Andreas Korff

Modeling ARINC-653 Systems in UML

come L'archive ouverte pluridisciplinaire

Model-based software engineering, Partitioning of Software according its criticality, UML, Development Process Automation Full Paper:

When developing and maintaining safety-critical avionics software, organizations face the problem that although the complexity of the systems and therefore the software is raising from project to project, the development time and effort to be spent is even getting lower and lower. Systems and software development based on federated architectures, as seen in figure 1, cannot cope with that situation. There is just one central controller, which is linked to all sensors and effectors, therefore an error on one component effects the whole system. Every change affecting components in use might cause a different timing, so scheduling is affected and consequences must be checked carefully. This increases the work needed to tackle obsolescence and reduces to chance for re-using any part of the system.

In order to overcome high maintenance costs and low re-use potential for avionics software, we should have a closer look on the typical layers in the central controller. On the very outside, an interface layer to the physical world is a common pattern, allowing to control the real-world sensors and effectors. Before processing the data is possible, a second layer for data formatting is usual as well. The third layer is then responsible to do the calculations and data processing. These three layers are shown in figure 2, together with their mapped representative, appropriate layers in the Stanag 4626/EN 4660 (ASAAC) definition. The uppermost Data Processing Layer in the federated architectures does not need to be responsible for scheduling anymore, since this is done in the operating system layer. On the other hand, the data formatting is not handled normally on OS level; therefore the application has to do this accordingly. The physical interface layer maps perfectly on the module support layer.

Fig. 2: Federated Layers and their appropriate layer in ASAAC

Based on these three layers for application, OS and module support, we can now define components in the application layer, as seen in figure 3, for e.g. one hardware node. In the application layer, the different system functions are split into independent, possibly re-usable components, like Autopilot, Navigation, or Telemetry. The components do not interact directly; instead they are using standardized inter-component communication means, provided by the OS Layer. Accessing the node hardware is done using dedicated components on the Module Support Layer.

Since it is necessary to support a network topology of more than just one hardware node, the OS Layer is also responsible to manage the activity on each node in addition to the communication use cases on one node. We could visualize this by displaying multiple Open Architecture Hardware Nodes, with the OS Layers being connected. This all results in an architecture, which consists of de-coupled application partition, which can be certified independently, if the underlying OS Layer, respectively its implementation supports and guarantees these rules.

Physical Interface

Fig. 3: Open Architecture Hardware Node showing partitioned application components

With the ARINC 653 (Avionics Application Standard Software Interface) standard, organizations implementing Integrated Modular Avionics (IMA) architectures, as described above, gain benefits in several areas:

1. Due to the partitioning of the system, the overall system robustness can be increased or maintained. 2. Typically system applications have assigned different safety integrity levels (SIL), which corresponds to their certification effort. Being able to group the applications into different ARINC 653 partitions reflecting their safety integrity level, this drastically reduces the certification effort to the minimum for each of these levels. 3. The re-certification effort is also drastically reduced to the partitions affected. 4. There is a standardized API to de-couple application code from the RTOS in use, called APEX (APplication EXecutive). APEX also offers standardized communication mechanisms.

A standard is always only as good as its implementation. Several RTOS suppliers, like Wind River® or SYSGO®, offer support for ARINC 653, all including an APEX API for the different programming languages supported and in use, like C or Ada. In addition, there is the need in ARINC 653 to define the relevant structural elements like application partitions, the communication paths and "health monitoring" definitions. All of these configurations are made textually using XML.

On the other hand, UML-based development is commonly and successfully used for software-centric projects, also in the Aerospace domain. Here, more and more projects are using model-based development for exactly the same reasons like for using ARINC 653: Scalability, traceability, maintainability, communication, and the ability to check completeness and correctness. Most of the projects are combining both levels of abstraction, on one hand the UML model for designing the overall structure and to link the different perspectives like structure, behavior and non-functional constraints, and on the other hand the code level for implementation details. Model-to-text transformations exist to connect these two levels, like the Automatic Code Synchronizer in Artisan Studio, which also can take the RTOS used into account.

Using the UML as a basis with its generic extensibility using profiles, we can bring this all together in one model.

In order to avoid the sometimes very cumbersome and error-prone definition of the XML files for the ARINC 1. Define a UML profile according a meta-model, which reflects all the elements and their associations for ARINC 653 configurations. This can be done e.g. by the tool vendor, who offers this standard extension 2. Stereotype UML diagrams to support the views needed to model the necessary elements for ARINC 653, as described here 3. Define a model-to text transformation, which generates the appropriate XML files for the IDE in use A UML profile consists of a cohesive set of stereotypes and tag definitions, which extend ordinary UML metatypes, like class, operation, or role. Normally, these extended model elements, like for instance a class being stereotyped with «Module» representing an ARINC 653 Module, can only be shown on diagrams which display the appropriate meta-type, class. Some UML tools allow defining stereotypes on UML diagram types, including the toolbar commands or menu entries when using the diagram. Figure 5 shows a specific diagram toolbar for an ARINC 653 Configuration Diagram, which is defined on top of a UML Composite Structure Diagram.

Fig. 4: A Toolbar for modelling an ARINC 653 Configuration Diagram

Extending the UML Composite Structure Diagrams with relevant tags and stereotypes as shown in figure 5, the software designer now can define the system and software structure for an ARINC 653 project, by giving him a graphical means to model everything around the ARINC-specific configuration of partitions and communication elements. The configuration diagram shows one node, defined as <<Module>>, which contains three partitions as stereotyped parts. According the normal DO178-B/C definitions, they are named with the relevant criticality levels DAL A to C. As an example, we have modeled the navigation application on partition DAL_B and its controlled communication as queuing ports connecting this application with the Autopilot application on the DAL_C partition. They interchange the position information using a controlled channel. It is also important to note that in addition of the automatic application of the ARINC 653 stereotypes, the diagram tools allow to apply the ARINC 653-specific semantics, so e.g. only compatible ports can be connected to define the communication between ARINC 653 partitions. Extending the typical modeling steps with profilespecific functionality can also automate many modeling actions the user normally would have to manually. In order to be effective, the tool support should do as much construction work automatically and then help the user filling out the automatically generated templates, e.g. indicating a graphical modeling error like in figure

Fig. 1 :

 1 Fig. 1: Class Diagram showing a typical federated architecture

Fig. 5 :

 5 Fig. 5: An ARINC 653 Configuration Diagram shows partitions, applications and processes

Fig. 6 :

 6 Fig. 6: A typical ARINC configuration dialog for indicating an user error

code and configuration files can be automatically and continuously generated from the amended UML model. As an small example of the many XML configuration files being generated, the navigation application configuration is shown here, indicating e.g. the modeled queuing port: <?xml version="1.0" encoding="UTF-8"?> <ApplicationDescription xmlns="http://www.windriver.com/vxWorks653/ConfigRecord" xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=""> <MemorySize MemorySizeBss="0x10000" MemorySizeData="0x10000" MemorySizePersistentBss="0x10000" MemorySizePersistentData="0x10000" MemorySizeRoData="0x10000" MemorySizeText="0x10000"> </MemorySize> <Ports> <QueuingPort Direction="SOURCE" MessageSize="256" Name="PosData" Protocol="NOT_APPLICABLE" QueueLength="32"> </QueuingPort> </Ports> </ApplicationDescription>

As this generation process for both the XML code and the programming language code is working in the background, the modeler can add the implementation details in his standard code IDE used for the chosen RTOS implementation for ARINC 653. This results in an automatic and coherent update of any structural change of the ARINC 653 system, single-sourced by the amended UML model. For the navigation application, the applicable startup code is shown below:

Conclusion

We have shown that the model-based approach for IMA systems can be very effective, when there is a possibility to express in addition to the normal software views in UML also the partition showing modules, applications, processes and all communication and structural means defined for safety-critical airborne software. Leveraging the UML extensibility and tool extension capabilities, the user can be both guided and manual, repetitive work can be automatically done. If the code generation functionality is extensible as well, the relevant configuration XML files can be generated from the same model as the normal application code, which is amended as well by the necessary startup code for the OSes supporting ARINC 653.