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Abstract—In a context of a rapidly growing population of
elderly people, this paper introduces a novel method for be-
havioural anomaly detection relying on a self-organized learning
process. This method first models the Circadian Activity Rhythm
of a set of sensors and compares it to a nominal profile to
determine variations in patients’ activities. The anomalies are
detected by a multi-agent system as a linear relation of those
variations, weighted by influence parameters. The problem of
adaptation to a particular patient then becomes the problem
of learning the adequate influence parameters. Those influence
parameters are self-adjusted, using feedback provided at any
time by the medical staff. This approach is evaluated on a
synthetic environment and results show both the capacity to
effectively learn influence parameters and the resilience of this
system to parameter size. Details on the ongoing real-world
experimentation are provided.

Index Terms—Multi-agent systems, Anomaly detection, Smart
health

I. INTRODUCTION

Clinical observations have proven that human’s biological

functions (such as temperature, weight or arterial pressure)

follow periodical variations regulated by the internal biolog-

ical rhythm [1]. Human’s daily activities also have periodi-

cal rhythms due to biological imperatives (sleeping, eating,

drinking...), environmental conditions (days and nights cycles,

season cycles), and social components (agenda, education,

culture, sports...) [2]. Human’s daily activities and biological

rhythms are thus intrinsically correlated, and monitoring the

Circadian Activity Rhythm1 of an individual provides useful

information that may be used in a medical follow-up. This

biological tendency for humans to have some regularities in

their everyday life enables to model everyday life behavioural

rhythms in order to study deviation and anomalies [3] [2].

The will to detect anomalies in elderly people’s behaviour

arises with the evolution of IoTs and Smart Homes which now

enables to equip houses with sensors, effectively monitoring

different aspects of everyday life [4]. Behavioural anomaly

1A Circadian Activity Rhythm is a daily rhythmic activity cycle, based
on 24-hour intervals, that is exhibited by many biological organisms such as
humans

detection is an active science field covering the different

aspects of Telecare and Telehealth [5] [6] [7]. The major

difficulty in this work is that the notion of anomaly is difficult

to clearly specify as it is highly related to patient habits

and pathology types/progression, and that is why artificial

intelligence and particularly machine learning techniques have

been used to learn to detect those anomalies. Those approaches

might be classified into three categories [8]:

• Supervised anomaly detection techniques which produce

classifiers using labelled examples of normal and anoma-

lous situations, and then label new situations as normal

or anomalous.

• Semi-supervised anomaly detection techniques that build

a model of the normal behaviour from given examples

of normal behaviour and then evaluate the likelihood of

new instances with the learnt model.

• Unsupervised anomaly detection techniques that detect

anomalies in unlabeled dataset under the assumption that

the majority of instances in the dataset are normal.

All those approaches require to collect data prior to the detec-

tion, either to label them or to tune the anomaly detection algo-

rithm. Traditionally, anomaly detection approaches in elderly

people are based on pre-established models, modeling either

the elderly activity or the disease to monitor. For example, [9]

monitors daily living activities to evaluates dependency based

on geriatric scales. This offline gathering of data reduces the

capacity of adaptation of those algorithms to variations that

may occur in patient’s everyday life or in his pathology.

In this paper, we propose a novel approach based on a multi-

agent system to detect in real-time behavioural anomalies by

using feedback from the medical staff. The usage of the multi-

agent paradigm has shown interesting results in e-health as

it naturally fits with the ambient assisted living paradigm,

composed of many heterogeneous and distributed devices in

a highly dynamical environment in strong interaction with

humans [10] [11] [12] [13]. The novelty of our approach is

that it transforms medical staff feedback into constraints and

thus, approaches the problem of adaptation of the anomaly



detection algorithm to a patient and his pathology through a

real-time linear optimization process. The rest of the paper is

organized as follows: Firstly, section 2 introduces a model for

anomaly detection through sensor events, then the multi-agent

system designed to learn weights in real time is described in

section 3, and finally, before concluding, section 4 presents

experiments showing the capacity of the multi-agent system

to effectively learn the weight parameters.

II. A MODEL FOR ANOMALY DETECTION THROUGH

SENSOR EVENTS

This section presents a new model for anomaly detection.

We present this model in the context of monitoring elder’s

habits from the observation of the Circadian Activity Rhythm

of a patient through sensors events with a medical follow-up.

The model is composed of three components: the observa-

tion of variations in the behavioural rhythm of a patient, the

modelling of a pathology to monitor through a linear relation

between the observed variations, and the transformation of

feedback from the medical staff into constraints. The rest

of this section is organized as follows. First, we define the

activation profile of a sensor and its nominal profile, which

are used to compute a disparity value to detect variations

in sensors activation. Then, we introduce the problematic of

anomaly detection and its adaptation to both the patient and

his pathology through a linear relation. Finally, we present

how feedback from medical staff are used to transform the

problem of adaptation of the anomaly detection to a patient

and his pathology into a dynamic constraint solving process,

and discuss the genericity and novelty of this model.

A. Activation Profile

The environment of the patient is observed through a set

of sensors S, where each sensor s ∈ S monitors a particular

activity 2. Those sensors provide discrete (such as the presence

in a room or the opening of a door) or continuous data (such

as pressure or temperature sensors). The daily activity of a

patient is split into N slices of equal duration in order to

build a Circadian Activity Rhythm.

The change of value of a sensor s ∈ S produces an event

ets ∈ R associated with the sensor s at the time t ∈ [0, N ]. The

value of ets is either 0 (for deactivation) or 1 (for activation)

for discrete sensors, and a real value for continuous sensors.

A set At
s of N events describes the activation profile of a

sensor during the last N cycles.

At
s = [e1s, e

2
s, ..., e

N
s ] (1)

At each time step t, we have for each sensor an activation

profile describing the effective Circadian Activity Rhythm of

the user.

2Table I summarizes all notations and formulas.

B. Nominal Profile

In order to detect anomalies and drifts, the activation profile

of a sensor must be compared with a reference profile that

models the regularities of behaviour of the user. To model

those regularities of behaviour, we introduce the nominal

profile of a sensor.

P t
s is the set of reference values that defines the nominal

profile at the time t of the sensor s ∈ S where rts ∈ IR is the

reference value of the sensor s at time t ∈ [1, N ]:

P t
s = [r1s , r

2
s , ..., r

N
s ] (3)

Therefore, a reference value is associated with each slice

of a day. There are many ways to build such reference values.

For instance, we can use a simple λ function to compute

and update the nominal profile. At any new event eis, the

value ri∗s of a reference value ris is updated using the formula:

ri∗s = ris · λ+ eis · (1− λ) (2)

where λ ∈ [0, 1] is a parameter that enables to determine the

importance of the new slice over the old one. The easiest way

to build such a value is to compute the mean value between

the reference value and the event value leading to a λ value

of 0.5.

As the focus of this paper is anomaly detection and not

behavioural modelling, we take the assumption that we do

dispose of a set of nominal profiles and reference values, no

matter how those references values have been computed. This

hypothesis is discussed in section II-H and section V provides

details on a real-world experimentation.

C. Disparity Values

Now considering that at each time step t, we have at

disposal both an activation profile and a nominal profile for

each sensor s, we can express the dissimilarity of the two

profiles ∆t
s within the last 24 hours by computing:

∆t
s =

N∑

i=1

|ris − eis| (4)

This corresponds to the sum of absolute values of the

differences between the activation profile and the nominal

profile within the last 24 hours. Figure 1 illustrates, P t
s , At

s

and ∆t
s for a specific sensor s.

D. Anomaly Detection

Anomaly detection consists in rising alerts when a deviant

behaviour is detected. The disparity value introduced in the

previous section enables to detect variations in the behavioural

rhythm of the patient over the last 24 hours. However, a

disparity value higher than 0 is not necessarily an anomaly

as there may be some variability in a patient’s behaviour.

For instance, waking up a little bit earlier than usual should

not trigger the alert process. Furthermore, anomalies may

rise from a combination of events such as no one is in the

bedroom at 9pm and the main door is open. To take this into



Figure 1. The disparity ∆t
s is calculated from the difference between the

activation profile At
s and the nominal profile P t

s of a sensor s at time t over
the last 24 hours

account, we propose to detect anomalies through a linear

combination3 of the disparity values ∆t
s of each sensor s.

To model the influence of each dissimilarity value in the

anomaly, we introduce a weight value ωs ∈ IR associated

with each sensor s. The degree of anomaly of a situation Dt

is computed at each time step t:

Dt =
∑

s∈S

∆t
s · ω

t
s (5)

Anomaly detection then consists in rising an alert whenever

the degree of anomaly of a situation reaches a certain threshold

T ∈ IR:

Dt > T (6)

The value of T and the weight parameters ωt
s have to be

chosen accordingly to the patient in order to provide person-

alized anomaly detection. In the next section, we propose to

perform this adaptation by using feedback from the medical

staff.

E. Personalized Adaptation to a Patient

In order to adapt the model to a given patient, two compo-

nents have to be taken into account: the behavioural rhythm of

the patient, and the pathology to monitor. The first component,

the behavioural rhythm, is modelled through the nominal

profiles of sensors. The second component, the pathology to

monitor, is modelled through the weights associated with the

sensors for computing the degree of anomaly of a situation.

Thus, adapting the model to a patient results in solving those

two questions:

• How to adapt in real-time the nominal profile in order to

fit with the behavioural rhythm of the patient and have

an up-to-date profile that can be used to detect variation

in its behaviour?

3We chose a simple linear combination because the idea is that the relevance
of the system does not come from the model produced by the learning
algorithm at a specific time, but from the constant and on run-time adjustment
this algorithm is able to do.

• How to tune the weights of the anomaly detection in order

to adjust the anomaly detection to the pathology of the

patient?

Those two questions involve to approximate the optimal

parameters P ∗

s and ω∗

s for each sensor s that perform an

optimal detection of anomalies fitting with both the patient

behavioural rhythm and pathology. In the rest of this paper,

we focus on the second question, while the first question is

already addressed by the model in section II-B with the update

of the nominal profile.

F. Feedback Constraints

Whenever an alert is triggered, the information is sent to

the medical staff which can provide feedback on the quality

of the alert (false positive, false negative, true positive or

true negative). This feedback enables to express constraints

about the degree of anomaly of the situation and the current

values of the weights ωt
s:

• False positive: the system has triggered an alert whereas

no abnormal behaviour was detected by the medical

staff. The situation t which degree of anomaly has led

to raise an alert should have not exceeded the threshold

and thus the degree of anomaly of the situation should

be lower.

∑

s∈S

∆t
s ∗ ω

t
s ≤ T (7)

• False negative: the medical staff has detected an

anomaly in a period P whereas no alert was triggered

by the system. If the medical staff cannot point out the

time t where the anomaly should have been raised, there

should have been at least one degree of anomaly over

the considered period that has exceeded the threshold

value.

∃t ∈ P,
∑

s∈S

∆t
s ∗ ω

t
s > T (8)

If the medical staff can point out exactly the time t
where the anomaly should have been raised, the formula

becomes:

∑

s∈S

∆t
s ∗ ω

t
s > T (9)

• True positive: the system has raised an alert and the

medical staff confirms this abnormal situation. The

degree of anomaly of the situation t should always

exceed the threshold.

∑

s∈S

∆t
s ∗ ω

t
s > T (10)

• True negative: the system has raised no alert and the

medical staff confirms that there was no anomalous

situation. The degree of anomaly of the situation t
should never exceed the threshold.



∑

s∈S

∆t
s ∗ ω

t
s ≤ T (11)

Each feedback enables to generate a set of inequalities pro-

viding useful information on the nature of the optimal weights

ω∗

s . Dynamically solving those inequalities by adjusting the

current weights ωt
s acts as an heuristic guiding the tuning of

the weights and thus, fitting the anomaly detection system with

the patient and his pathology. Thus, the process of anomaly

detection then becomes a process of linear optimization with

a dynamic set of constraints. It should be noted that with

this method, the effective value of the threshold T is not a

parameter to adjust, but a fixed parameter that could be chosen

arbitrarily, as the weights will adapt to this threshold during

the solving process.

G. Synthesis of the Model

Table I presents a table that sums-up the model for anomaly

detection and the different parameters. The model proposes to

build and update a nominal profile of the Circadian Activity

Rhythm of a set of sensors describing the patient’s habits and

to compute the disparity between this nominal profile and the

activation profile of the sensor. This disparity is used to com-

pute the degree of anomaly of the current situation, weighted

by the weight of each sensor. Whenever the degree of anomaly

reaches a threshold T , an alert is triggered. The problem of

fitting this model with a patient then results in finding the

adequate weights for the sensors to raise only positive alerts.

Feedback of false positive, false negative, true positive and true

negative sent by the medical staff enables to dynamically build

inequalities providing information about the values of those

weights. Solving dynamically those inequalities by adjusting

the weights of the sensors will allow the system to converge

in order to detect the desired anomalies.

H. Novelty and Genericity

The problematic of anomaly detection is studied within di-

verse research areas and application domains [14]. Compared

to existing approaches in scientific literature, the novelty of

our model lies in the transformation of the initial problem

of anomalies detection into a problem of constraint solving.

Furthermore, our proposal to detect anomalies through a linear

combination of various values and not to build the detection

on any prior hypothesis on the nature of those values or their

dynamic, enables this model to be re-used in any problem

in which a set of values expressing a distance between an

observed behavior and an expected one have to be used to

characterize a situation. The only adaptation of our model

required for changing the domain is the Nominal profiles of

sensors used to compute the disparity values. However, as

illustrated in the rest of this paper, those nominal profiles do

not interfere with the self-organized learning process. The next

section, which describes the core of the self-organized learning

process and addresses the problematic of adjusting in real-time

the weights ωt
s to satisfy a dynamic set of constraints, is thus

domain agnostic.

III. A MAS FOR REAL-TIME DETECTION OF

BEHAVIOURAL ANOMALIES

[15] proposes to address complex systems with a bottom-

up approach where the concept of cooperation acts as the

core of self-organization. According to [16], the design of a

cooperative entity could be described by a nominal behaviour,

which corresponds to the behaviour that the entity has when

the system is in a functional state, and a cooperative behaviour,

which is a subsumption of the nominal behaviour consisting

of a set of rules that are triggered to repair the adequacy of

the system.

The rest of this section is organized as follows: a description

of the functionality of the system and its environment are

provided. Then, the agents and their nominal behaviours are

presented. In the last part, the cooperative rules that enable

the system to anticipate or repair failures in these nominal

behaviours are introduced, enabling to solve the initial problem

of weights adjustment (see section II-E).

A. Functionality of the System

In section II, we introduced a model for anomaly detection

from a flow of events coming from sensors. This model detects

anomalies through a linear combination of the variations be-

tween an activation profile and a nominal profile. In response,

the medical staff can send qualitative feedback about those

alerts. We introduced that adapting this model to a patient

consists in approximating the weight ωs associated with each

sensor in accordance with the constraints that are raised by

the medical staff. The functionality of the multi-agent system

is then to monitor events coming from sensors and to compute

the degree of anomaly of the situation that is sent to the trigger

alert rule in order that only true positive alerts are raised.

B. Environment

From the model description are identified three different

entities that the system has to interact with:

• Sensors that are active entities that send events to the

system.

• The alert rule that is a passive entity that receives the

degree of anomaly of a situation and triggers or not an

alert.

• The medical staff that is an active entity that sends

feedback on false positive, false negative, true positive

and true negative alerts.

Those three entities compose the environment of the MAS.

The MAS has to gather information from sensors and the

medical staff has to provide the alert rule with an adequate

degree of anomaly about the current situation.

C. Agents

Three types of agents compose the MAS: Profile agents,

Weight agents and Constraint agents. In this section, each

agent and its nominal behaviour, describing the normal be-

haviour that the agent should follow, are introduced. Then,

cooperative rules are added to resolve or anticipate failures that

may happen in the nominal behaviour of an agent. Learning

and adaptation are the result of those cooperative rules.



Parameter Description

s ∈ S A sensor s belonging to the set of sensors S.

N Unit time (Number of equal time slices that split a day).

t The current time corresponding to a particular time slice.

ets ∈ IR An event that occurred on the sensor s at time t.

At
s = [e1s, e

2
s, ..., e

N
s ] The activation profile of a sensor s at time t composed of a set of N events.

rt ∈ IR A reference value describing an expected event at a time t.

P t
s = [r1s , r

2
s , ..., r

N
s ] The nominal profile of a sensor s at time t composed of a set of N reference values.

∆t
s =

N∑

i=1

|ris − eis| The disparity between the activation profile At
s and the nominal profile P t

s of the sensor s at time t.

ωs ∈ IR The weight associated with the sensor s.

Dt =
∑

s∈S

∆t
s · ωt

s The degree of anomaly of the situation t computed from the disparity value and weight of each sensor.

Dt > T The alert triggering rule with T ∈ IR.
∑

s∈S

∆t
s · ωt

s ≤ T Inequalities raised by a false positive feedback or a true negative feedback at time t.

∑

s∈S

∆t
s · ωt

s > T Inequalities raised by a false negative feedback or a true positive feedback at time t.

Table I
SYNTHESIS OF THE MODEL AND PARAMETERS

1) Nominal Behaviours:

a) Profile agents: A Profile agent is associated with a

specific sensor s of the environment and with a unique Weight

agent. It models the nominal profile and activation profile of a

sensor (see section II-A and II-B). Its function is to compare

the activation profile of a sensor to its nominal profile and

send the disparity value to its associated Weight agent. The

nominal behaviour of this agent is described by the algorithm

1.

b) Weight agents: A Weight agent is associated with a

unique Profile agent and interacts with all Constraint agents.

It corresponds to the value ωs of the model (see section II-F).

The role of a Weight agent is to dynamically compute and send

the value ∆t
s · ωs to the alert rule. In this nominal behaviour,

all constraints are satisfied and no update is necessary. The

nominal behaviour of a Weight agent is described by the

algorithm 2. The nominal behaviour of a Weight agent does

not include the weight adjustment rules. This behaviour will be

introduced in its cooperative behaviour (see section III-C2c).

c) Constraint agents: A Constraint agent models an in-

equality and computes a criticality which expresses its degree

of satisfaction. A positive criticality means that the constraint

is violated, a criticality negative or equal to zero means that

the constraint is satisfied. Thus, the local objective of each

Constraint agent is to minimize its criticality. When the system

is in a nominal behaviour, each Constraint agent is satisfied.

The nominal behaviour of a Constraint agent is described by

the algorithm 3.

Algorithm 1 Nominal behaviour of a Profile agent associated

with a sensor s.

Require: An event ets, a nominal profile P t
s

1: Update the activation profile At
s from At−1

s to include ets
2: Compute the dissimilarity value ∆t

s

3: Send ∆t
s to the associated Weight agent

Algorithm 2 Nominal behaviour of a Weight agent.

Require: ∆t
s from its associated Profile agent.

1: Compute and send the value ∆t
s·ωs to its associated Profile

agent

Algorithm 3 Nominal behaviour of a Constraint agent.

1: Update the criticality of the agent using the formula

(
∑

s∈S

∆t
s ·ωs−T ) ·relation where T is the threshold value

of the inequality and relation is the sign of the relation

(1 if the relation is > and −1 if the relation is ≤)

d) Synthesis: Figure 2 synthesizes the nominal behaviour

of the MAS system. A set of sensors sends events to a set of

Profile agents. Those Profile agents model both the activation

profile and the nominal profile of a sensor. Each Profile agent

computes its disparity value ∆s and sends it to its associated

Weight agent. Then, each Weight agent computes the value

∆s · ωs and sends it to the alert rule. At last, the alert rule

sums all the values sent by Weight agents and compares it to

the threshold T to rise or not an alert. This nominal behaviour

corresponds to the system’s normal behaviour, i.e. when the

Figure 2. The nominal behaviour of the MAS.



system has managed to adjust weights in compliance with

the constraints to raise only true positive alerts. By itself, the

nominal behaviour is not able to learn. Learning and adaptation

are enabled by the cooperative rules.

2) Cooperative rules: The cooperative behaviour of an

entity describes a set of rules that allows the entity to achieve

its nominal behaviour by either anticipating or repairing

failures. From the description of the nominal behaviour of

the MAS, a failure of the system results in raising false

positive or false negative alerts that are detected with the

feedback from the medical staff. Those failures come from

a wrong estimation of the weights ωs by the Weight agents

which led to a wrong collective estimation of the criticality

Dt of a situation. The cooperative rules should then enable

the Weight agents to adjust their weights in order to reach

back a nominal behaviour. This adjustment involves active

cooperative interactions with the Constraint agents.

In the rest of this section, we describe the cooperative

process that leads to the adjustment of the weights by the

Weight agents. This process involves four activities: the dy-

namic creation of Constraint agents to model feedback from

the medical staff, the request sent by Constraint agents to the

Weight agents, the Weight agents self-tuning of their value,

and the quickening of the Weight agents self-tuning. Those

activities are added to the nominal behaviour. The rest of this

section describes each of these activities.

a) Creation of Constraint agents: Constraint agents

model the inequalities expressed by the feedback from the

medical staff. Initially, the system possesses no Constraint

agent. A new Constraint agent is created whenever a feedback

is received by the system to model the inequality associated

with the feedback according to Table II. When created, a

Constraint agent stores the ∆t
s values associated with the

medical feedback. Those values are fixed at the agent creation,

and are the ones that the agent will always use to compute

its own criticality with the current weights of the Weight

agents using the formula described in section III-C1b. Each

Constraint agent aims to be satisfied, by having a criticality

lower than zero. Therefore, a Constraint agent can be seen as

a solicitor agent: it requires a service, the minimizing of his

criticality, that can only be provided by the Weight agents.

b) Interaction between Constraint agents and Weight

agents: At each time step, Constraint agents compute their

criticality and send personalized requests towards each Weight

agent involved in their inequality providing information about

the service needed by the Constraints agents. This request

contains three pieces of information: the current criticality

Feedback Constraint Agent Creation Inequality

False positive Dt ≤ T

False negative Dt > T

True positive Dt > T

True negative Dt ≤ T
Table II

TYPE OF CONSTRAINT AGENT INEQUALITY ACCORDING TO THE TYPE OF

REQUEST.

Chigher ≥ Clower Chigher < Clower

αhigher ≥ αlower ωt+1
s = ωt

s + αw ∅

αlower > αhigher ∅ ωt+1
s = ωt

s − αw

Table III
THE COOPERATIVE DECISION OF A WEIGHT AGENT.

of the Constraint agent, the desired direction of variation

(relation > or ≤), and the influence αw of the Weight agent

w in the inequality. This latter influence is computed with the

disparity values ∆c
s that were memorized by the Constraint

agent c at its creation using the following formula:

αw = |ωw ·∆
c
w|/

∑

s∈S

|∆c
s · ωs| (12)

c) Weight agents self-tuning: At each time step, a Weight

agent receives feedback from Constraint agents. The agent

identifies Chigher and Clower which are respectively the

Constraint agent requesting an increase (relation >) with

the higher criticality level and the Constraint agent request-

ing a decrease (relation ≤) with the higher criticality level.

As Chigher and Clower are the most constrained Constraint

agents, reducing the criticality of Chigher will also reduce

the criticality of every other Constraint agent requesting an

increase. Reciprocally, reducing the criticality of Clower will

also reduce the criticality of every other Constraint agent

requesting a decrease. However, as Chigher and Clower request

antagonist actions, reducing the criticality of one involves to

increase the criticality of the other. Every agent must locally

choose the most cooperative action, which involves to reduce

the difference between the criticality of Chigher and Clower.

Indeed, by helping one of the Constraint agents, the Weight

agent should not make the criticality of the latter exceeds the

former. The agent decision is based on its influences αhigher

and αlower that express its contribution to each of the two

constraints. Depending on which of the two Constraint agents

has the higher criticality and the influences of the Weight agent

on these two constraints, the Weight agent can decide to do

nothing or to increase or decrease its current value according to

Table III. The value of the decrease or increase is the influence

of the most critical Constraint agent. The Weight agent always

decides to perform the action that is expected to have the most

cooperative impact on the system, which means reducing the

maximum criticality of Chigher and Clower.

d) Quickening the search: Since the value of adjustment

made by the Weight agents is based on their influence, the

adjustment step is bounded to a maximum of 1, as α ∈ [0, 1].
It might lead to situations where equal successive adjustments

are required to reach a certain value. Reciprocally, it might

prevent the system to reach a certain level of precision as

the influence might be higher than the required precision. In

order to increase or reduce the adjustment step of the weight,

we introduce a parameter β specific to each agent into the

weight adjustment formulas:

ωt+1
s = ωt

s + β · αw in the case of an increase (13)



ωt+1
s = ωt

s − β · αw in the case of a decrease (14)

The adjustment of this β parameter is based on adaptive

value trackers, a tool introduced by [17] which can be seen as

an adaptation of dichotomous search for dynamic values. The

β parameter is increased by 2 when two successive actions are

performed (either two successive increases or decreases), and

decreased by 1/3 when two different actions are performed

(either an increase followed by a decrease, or a decrease

followed by an increase). Situations where the Weight agent

decides to perform no action are not considered by the β
adjustment. The adaptive adjustment of the β value behaves

either as a stimulant or an inhibitor of the weight adjustment,

facilitating the search of weight values.

The number of Constraint agents is limited to 2n where

n is the number of Weight agents. Whenever the number of

Constraint agents has reached this limit, the creation of a new

Constraint agent leads to the removal of the Constraint agent

with the same relation (> or ≤) having the lowest criticality

value. This allows to keep the most recent and constrained

Constraint agents. Another aspect of this limit is that, as the

number of Constraint agents is limited, the complexity of a

decision cycle is then bounded.

e) Synthesis: The cooperative rules described in this sec-

tion enable each Weight agent to tune its weight in accordance

with the Constraint agents that are dynamically created. The

resolution process is then a succession of feedback coming

from Constraint agents and decisions from the Weight agents

based on the criticality of the most constrained Constraint

agents and the influence of the Weight agents on these

constraints. The successive resolution of inequalities enables

the Weight agents to tune their weights, and thus to converge

towards optimal parameters. The overall algorithm is described

in algorithm 4. The complexity of one resolution cycle of this

algorithm is of the order of O(CW ), with C the number of

Constraint agents and W the number of Weight agents.

Algorithm 4 MAS lifecycle

1: loop

2: if Medical staff feedback received then

3: Create a new Constraint agent to model the received

feedback

4: end if

5: if New events occurred then

6: Each Profile agent updates and sends disparity values

∆t
s to the Weight agents

7: end if

8: Update Constraint agents criticality

9: Send Constraint agents feedback to Weight agents

10: Do the decision for each Weight agent

11: Each Weight agent computes and sends the value ∆t
s·ω

t
s

12: Test the alert rule

13: end loop

IV. EXPERIMENTS AND RESULTS

In order to study the ability of the proposed MAS to dy-

namically adjust its weights in accordance with the constraints,

an experiment with a synthetic environment was designed in

which are studied both the capacity to find optimal weights

and the scalability of the approach. The rest of this section

introduces the synthetic environment, the experimental process

and presents and discusses the results obtained.

A. Synthetic environment

To simulate an environment for the proposed MAS we

randomly generate for each experiment an “oracle” which will

provide at each time step the set of disparity values coming

from sensors and the feedback from the medical staff required

by the MAS to adjust its weights. The number of sensors n
to simulate is a parameter of the experiment.

The oracle randomly initializes a set of n weights between

two bounds [ωmin, ωmax]. Those weights correspond to the

optimal weights ω∗

s in the model. At each time step of an

experiment, the disparity values of the sensors are chosen

randomly between two bounds [∆min,∆max] and sent to the

MAS. The oracle can generate a feedback using the alert rule

(
n∑

i=0

∆t
i ·ω

∗

i ) > T . The parameter T is set at (
∑

i∈n

∆max ·ωs)/2

to ensure an equal sharing of positive and negative feedback

(however, it has to be noted that in a more general case, this

value could be arbitrarily set as weights self-adapt to this

threshold).

B. Experimental process

We want to evaluate both the capacity of the MAS to

reach a certain level of precision in weight estimation and

the influence of the number of sensors in the number of

decision cycles required to reach such level of precision. To

this extent, we evaluate 20 different sensors size n (from 5 to

100 with a variation of 5) and perform for each sensor size

100 different experiments. Each experiment is characterized

by the parameters of the oracle which are set at ωmin = 0.01,

ωmax = 10, ∆min = 0.01, ∆max = 10, the number n
of sensors to evaluate, and a precision to reach set at 3%.

This precision is expressed as
∑

n

|ωt
n − ω∗

n|/
∑

n

ω∗

n, which

corresponds to a percentage of relative error between the

current weights ωt
n and the optimal weights ω∗

n. An experiment

is a success if the precision is reached, meaning that all

Weight agents have managed to reach at least the required

precision. At each time step, a feedback is sent to the MAS,

and one resolution cycle is performed. Thus, the number of

cycles to reach the precision also corresponds to the number

of constraints generated. The algorithm [5] describes one run

of an experiment.

Firstly we propose to evaluate how the system behaves

during the resolution process. Figure 3 shows the evolution

of the criticalities of Chigher (green curve) and Clower (red

curve) during a simulation with 10 sensors. It illustrates the

process of minimization of the criticalities by the cooperative

behaviour of Weight agents. As the process goes along, new



Figure 3. Evolution of the criticality of Chigher and Clower during a run.

Constraint agents are added. Those agents might be more

critical than the previous Constraint agents, explaining why

at some points of the curves the criticalities increase. But

when there is no change of the most critical Constraint agent,

we observe a reduction of the criticalities and a convergence

towards the value minimizing both criticalities. The more

the problem becomes constrained, the more this value tends

towards zero. This is visible at the end of the curves where

both criticalities converge towards zero. This phenomenon

is interesting as it allows to determine how the problem is

constrained: the more criticalities of Chigher and Clower tend

towards zero, the more constrained the problem is, and thus,

the more precise the current weights should be.

Figure 4 shows the difference in the computation of the

degree of anomaly of the current situation
∑

n

ωt
n · ∆

t
n and

the degree of anomaly computed by the oracle
∑

n

ω∗

n · ∆
t
n.

The figure shows convergence towards zero, meaning that the

MAS manages to estimate weights. By comparing this curve

to the evolution of the criticalities of Chigher and Clower, we

observe that the convergence towards zero of the criticalities

of Chigher and Clower coincides with the convergence towards

zero of the difference of computation of the degree of anomaly

of the current situation.

Algorithm 5 The meta-algorithm of one run of an experiment

Require: The number of sensors n, the bounds [ωmin, ωmax]
and [∆min,∆max], the precision p to reach.

1: Initialize randomly the weights ω∗ of the oracle

2: Initialize the MAS and each of its weights ω at 1

3: nbStep← 0
4: Compute precision
5: while precision < p do

6: Send new disparity values to the MAS

7: Compute agents lifecycles

8: Receive decision from the MAS

9: Compute and send the oracle feedback

10: nbStep← nbStep+ 1
11: Compute precision
12: end while

Then, we propose to evaluate MAS robustness to the pa-

rameter size n. For each sensor size value from 5 to 100 with

a step of 5, we performed 100 different runs and computed the

number of cycles to reach a minimum error of 3%. Figure 5

shows the results we obtained in the form of box plots showing

the first quartile Q1, the median, and the third quartile Q3 for

the 20 different parameter sizes. The figure shows a linear

relation between the number of cycles required to reach the

level of precision and the number of parameters n.

For each experiment, we also computed the number of

Constraint agents that are actually selected as Chigher and

Clower and contribute to the solving process. Figure 6 shows

the results in the form of box plots. Once again, the number

of actually used Constraint agents is linear with the number

of parameters. Compared to the number of cycles required

to reach the precision, the number of actually selected Con-

straint agents is significantly lower. Indeed, not all Constraint

agents are required to solve the problem, only those which

constrained the process. In this experiment, constraints are

randomly created and there is no guarantee that new Con-

straint agents are going to constrained the problem. Indeed,

a newly created Constraint agent is not necessarily the most

constrained agent, and thus may never be selected. But as the

system evolves, it is not possible to make any assumption on

the utility of a Constraint agent, as its constraint might not

be respected anymore during the resolution process and thus

become selected. The presence of those Constraint agents in

the systems acts as a tool of anticipation, their activity ensures

that the system will not be in a non cooperative state. Thus,

the collective of Constraint agents acts as an heuristic guiding

the system towards the solution. The main advantage of this

approach is that this heuristic is dynamic and able to deal with

the dynamic creation of Constraint agents.

V. CONCLUSION AND PERSPECTIVES

In this paper, we introduce a novel model for behavioural

anomaly detection in the context of elderly people health-

care. This model is based on the building of a Circadian

Activity Rhythm on each sensor and its comparison with

a nominal profile. Anomalies are detected through a linear

regression. The adaptation of this model consists in finding

the optimal weight parameters ω∗

s of the regression. We



Figure 4. Evolution of the difference of computation of the degree of anomaly of a situation Dt between the MAS and the oracle.

express the problem of adaptation as a problem of linear

optimization using medical feedback to dynamically build a set

of inequalities acting as constraints. The successive resolution

of those inequalities acts as a heuristic guiding the system

towards the optimal parameters. We propose an adaptive multi-

agent model to dynamically resolve those inequalities.

The experiments performed on synthetic environments have

shown both the capacity to achieve a certain level of precision

in weight adjustment and that there exists a linear relation

between the number of parameters and the number of cycles

to find optimal parameters. However, while being promising,

those experiments do not include noisy data or wrong feed-

back, which might lead to the impossibility to find a solution

that satisfies all the constraints. A real world experiment is

ongoing, involving the monitoring of 20 patients at home

over 3 months. Each home is equipped with a set of sensors

enabling to monitor various aspects of the every day life of

the elderly, such as the opening and closure of doors, presence

sensors in each room and sensors to monitor water usage. The

gathering of those data will allow the experimentation of the

approach with real world anomalies, and will have to take into

account this noise by giving the system the ability to release

constraints. This real world experiment will also evaluate the

acceptability of the solution for both patients and the medical

staff.
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