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Unsupervised Spectral Clustering for Segmentation
of Dynamic PET Images

Hiba Zbib, Sandrine Mouysset, Simon Stute, Jean-Marc Girault, Member, IEEE, Jamal Charara,
Sylvie Chalon, Laurent Galineau, Iréne Buvat, Member, IEEE, and Clovis Tauber, Member, IEEE

Abstract—Segmentation of dynamic PET images is needed to ex-
tract the time activity curves (TAC) of regions of interest (ROI).
These TAC can be used in compartmental models for in vivo quan-
tification of the radiotracer target. While unsupervised clustering
methods have been proposed to segment PET sequences, they are
often sensitive to initial conditions or favour convex shaped clus-
ters. Kinetic spectral clustering (KSC) of dynamic PET images was
recently proposed to handle arbitrary shaped clusters in the space
in which they are identified. While improved results were obtained
with KSC compared to three state of art methods, its use for clin-
ical applications is still hindered by the manual setting of several
parameters. In this paper, we develop an extension of KSC to au-
tomatically estimate the parameters involved in the method and to
make it deterministic. First, a global search procedure is used to
locate the optimal cluster centroids from the projected data. Then
an unsupervised clustering criterion is tailored and used in a global
optimization scheme to automatically estimate the scale parameter
and the weighting factors involved in the proposed Automatic and
Deterministic Kinetic Spectral Clustering (AD-KSC). We validate
the method using GATE Monte Carlo simulations of dynamic nu-
merical phantoms and present results on real dynamic images. The
deterministic results obtained with AD-KSC agree well with those
obtained with optimal manual parameterization of KSC, and im-
prove the ROI identification compared to three other clustering
methods. The proposed approach could have significant impact
for quantification of dynamic PET images in molecular imaging
studies.

Index Terms—Clustering, segmentation of dynamic PET image,
spectral clustering.

I. INTRODUCTION

UANTIFICATION of dynamic PET images brings in
vivo information on the physiological and biochemical
processes of organs. Time activity curves (TAC) are
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used in compartmental models in order to determine the kinetic
parameters of organs under study. The TACs are calculated in
regions which are often delineated manually by operators or
from anatomical information. These manual delineations are
time-consuming and subjective due to noise and poor spatial
resolution of PET images. In addition, some radiotracers do not
have identified anatomic regions of reference, e.g. radiotracers
of neuroinflammation [1]. For such situations, it is not possible
to use coregistered anatomic or atlas information. As a result,
there is a growing interest in the development of clustering
methods that aim at separating the PET image into functional
regions. While supervised clustering methods have been pro-
posed and successfully applied to neuroinflammation imaging
using [11C]|PK1195[2], [3], they aim at describing the TAC of
each voxel as a combination of several sources, and often rely
on kinetic classes that have to be previously defined. Unsuper-
vised methods can be used for the definition of such classes, or
for the segmentation of dynamic PET images into functional
regions with no a priori on the scanner or radiotracer used.
In this work, we focus on unsupervised methods to identify
clusters of voxels with homogeneous kinetic behaviors. Such
methods can be divided into three categories:

* Methods based on the temporal behavior of voxels;

* Methods analyzing the spatial and temporal information

associated with each voxel,;

* Methods that cluster the dynamic PET data directly in the

sinogram domain.

Among the methods using the temporal information of the
PET sequence, Wong et al.[4] segmented the dynamic PET
image using a K-means algorithm. Kimura et al.[5] clustered
the voxels based on the first two principal components of
the TACs of voxels to segment the image and calculate the
kinetic parameters. Brankov ef al.[6] used a similarity measure
that depends on the shape of the TAC rather than its ampli-
tude and modeled the intra-cluster variation by a truncated
exponential probability density distribution, then applied an
expectation-maximization approach to identify the clusters.
Margadan-Mendez et al. [7] extracted the cardiac tissue com-
ponents by an iterative independent component analysis. Saad
et al. [8] simultaneously estimated physiological parameters
and the TACs of clusters by least-square optimization using
a method that requires the input function. Guo et al. [9] pre-
sented a method for parametric PET imaging that combines
a preclustering process using a histogram-based thresholding
with a hierarchical cluster analysis. Zheng et al. [10] proposed
a three-stage clustering algorithm: first they removed the back-
ground by K-means clustering, then they modeled the TAC



using polynomial regression mixture models for detecting the
heart structure, finally a hierarchical clustering was applied
for ROI refinements. The main limitations of these methods
are that they either depend on initial conditions or on an a
priori kinetic model and that they are not appropriate for the
segmentation of clusters with an arbitrary shape in the feature
space. Methods in the second category use the spatial location
and the TAC kinetic features as input for the segmentation
algorithm: Parker et al. [11] proposed a graph-based method for
the minimization of Mumford-Shah energy in order to estimate
the input function directly from the carotid artery. After pre
processing the data with principal component analysis, their
method used the Mahalanobis distance as a similarity measure.
Kim et al. [12] integrated the spatial and temporal information
in a hybrid method that uses both cluster analysis and region
growing. Chen et al. [13] worked on Markov random fields
for simultaneous estimation of parameters and segmentation
of the image by expectation-maximization. The integration of
spatial information increases the robustness to noise, however
it can also prevent from correct clustering of distant regions
with homogeneous kinetic profiles and an additional parameter
has to be set to control the trade-off between spatial and kinetic
proximity. To circumvent this problem, Maroy et al. [14]
estimated the pharmacokinetics based on voxels far from organ
borders and segmented the rodent whole-body PET images
using a local-mean analysis method followed by a hierarchical
linkage algorithm to merge regions with similar TAC. The third
category of segmentation of dynamic PET images includes
methods that cluster the dynamic PET images directly in the
sinogram domain. Krestyannikov et al. [15] separated the dy-
namic tomographic data directly in the projection space using
the least-square method. Kamasak et al. [16], [17] clustered
dynamic PET images in the sinogram domain by assuming that
the sinogram had either a Poisson or a Gaussian distribution.
They also proposed a parametric iterative coordinate descent
(PICD) algorithm for direct nonlinear estimation of kinetic
parameters at each voxel from dynamic PET sinogram data
[18].

Recently we have proposed an approach based on spectral
clustering for segmentation of dynamic PET images called
Kinetic Spectral Clustering (KSC) that has the advantage of
handling arbitrary shaped clusters in the feature space [19].
This method achieved better segmentation accuracy compared
to several conventional clustering algorithms. In this paper
we improve the previously proposed method by deriving
an automatic and deterministic spectral clustering algorithm
(AD-KSC) for segmentation of dynamic PET images. First,
we replace the last step of the method by a modified version
of the K-means algorithm that operates global optimization for
identifying cluster centroids. Second, we combine an original
unsupervised criterion and a probabilistic metaheuristic to
automatically estimate both the scale parameter of the method
and the weight to be associated with each frame of the dy-
namic PET sequence. To validate our approach, GATE Monte
Carlo simulations of the Zubal head phantom and of a sphere
phantom were performed. The AD-KSC was evaluated on
these simulated phantoms and was compared to 3 unsupervised
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Fig. 1. Flowchart of the proposed AD-KSC algorithm.

methods from the literature. Results on real microPET images
are also presented.

II. PROPOSED METHOD

A. Principle of the AD-KSC Method

The AD-KSC method includes 5 steps as described below:

1 The air surrounding the phantom or the subject is removed
using histogram-based thresholding.

2 The affinity between all pairs of TACs is calculated and the
data are projected on a new feature space.

3 A deterministic algorithm is used to cluster the projected
data.

4 The parameters of AD-KSC are estimated using a global
iterative optimization process of a proposed unsupervised
criterion.

5 Thedynamic PET sequence is segmented using the optimal
parameters selected in step 4.

A global flowchart of the AD-KSC approach is presented in

Fig. 1.



TABLE I
MAIN ACRONYMS OF AD-KSC ALGORITHM IN ORDER OF APPEARANCE

PET Positron emission tomography
TAC Time activity curve
KSC Kinetic Spectral Clustering
D-KSC Deterministic Spectral Clustering
AD-KSC Automatic and Deterministic Spectral Clustering
K Number of functional regions
T Number of frames of the PET image series
N Number of voxels to be clustered
X; TAC of voxel i
S(Xi,X;) | Similarity between TAC of voxels i and j
o Scale parameter of the spectral clustering kernel
wy The weighting factor of frame [
w Vector of all weighting factor w;
d(X;, X;) | Weighted euclidian distance between TACs of voxels ¢ and j.
C Mean TAC of voxels in cluster [ (cluster centroid in feature space)
NMD Normalized Minimal distance.
Smin Minimal inter cluster distance.
Amaz Maximal intra cluster distance.
dlgstn 95 percentile of the intra cluster distance in the cluster .
SA Simulated Annealing
Poce Probability of acceptance of a worse point used by SA
A Difference in the objective function NMD
dmin Minimal distance between all pairs of X;
dgotn 90" percentile of the distance between all pairs of X
dinit Average distance between each X; and its closest neighbor

B. Notations

Let us K denote the number of functional regions, T' the
number of frames contained in the PET sequence, N the number
of voxels to be clustered, X; ¢ RT the measured time activity
curve (TAC) in voxel ¢ € [1...N] and W the weights vector.
Table I lists the main notations and acronyms in their order of
appearance in the paper.

C. Prior Histogram-Based Thresholding

The air around the object contains reconstruction artefacts
and noise. We remove this region by thresholding the summed
sequence. All the frames of the PET sequence are summed, and
the logarithms of the values in the sum image are sorted in in-
creasing order. The threshold value is extracted as proposed in
[14], and a mask of the studied animal or subject is obtained.
”Holes* or strong discontinuities are removed using standard
morphological closing operators.

D. TAC Affinity and Feature Space Projection

We previously reported the feasibility of segmentation of dy-
namic PET images using kinetic spectral clustering [19]. This
section describes the calculation of affinity between TACs and
the feature space definition that are involved in AD-KSC.

Mapping into High Dimensional Space: spectral clustering
can be viewed as partitioning an undirected graph into a set of
K discrete clusters. In this work the number of clusters K is
supposedly known a priori. Each node in the graph corresponds
to a temporal behavior or TAC of a voxel and the edge between
two nodes has an associated numerical value that corresponds
to the similarity between the TAC of the voxels it connects.
The segmentation of dynamic PET images by kinetic spectral
clustering starts with the calculation of the similarity between
all pairs of TACs using a Gaussian kernel function to project the

data into a high dimensional space. The entries of the similarity
matrix are calculated as [20]:

—d(X;, X;)*

202 ’
where S(X;, X;) is the similarity between the TACs of voxels ¢
and j, o is a scale parameter that adjusts the distance of patterns
mapped into the feature space, and d(X;, X) is a weighted Eu-
clidean distance that we defined as [19]:

S(Xi, Xj) = exp (1)

d(Xi, X5) = Q_ wilXi() = X;(0)H)Y? @)
=1

where wy is the weighting factor of frame /. The noise level in
dynamic PET images can differ significantly between frames.
Therefore in KSC, we weighted the frames by the inverse of
their noise variance in the calculation of the distance between
TACs to increase the confidence in frames having less noise
[19],[21]. In AD-KSC we use a different strategy as the weights
are automatically estimated, as described in Section II-G.

Projection on a low dimensional space: A Laplacian random
walk matrix denoted by L., is derived from the similarity mea-
sure [22]. Spectral clustering using L,,, can be interpreted as
trying to identify a partition of the graph such that the random
walk stays long within the same cluster and seldom jumps be-
tween clusters. The K dominant eigenvectors of L..,, are used
to project the data on a reduced space where the natural clusters
in the data become more linearly separable.

E. Deterministic Search for Centroids in Feature Space

The K dominant eigenvectors of the Laplacian matrix span
a lower dimensional space wherein data are better separated
and often clustered by the K-means algorithm, as proposed in
KSC [19]. The K-means is a stochastic procedure that starts
from a random initialization and locates the centers that min-
imize the clustering error criterion. While being cost-effective,
the K-means does not necessarily reach the global minimum of
the clustering criterion, as it depends on the initial conditions
and several runs from different starting centers can be necessary
to obtain the best result. To avoid dependency on initial condi-
tions, we define a Deterministic Spectral Clustering (D-KSC)
in which we replace the last step of KSC for Global K-means
(GKM) [23], a deterministic version of K-means that operates
global optimization to identify the cluster centroids.

The GKM is an incremental approach that dynamically adds
one cluster center at a time. Unlike the K-means algorithm, the
GKM algorithm always starts from the same centers, which are
iteratively selected from the data themselves, in order to obtain
deterministic clustering of the data. It selects the centers that
minimize a clustering error criterion defined by [23]:

(G, Cx) = 30 A € DIIX: - Gif)

i=1]=1

A3)

where C; € RT is the mean TAC of voxels belonging to cluster
1, || X; — C]|? is the squared Euclidean distance between X; and



Ci, and A is a Boolean function such that A(Y') = 1 ifY is true
and 0 otherwise.

To reduce the time needed for GKM convergence we used
the fast global K-means with kd-tree structure and we set the
number of buckets to 10K [23]. In the remaining of this paper
GKM represents the fast global K-means with kd-tree.

F. Unsupervised Normalized Minimal Distance Criterion

The unsupervised estimation of optimal input parameters re-
lies on the definition of an appropriate quality criterion. Sev-
eral approaches have been proposed in the literature: Rezaee et
al. [24] proposed a validity index that assesses the intra cluster
variance and the separation between clusters. Zahid et al. [25]
proposed a cluster-validity criterion that considers the geomet-
rical properties and the degree of fuzzy membership. Halkidi
et al. [26] proposed a criterion composed of two measures as-
sessing the separation between clusters and the compactness of
each cluster. Davies and Bouldin [27] proposed a ratio between
the sum of within cluster scatter and the sum of between clusters
scatter. Dunn [28] proposed a widely used cluster validity index
that corresponds to the ratio between the minimal inter-cluster
distance to the maximal intra-cluster distance. The inter-cluster
distance is often chosen either as the minimal distance between
elements assigned to different clusters or as the minimal dis-
tance between the centroids of the clusters. The intra-cluster
distance is generally measured either as the maximal distance
between any pair of elements in the cluster, or as the average
distance between elements of the clusters. While the Dunn index
(DI) has been used in various applications, it is very sensitive
to noise and not adapted to PET images where the voxels TACs
from the same functional region are very noisy due to the phys-
ical properties of this imaging modality. A robust criterion of
cluster quality is needed to select the segmentation results with
compact and well separated clusters. We propose an unsuper-
vised criterion that extends the Dunn index by making it more
robust in the calculation of the diameter of the clusters. We call
the proposed criterion Normalized Minimal Distance (NMD)
and define it as:

6min
e, 4)

max

NMD =

where ,,,;,, 1S the minimal inter-cluster distance that decreases
when voxels presenting similar time courses are assigned to dif-
ferent clusters, and is defined by:

min
1<o<p<K

5min — HCO - Cp”a (5)
where (', and C}, are the centers of clusters o and p respectively
and ||C,, — Cp| is the Euclidean distance between these two
centers. A% is a robust maximal intra-cluster distance, which

increases when voxels with distinct kinetics are grouped into the

5 .
same cluster. A% is defined as:

i IXs = XGACIXG — X5 > dlgser)
max
N; x 0.05
(6)

where dlgsth is the 95 percentile of intra-cluster distances of
cluster [ and IV; is the number of voxels belonging to . A% is
based on the 5% largest intra cluster distances to obtain a robust
estimate of the cluster diameter. Large values tend to suggest
that two clusters have erroneously be merged. A% is more
robust than a cluster distance based on far away data points and
is not penalized by small distances between similar profiles. The
proposed NMD criterion decreases when a merging or splitting

of clusters occurs.

G. Global Optimization of NMD

In AD-KSC, two parameters can impact the accuracy of
clustering: the scale parameter ¢ and the vector of weights
factors W. In previous work [19], the weighting factors of
the different frames were the inverse of a noise variance
estimate based on frame duration, time since injection and
number of counts. While this weighting scheme proved to
be appropriate, it ignores changes in contrast between ROIs
across frames, making it difficult to segment ROIs that are
better distinguishable in time frames highly affected by noise.
Estimating the correct noise variance has been tackled with
several approaches in the literature [29], [30], [31], [32], [33].
In AD-KSC, rather than calculating the weights from data
statistics or manually setting the scale parameter, we propose
to automatically set both the weighting factor of each frame
and the scale parameter ¢ by optimizing the NA D criterion.
A Simulated Annealing (SA) [34] approach is used to locate a
good estimate of the criterion global optimum. This algorithm
consists in first melting the system being optimized at a high
effective temperature, then lowering the temperature by slow
stages until the system freezes and no further changes occur.
At each step the parameter values are randomly perturbed, and
the cost function is calculated using —N A D. Downbhill steps
are always accepted, whilst uphill steps are accepted to step out
of a local minimum under a probability acceptance function.
The probability of acceptance depends on the NMD objective
function value and on the current temperature 7 and is defined
as:

(1 ifA<0
Pacc - { (1 + eA/'TkB) o othe'rwise, (7)

where A = NMD(u + 1) — NMD(u), u is the number of
iteration, 7 is the current temperature, and kg is the Boltzmann
constant.

Bound constraints and initialization of AD-KSC parameters:
The Gaussian parameter ¢ adjusts the distance of patterns
mapped into the feature space; it controls the size of the neigh-
borhood between points. Proper selection of this parameter
therefore directly affects clustering accuracy. When ¢ has a
magnitude equivalent to the maximal distance between points,
most patterns in the feature space are close to each other and
it is often difficult to separate them. When its magnitude is
equivalent to the minimal distance, all points are far from each
other and these patterns tend to fall into the orthogonal sub-
space where hyperplanes can arbitrarily divide some patterns.

' Therefore, we propose to set the bounds for the setting of

this scale parameter to the interval ranging from the minimal



distance between all pairs of TACs to the 90" percentile of
the distances between all pairs of TACs. We initialize the scale
parameter to the average of the distance between each point
and its closest neighbor (which we denote d;,;;) to ensure that
the SA algorithm starts from a suitable estimation of the scale
parameter. d;,;; is defined as:

1 N
dinit = N ' 1g;l‘i§nN |.Xi — Xj”- 8
=

The initial temperature was set to 79 = 100. The maximal
number of SA iterations was set to 50 iterations. The bounds
of the weighting factors were set to ¥I,w; € [0,1]; while the
initial values for all frames were set to w;y = 1.

III. ASSESSMENT OF THE AD-KSC METHOD

A. Simulation of Realistic PET Images

TAC associated with brain regions were derived from the
three-compartment model proposed by Kamasak ef al. [18] and
Maroy et al. [14]. A homogeneous vascular fraction was as-
sumed in each region. The input function was denoted Ci,s
and was given by:

Cpla,s (t) = BO[(Blt_ B, —Bg)ei’ylt) +Bg€772t —&-33677315].
©))

The kinetic of the tissue compartment ¢, denoted C; 4 sy.e(i)» Was
computed as:

3
Cissue(i) = (Z [a'i,ye—t/bi’y 1%Cpias)

y=1

(10)

where * denotes the convolution operator. Parameters By, B,
By, Bs, A1, A2, As, a;,y and b; , were randomly set using the
constraints proposed by Maroy et al. [14]. A constant vascular
fraction of 5% was considered in each ROI. Sample TACs used
for simulations are shown in Fig. 2. GATE Monte Carlo simu-
lations of Philips Gemini GXL PET 4D acquisitions were per-
formed [35], [36]. Two phantoms were used for the simulations:
a phantom consisting of six spheres with different diameters
within a cylinder (simulation 1), and the labeled MR image of
the Zubal head phantom (simulations 2 and 3) [37]. The regions
of the Zubal head phantom considered for the simulation were:
the frontal, occipital, parietal, cerebellum and thalamus regions
and the remaining parts of the head (called background) plus a
seventh region with no activity corresponding to the air around
the head. These regions were the ground truth for the evaluation
of the results. We generated the sets of TACs for each region of
the phantoms using (10) and simulated three dynamic sequences
called simulations 1, 2 and 3 hereafter. Simulations 1 and 2 con-
sisted of 5 x 30 s followed by 15 x 60 s dynamic frames, while
simulation 3 consisted of 6 x 30 s, 4 X 1min, 4 X 2min, 5 X bmin
followed by 1 x 10min. Radiation decay was modeled. The total
number of coincidences for each time frame varied between 5
and 70 millions. In order to assess the quality of segmentation

TABLE II
PARAMETERS USED FOR THE SIMULATION OF THE 3 PET SEQUENCES
Sim.1 Sim.2 Sim.3
Phantom Sphere Zubal Zubal
Simulated attenuation yes no yes
Attenuation correction yes no yes
Normalization yes no yes

Iteration numbers 2 iteration 5 iterations 10 iterations

Subset numbers 16 subsets 8 subsets 16 subsets
Noise level + + + + 4+ +
Average prompts (million) 36.6 47.2 34.2
Average randoms (%) 18.9 14.1 33.1
Average scatters (%) 29.9 4.8 26.6

at different noise levels we used different sets of simulation and
reconstruction parameters in the 3 simulations, which are sum-
marized in Table II. The reconstruction of dynamic PET images
was performed with a fully 3D ANW-OSEM iterative method,
followed by a 5 mm FWHM Gaussian smoothing. The dynamic
PET images were divided by their average intensity value so as
to work with scale parameters of the same order of magnitude
between the different simulations.

B. Quantitative Assessment of the Results

In addition to the unsupervised NMD criterion, the quality of
segmentation results was assessed using two supervised criteria.

Pratt’s Figure of Merit (PFOM). Pratt’s figure of merit mea-
sures the precision of edge locations in segmented images, com-
pared to their ground truth locations. The PFOM was calculated
as follows:

Np

PFOM = (11)

1 1
maz(Ny, Np) ; 1+ ad?
where N; and Np respectively are the number of ideal and de-
tected edge voxels, d; denotes the distance from the ith-detected
edge voxel to the nearest ideal edge voxel and «v is a scaling con-
stant set to 1/9 as in Pratt’s work [38].

Adjusted Rand Index (ARI): The Adjusted Rand Index [39]
assesses the consistency between ground truth regions and esti-
mated regions. This criterion accounts for the number of pair of
voxels grouped into the same or different clusters.

These two supervised criteria have values between 0 and 1.
When the segmented results perfectly agree with the ground
truth, these criteria are equal to 1.

C. Comparison of AD-KSC with Other Methods

» K-means (KM): Wong et al. proposed to cluster dynamic
PET data with a K-means approach [4]. The K-means is
an effective method with low computational cost. After
a random initialization of the centers, it iteratively deter-
mines the partition of data that minimizes their distances to
the clusters centroids. In all experiments, we selected the
results that maximized the NMD criterion over 100 runs of
KM.

» Expectation-maximization (EM): Ashburner et al. pro-
posed an EM approach for the characterization of dynamic
PET data. Expectation-Maximization is a model-based
approach in which clusters are described as a parametric
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Fig.2. TACs used to simulate two of the dynamic PET image series. (a) Sphere
phantom (b) Zubal head phantom (simulation 2).

Gaussian distribution. The method consists in finding the
maximum likelihood estimates of parameters [40].

» Hierarchical method (HC): Guo et al. [9] proposed a hi-
erarchical method based on average linkage for dynamic
PET data clustering. The agglomerative hierarchical clus-
tering consists in merging clusters iteratively. We used the
average linkage cluster method to calculate the distance be-
tween clusters. To avoid solutions in which a cluster would
include a single data point, K+ 10 clusters were calculated
(K being the number of clusters in the ground truth), and
the clusters were manually merged with other clusters so
as to maximize the NMD criterion.

 Kinetic Spectral Clustering (KSC): The spectral clustering
algorithm [19] with K-means in the last step of the method
and manual setting of the scale parameter ¢ was used for
comparison with D-KSC and AD-KSC, to assess both the
deterministic properties and the efficiency of the automatic
parameter selection.

D. Real Data Set

The AD-KSC was applied to [*® F|LBT999 PET images of
the dopamine transporter [41] of rats acquired with a GE Vista
microPET/CT. Using these images, AD-KSC was compared to
the KM, EM and HC algorithms. Rats were scanned during 4 x
10s,4 x20s,4x60s,8x 180s,5 x 360s,1 x 340 s and
1x260s and the corresponding PET images were reconstructed

using a 2D OSEM iterative method. Images were registered into
Paxinos coordinates using Pmod 3.3 and the Schiffer Atlas [42]
was used to assess the segmentation result as a substitute to
ground truth, given that a striatal uptake was expected.

E. Comparison of NMD with other Unsupervised Criteria

We compared the proposed NMD criterion with the Dunn
index (DI). The Dunn index is defined as [28]:

. . pocpin (d(o, 2p))
DI = min min ,
1<i<k \ 1<i<K | max max (d(zn,%m))

1<k<K &p,x,m€C

(12)

The numerator measures the separation between clusters 4 and
B; the denominator corresponds to the diameter of cluster C'.

IV. RESULTS

A. Comparison of AD-KSC with Other Approaches

Fig. 3 displays representative results of the clustering ob-
tained for simulation 1. On this representative slice, the number
N of voxels considered for clustering was 3672. EM, KM
and HC algorithms (Fig. 3(c)—(e)) correctly detected two big
spheres, merged the small spheres and separated the back-
ground into two parts. AD-KSC correctly identified all regions
(Fig. 3(f)). Two opposite trends were observed regarding the
small spheres: EM, KM and HC methods tended to overesti-
mate their size while AD-KSC underestimated them. AD-KSC
was the only method able to distinguish the two smallest
spheres.

First row in Fig. 4 displays representative results of the clus-
tering obtained for simulation 2, where the level of noise was the
lowest among all simulations. On this representative slice, the
number N of voxels considered for clustering was 4390. The EM
algorithm (Fig. 4(d)) merged the frontal lobe with the thalamus,
and the parietal lobe was associated with the background, which
was separated into several parts. The HC algorithm (Fig. 4(e))
merged the parietal lobe with the background and correctly de-
tected the remaining regions. KM (Fig. 4(c)) produced a noisy
background while it detected the regions more accurately than
EM and HC. However compared to the ground truth, the sizes of
the parietal and occipital lobes were bigger, which was not the
case with AD-KSC (Fig. 4(f)) where all regions were correctly
and more precisely detected.

Figs. 4(g)—(1) display representative clustering results
obtained for simulation 3. Compared to simulation 2, the
attenuation and the normalization were included in this simu-
lation and the number of iterations was higher than for other
simulations, which resulted in a higher level of noise. KM
and EM algorithms (Fig. 4(i)—(j)) did not detect the thalamus
and several ROI were merged with the background. The HC
algorithm merged the thalamus with the background and the
frontal lobe, and also merged the occipital and the parietal lobe
(Fig. 4(k)). With AD-KSC (Fig. 4(1)), the background was less
associated with other regions. The parietal, occipital and frontal
lobe were correctly detected, but the thalamus was not de-
tected. In this simulation, the four methods misclassified some



Fig. 4. Sagittal views of the results obtained with simulations 2 and 3. First row: sagittal view of the results obtained for simulation 2: (a) ground truth, (b) one
frame from the simulated image, (¢) KM, (d) EM, (e) HC, (f) AD-KSC. Second row: sagittal view of the results obtained for simulation 3: (g) ground truth, (h) one
frame from the simulated image, (i) KM, (j) EM, (k) HC, (1) AD-KSC.

TABLE III
VERAGE AND STANDARD DEVIATION OF THE QUANTITATIVE CRITERIA

Phantoms Criteria KM EM HC AD-KSC
Simulation ART 062 +032 020+013 0.70+0.18 0.79 + 0.20f
Spﬁere PFOM 084 £ 020 049 & 008 0.82 + 020 0.95 + 0.04"
Qit, 16sb) NMD 057 £ 020 0.03+ 002 066+ 045 123 & 0.54
Simulation ARI 0.73 £0.13  0.58 £ 023 071 £ 0.17  0.86 & 0.061
Zu2ba1 PFOM 080 £ 0.11 0.76 =012 0.80 + 0.13  0.93 =+ 0.05"
(5it,8sb) NMD 0.8 £ 0.09 0.09 + 009 0.17 £0.08 030 & 0.10
Simulation ARI 0.54 £023 0524022 0.66 £0.18 075 & 0.16
Zu%al PFOM 073 £0.08 072011 078 +£0.12  0.84 + 0.09
(10it,16sb) ~NMD 015+ 0.07 0.08 + 0.07 0.12 +0.07 019 £ 0.09!

functional regions and especially the thalamus, parietal and
occipital lobes. The voxels of the thalamus were very affected
by both the noise and the partial volume effect. In AD-KSC the
misclassification of the thalamus led to the splitting of another
region, which corresponded to the cerebellum.

Table III presents the averages and the standard deviations
of the quantitative criteria calculated for 8 2D 4 t slices from
simulation 1, and 20 2D + t slices from simulations 2 and 3,
using KM, EM, HC and AD-KSC. In every row of the table, the
maximum average value is indicated in bold. The T symbol indi-
cates a significant difference (p < 0.05) between the AD-KSC
average score and the second highest average score, using a
non-parametric Wilcoxon paired test. ARI, PFOM, and the ab-
solute value of NMD were the smallest for the EM algorithm,
while they were the highest for AD-KSC in the 3 simulations.
The scores obtained with AD-KSC indicate an increase in the
identification accuracy of functional regions compared to other
methods.

B. Deterministic Property of D-KSC

We assessed the variability of the segmentation of KSC and
D-KSC over 50 replicated runs on the same slice for given scale
and weighting factors. Three quantitative criteria ARI, PFOM,
NMD were calculated for these two methods over the 50 repli-
cated runs and are shown in Fig. 5. The results of KSC varied
significantly from one run to another. With KSC, the average
NMD score for these replicated runs was 0.13 £ 0.11, the av-
erage ARI score was 0.75 4 0.06 and the average PFOM score
was 0.87 4+ 0.10. The results of D-KSC were constant for all 50
runs, NMD score was 0.27 & 0.00, ARI score was 0.82 £ 0.00
and PFOM was 0.97£0.00 in average. D-KSC yielded the max-
imum score of ARI, PFOM, and NMD criteria that could be ob-
tained with KSC over the 50 runs.

C. Variation of NMD versus ARI and PFOM Criteria

Variations of the KSC scores shown in Fig. 6 show that NMD
varied consistently with the supervised ARI and PFOM criteria.
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Fig. 6. Figures of merit obtained for different values of o estimated using sim-
ulated annealing during a run of AD-KSC on simulation 3 (Maximum value of
each figure of merit was set to 1).

For most measured values, when ARI and PFOM increased, the
value of NMD increased also and vice versa. The correlation
coefficients with the value of the unsupervised NMD criterion
were equal to 0.75 for PFOM and 0.77 for ARI.

D. Comparison Between Unsupervised (NMD, DI) and
Supervised (ARI, PFOM) Criteria

Fig. 6 displays plots of the PFOM, ARI, DI, and NMD scores
obtained for various values of ¢ that were tested by SA during
the parameter optimization. DI exhibits many fluctuations,
while the variations of NMD were consistent with the variations
of ARI and PFOM. The correlation coefficients between the
supervised and unsupervised criteria were 0.94 between ARI
and NMD, and 0.91 between PFOM and NMD. They were
—0.08 between PFOM and DI, and —0.10 between ARI and
DI.

E. Parameters Estimation of AD-KSC

AD-KSC is the automatic and deterministic extension of
KSC. Therefore, it aims at producing results that are as close
as possible to the best KSC results that can be obtained with
manual setting of the parameters. We thus determined the
maximal ARI and PFOM scores that could be obtained by
manually changing the parameters of KSC. Then for 8 slices
from simulation 1, and for 20 slices from simulations 2 and

TABLE IV
AD-KSC SCORES EXPRESSED AS A PERCENTAGE OF MAXIMAL KSC SCORES
OBTAINED FROM MANUAL SETTING OF THE PARAMETERS

Sim.1  Sim.2  Sim. 3
ARI AD-KSC NB% 98% 93 %
PFOM AD-KSC 98 % 97 % 93 %

3, we calculated the ARI and PFOM scores obtained with
AD-KSC and expressed them as a percentage of the maximal
scores that could be obtained with KSC. Table IV displays
the resulting ratios of maximal achievable scores. The NMD
criterion perforrmed well at selecting the parameters that gave
accurate segmentation with a percentage of maximal achievable
score between 93% and 98%.

F. Simulated Annealing Reproducibility

Table V presents the averages and the standard deviations
calculated for the quantitative ARI, PFOM, and NMD criteria
for 20 runs of the AD-KSC algorithm over six different dy-
namic images from simulations 1, 2, and 3. These criteria were
found very stable along the 20 runs. The parameters (sigma and
weights vector) selected by AD-KSC presented small variations
but they did not significantly modify the segmentation quality
of the PET images.

G. Real Data Experiments

Fig. 7 shows the results obtained with KM, EM, HC and
AD-KSC on a real ['8 F]LBT999 PET image. In the presented
slice, the number N of voxels considered for clustering was
7324, and the number of clusters K was set to 3. All methods
correctly detected the functional regions and the results for all
methods were close. However the brain structures were slightly
better delineated with AD-KSC than with the other methods
when compared to the atlas edges. For the four algorithms part
of the background region was merged with the whole brain, but
this was less pronounced for AD-KSC. The mean TACs of re-
gions segmented by AD-KSC are plotted in Fig. 8. These TACs
correspond with the expected TACs in the striatum, whole brain
and background.

We compared the results of AD-KSC obtained with different
values of the number of cluster K. Fig. 9 presents the results
obtained with K = 2 (Fig.9(a)), K = 3 (Fig.9(b)) and K = 4
(Fig.9(c)). When K = 2, the two regions of non-specific brain
and the background outside the brain were merged, compared
to the segmentation with K = 3. The striatum region which
exhibited specific uptake was similar to the one obtained with
K = 3. When K = 4, the striatum was split into two regions.
Considering the shapes of the two regions, the splitting seemed
to occur because of PVE causing local variation of the kinetic
profiles near the non-specific brain region.

V. DISCUSSION

We have proposed an automatic and deterministic extension
of the KSC approach for segmentation of dynamic PET im-
ages. First, a global optimization scheme for the cluster cen-
troid identification was applied as the last step of the method to
obtain deterministic results. Second, an unsupervised criterion
called NMD was tailored and a stochastic global optimization



TABLE V
AVERAGE AND STANDARD DEVIATION FOR PFOM, ARI, NMD AND & FOR 20 RUNS OF THE AD-KSC ALGORITHM ON 2 SLICES FROM SIMULATIONS 1,2 AND 3.

PFOM ARI NMD o
Axial Sim.1 0.92 £ 0.0039  0.90 £ 0.0035 0.83 £ 0.0099  0.08 £+ 0.0112
Sagital Sim.1 ~ 0.99 £ 0.0004  0.91 4+ 0.0019  0.90 £ 0.0133  1.93 £ 0.8017
Axial Sim.2  0.93 £ 0.0042  0.86 &+ 0.0036  0.40 £ 0.0046  0.42 £ 0.1028
Sagital Sim.2  0.97 £ 0.0008  0.82 £ 0.0023  0.27 £ 0.0023  0.40 £ 0.0733
Axial Sim.3  0.92 £ 0.0047  0.68 &+ 0.0042  0.20 £ 0.0039  1.03 £ 0.0767
Sagital Sim.3 ~ 0.69 &£ 0.0009  0.83 £ 0.0048  0.13 &£ 0.0041  0.68 £ 0.0674
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Fig. 7. Superimposition of the atlas edges with the results of KM, EM, HC, and AD-KSC applied on a dynamic PET image of a rat with [*® F]LBT999. (a) One
frame from the dynamic sequence, (b) KM result, (¢) EM result, (d) HC result, (¢) AD-KSC result.
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Fig. 8. TAC of the regions segmented by AD-KSC in [** F]LBT999 PET
image.

Fig. 9. Superimposition of the atlas edges with the results of AD-KSC applied
on the dynamic PET image of the rat for different values of K. (a) AD-KSC with
K = 2, (b) AD-KSC with K = 3 as presented in Fig. 7(e) (¢) AD-KSC with
K = 4.

method was used to automatically estimate the scale parameter
of the method and the weight associated to each frame of the
dynamic PET sequence. Our method is able to separate physio-
logical clusters by mapping the kinetics of voxels into a high di-
mensional space and then cluster the projected data in a low-di-
mensional space. The results obtained with AD-KSC compare
closely with those obtained with optimal manual parameteri-
zation of KSC method [19]. AD-KSC was compared to three
other methods from the literature already used in dynamic PET
and resulted in improved identification of functional regions.
This improvement can be explained by the ability of AD-KSC
to separate arbitrary shaped clusters. It also indicates that the
global search procedure used to derive the final partition of the

data led to acceptable settings of the parameters. The results also
confirmed the deterministic property of D-KSC, guaranteeing a
better convergence of the SA algorithm to the global minimum.

The NMD criterion was compared to the DI criterion. DI ap-
peared very sensitive to noise or outlier, which was expected
as it calculates the intra and inter-cluster distances using indi-
vidual pairs of points. In comparison, NMD is a more robust
criterion that can be used in the absence of ground truth. In
our experiments using the simulated 4D PET data, the ground
truth was available and the NMD score of the ground truth ROIs
could be calculated. We found that in 65% of the studied slices,
the NMD of ground truth was higher than the NMD obtained
with AD-KSC. In the remaining 35% slices, the optimization of
NMD by AD-KSC led to higher NMD scores. Without noise,
the NMD of the ground truth is expected to be the maximum
NMD value, however in the presence of noise, AD-KSC can
reach higher values because there is no spatial constraint and
NMD is optimized using SA for the estimation of the parame-
ters (Fig. 5).

The AD-KSC algorithm includes the calculation of a Lapla-
cian matrix derived from the similarity measures. The choice of
the Laplacian matrix that is used has some influence on the clus-
tering results. We chose the normalized Laplacian random walk
L,,,. The clusters embedded into the low dimensional space
using L,.,, are very compact and points are mapped close to their
centroid, which facilitates their separation by an hyperplan.

In this work, the AD-KSC method was applied on 2D+t data
to reduce the computational complexity of the problem of eigen-
decomposition of large matrix. Clustering of the entire volume
would probably improve the correct identification of the clus-
ters. For such 3D 4+t computation, advanced mathematical tools
for eigendecomposition or strategies that reduce the size of data
have to be implemented.

The automatic selection of AD-KSC parameters (scale pa-
rameter and weighting factors) was performed by SA optimiza-
tion of the NMD criterion. The variability of the estimated pa-
rameters was studied by running the AD-KSC several times.
The ARI, PFOM and NMD criteria were almost constant de-
spite small variations in the scale parameter and the weighting



factors. This variability can be explained by the fact that there is
an interval of parameter values in which the results of segmenta-
tion are similar. The size of the interval is directly related to the
separation between clusters. When the data are well separated
the interval increases and several values of sigma and weighting
factors can lead to the same results.

In our studies, we observed that the automatic selection of
weights did not dramatically increase the scores of the results
compared to the KSC weighting scheme. We also observed (re-
sults not shown) that using an identical weight for each frame
yielded results close to the one we obtained using the automatic
weight estimation. While this agrees with the results found in
the literature [33], the gain offered by the automatic selection
of the weights for some of the studied 2D + t slices favors its
use as we never observed a less accurate segmentation when
the weights were automatically estimated. Discarding weight
estimation or replacing it with the inverse of a noise variance
estimation remains possible if computation time is an issue, as
it would reduce the number of parameters optimized by simu-
lating annealing.

In AD-KSC, the number of clusters is selected a priori, as
it is for all clustering methods used for comparison. The auto-
matic selection of the number of clusters is a difficult issue for
all clustering algorithms. While some methods or criteria have
been proposed and could potentially be used for spectral clus-
tering [20], [28], this aspect was not studied in this work. For
application of AD-KSC to real images, the user should select
the number of clusters based on some a priori knowledge. For
instance, both six and four classes have been considered for the
clustering of PET images of neuroinflammation [2], [3]. This
number can also be selected a posteriori, after an analysis of
the results with different numbers of clusters, as an incorrect
number of clusters will lead to either split or merged functional
regions (Fig. 9).

The PET images suffer from poor spatial resolution and par-
tial volume effect (PVE) and the voxel value can be a mixture
of two of more different functional signals. Therefore the TAC
of the voxels affected by PVE can differ significantly from their
true TAC. Areas near functional boundaries can be interpreted
as distinct regions by clustering algorithms. While this issue
could be reduced by partial volume effect correction, we did
not use any in this study. Other undesirable artefacts come from
the physiological motions that can severely impact the results
of segmentation. In this study we used brain images for which
motion artefacts are less frequent, but when applicable, move-
ment correction methods should be used.

Supervised methods have been proposed to identify voxels
as a weighted linear combination of kinetic classes. These
methods, which have been successfully applied for the quan-
tification of neuroinflammation [3], [2], require the definition
of kinetic classes. They are usually defined from coregistered
MRI data. AD-KSC could be used in complement with such
methods to reduce the errors induced by coregistration and to
define the classes from kinetic data only.

VI. CONCLUSION

A deterministic global search procedure was applied, and an
unsupervised criterion was tailored and optimized by simulated

annealing to automatically estimate the input parameters of the
spectral clustering method. The usefulness of the proposed cri-
terion and the deterministic property of the method were evalu-
ated using GATE Monte Carlo simulations of PET images and a
real data set. The AD-KSC results were found very close to the
best results obtained with manual selection of the parameters. In
addition, AD-KSC was compared with three other approaches:
KM, EM, and HC. AD-KSC quantitatively outperformed these
methods and improved the identification of functional regions
without a priori knowledge on the kinetic model. The ROI de-
fined by AD-KSC and the level of automation achieved might
have significant impact for quantification of dynamic PET im-
ages, especially when no region of reference can be delineated.
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