significantly attenu-

ated body weight gain and protected mice from glucose intoler-

ance and insulin resistance induced by a high-fat diet. Gene

expression analysis indicated that these effects are at least in part

[(Fig._4)TD$FIG]

Fig. 4. Relative expression of IL-6 and adiponectin mRNA in perigonadal adipose

tissue of mice fed a control diet (&), a high-fat diet alone ( [TD$INLINE] ) or a high-fat diet plus

the probiotic mixture (&). a p < 0.05 HF versus CT; b p < 0.05 HF-Pb versus HF.

[(Fig._5)TD$FIG]

Fig. 5. Relative expression of LTA4H (A) and LTC4S (B) mRNA in adipose and gut

tissues of male C57/BL6J mice fed a control diet (&), a high-fat diet alone ([TD$INLINE] ) or a

high-fat diet plus the probiotic mixture (&). a p < 0.05 HF versus CT; b p < 0.05 HF-

Pb versus HF; c p < 0.05 HF-Pb versus CT.

Table 2

Relative LXA4 receptor (Fpr2) and T regulatory gene mRNA expression in colon

tissue.

Control diet

(CT) (n=9)

High-fat diet

(HF) (n=9)

High-fat diet +probiotic

mixture (HF-Pb) (n=9)

Fpr2 1.00� 0.09 2.01�0.27a 2.98�0.29b

Foxp3 1.00� 0.19 2.88�0.36a 4.46�0.60b

CD25 1.00� 0.05 1.86�0.20a 2.97�0.28b

IL-10 1.00� 0.12 1.16�0.12 2.64�0.44b,c

Data are presented as the mean� SD.
a p<0.05 versus the CT group.
b p<0.05 versus the HF group.
c p<0.05 versus the CT group.



due to the anti-inflammatory actions of this probiotic mixture. In

adipose tissue, probiotic treatment reduced expression of the gene

encoding CCL-2, an important chemokine for macrophage infiltra-

tion of adipose tissue. In colon tissue, this treatment increased the

expression of genes involved in the immunosuppression and

resolution of inflammation. However, full-scale clinical trials

would be required to assess the value of the tested probiotic with

regard to the development of obesity and associated inflammatory

processes in humans. Further studies would also be needed to

elucidate the exact mechanisms underlying the effects of the

tested probiotic mixture with regard to its anti-inflammatory

impact on the gut immune system, its modification of gut

microbiota, its ability to reduce overall energy intake and its

modulation of gut hormone expression. The gut microbiota may

participate in the regulation of energy metabolism, i.e. the energy

harvested from the diet, as well as the regulation of fat storage

(expression of FIAF), fat lipogenesis (aceyl-CoA carboxylase, fatty

acid synthase, SREBP-1), and fatty acid oxidation (AMPK activity)

[33]. Modulation of gut peptides involved in appetite regulation,

such as GLP-1 and PYY, could be another mechanism by which the

gut microbiota might control energy and glucose homeostasis.

Data obtained in experimental models and in clinical studies have

already shown that changing the gut microbiota by means of

prebiotics (such as fructans) [18,34] or probiotics (such as

Lactobacillus casei W8) [35] may contribute to regulating gut

peptide synthesis and controlling food intake. So it might be

interesting to complete this study by investigating whether the

beneficial effect of our probiotic mixture on body weight gain

could be explained by reduced food intake and/or increased energy

expenditure, and to investigate more precisely the underlying

mechanisms of action.

Layperson’s summary

The nature of the microorganism population in the gut was

recently identified as a potential contributor to the increased

prevalence of obesity and type 2 diabetes. In this study, we

investigated the effects of a probioticmixture inmice fed a high-fat

diet conducive to the development of obesity. The weight gain and

increases in blood glucose level and insulin resistance induced by

this diet were significantly reduced by probiotic supplementation.

Improvement in the inflammatory state of the gut and adipose

tissue might be a possible mechanism underlying the anti-obesity

effect of the probiotic mix studied.
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