
HAL Id: hal-02191796
https://hal.science/hal-02191796

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A clustering approach for detecting defects in technical
documents

Manel Mezghani, Juyeon Kang Choi, Florence Sèdes

To cite this version:
Manel Mezghani, Juyeon Kang Choi, Florence Sèdes. A clustering approach for detecting defects in
technical documents. 13th International Workshop on Natural Language Processing and Cognitive
Science (NLPCS 2018), Sep 2018, Cracovie, Poland. pp.27-33. �hal-02191796�

https://hal.science/hal-02191796
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22498

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Mezghani, Manel and Kang Choi, Juyeon
and Sèdes, Florence A clustering approach for detecting defects in
technical documents. (2018) In: 13th International Workshop on
Natural Language Processing and Cognitive Science (NLPCS 2018),
11 September 2018 - 12 September 2018 (Krakow, Poland).

A clustering approach for detecting defects in technical

documents

Manel Mezghani1, Juyeon Kang1, Florence Sèdes2

1 Prometil, 52 Rue Jacques Babinet, 31100 Toulouse, France

{m.mezghanni, j.kang}@prometil.com
 2 IRIT, University of Toulouse, CNRS, INPT, UPS, UT1, UT2J, France

#orence.sedes@irit.fr

Abstract. Requirements are usually “hand-written” and su$ers from several problems like redundancy and inconsistency.
%e problems of redundancy and inconsistency between requirements or sets of requirements impact negatively the success
of &nal products. Manually processing these issues requires too much time and it is very cost-
ly. %e main contribution of this paper is the use of k-means algorithm for a redundancy and incon-
sistency detection in a new context, which is Requirements Engineering context. Also, we introduce
a pre-processing step based on the Natural Language Processing (NLP) techniques to see the impact
of this latter to the k-means results. We use Part-Of-Speech (POS) tagging and noun chunking to detect technical busi-
ness terms associated to the requirements documents that we analyze. We experiment this approach on real industrial
datasets. %e results show the e'ciency of the k-means clustering algorithm especially with the pre-processing.

1. Introduction

For a system to become operational in real applications, several stages of conception, development, pro-
duction, use, support and retirement must be followed (ISO/IEC TR 24748-1, 2010). During the conception
stage, we identify and document the stakeholder’s needs in the system requirements speci&cation (Hull, 2011).
Writing clearly all required elements without ambiguities (Berry, 2003) in the speci&cations is an essential
task before passing to the development stage (Galin2003, Bourque2004). According to the 2015 Chaos report1
by the Standish Group, only 29% of projects were successful2, 50% of the challenged projects are related to
the defects (Alshazly, 2014) from the Requirements Engineering (RE) and 70% of them come from the di'-
culties of understanding implicit requirements. All these defects do not lead to the failure but generate useless
information. It is well known that the costs to &x defects increase much more a6er that the product is built than
it would if the requirements defects were discovered during the requirements phase of a project (Glas, 2002;
Stecklein, 2004).

When writing or revising a set of requirements, or any technical document, it is particularly challenging to
make sure that texts are easily readable and are unambiguous for any domain actor. Experience shows that even
with several levels of proofreading and validation, most texts still contain many language errors (lexical, gram-
matical, style), and a lack of overall concordance, or redundancy and inconsistency in the underlying meaning
of requirements. Manually identifying redundant or inconsistent requirements is an obviously time-consum-
ing and costly task. We focus in this paper on two critical issues in writing high quality requirements that can
generate fatal defects in a product development stage: redundancy and inconsistency. We tackle these problems
in terms of similarity between requirements since more than two similar requirements can be classi&ed as re-
dundant or inconsistent requirements.

1 http://www.standishgroup.com.
2 %ey studied 50,000 projects around the world, ranging from tiny enhancements to massive systems re-engineering implementa-
tions.

%e problems of redundancy and inconsistency can be handled according to di$erent technologies. We fo-
cus on arti&cial intelligence approaches and more precisely classi&cation approaches. Automatic classi&cation
of requirements is widely used in the literature using Convolutional Neural Networks (Winkler, 2016), Naives
Bayes classi&er (Knauss, 2012), text classi&cation algorithms (Ott, 2013). Data classi&cation approaches could
be data clustering through algorithm such as K-means. %is latter is studied in di$erent contexts due to its
e'ciency (Jain, 2010). However, in requirements engineering context, we could not &nd advanced works on
the redundancy and inconsistency issues using k-means algorithm.

%e main contribution of this paper is the use of k-means algorithm for a redundancy and inconsistency de-
tection in a new context, which is requirements engineering context. Also, we introduce a pre-processing step
based on the Natural Language Processing (NLP) techniques to assess the impact of this latter to the k-means
results. We use Part-Of-Speech (POS) tagging and noun chunking to detect technical business terms associated
to the requirements documents that we analyze.

%is paper is structured as follows: In section 2, we present related works on the redundancy and incon-
sistency detection through arti&cial intelligence approach and especially k-means technique. In section 3, we
present the datasets used for the experimental part. In section 4, we present our clustering approach. In section
5, we discuss the associated results. In section 6, we conclude and give some future research directions.

2. Related works

In this section, we &rst present related works associated to redundancy and inconsistency detection in spec-
i&cations documents or technical documents. Second, we give some researches focusing on text pre-processing
in requirements engineering context. Finally, we focus on approaches using k-means clustering in the latter
context.

2.1 Redundancy and inconsistency detection

Researches on redundancy detection began by traditional bag-of-words (BOW), TF-IDF frequency matrix,
and n-gram language modelling (Allan, 2000) (Brown, 1992). %en, researchers like Juergens et al. (Juergens,
2010) use ConQAT to identity copy-and-paste reuses in requirements speci&cations. Falessi et al. (Falessi,
2013) detect similar content using information retrieval methods such as Latent Semantic Analysis. %ey com-
pare NLP techniques on a given dataset to correctly identify equivalent requirements. Rago et al. (Rago, 2016)
extend the work presented in (Falessi, 2013) speci&cally for use cases. %eir tool, ReqAlign, combines several
text processing techniques such as a use case-aware classi&er and a customized algorithm for sequence align-
ment.

Inconsistency is analyzed in (Belsis, 2014) by proposing the framework of a patterns-based unsupervised
requirements clustering (based on k-means algorithm), called PBURC, which makes use of machine-learning
methods for requirements validation. %is approach aims to overcome data inconsistencies and e$ectively
determine appropriate requirements clusters for optimal de&nition of so6ware development sprints. Derme-
val et al., (Dermeval, 2016) present a survey about how using ontologies in RE activities both in industry and
academy, is bene&cial, especially for reducing ambiguity, inconsistency and incompleteness of requirements.

2.2 Pre-processing

Some researches introduce pre-processing steps in requirements analysis context. According to (Abad,
2017), the pre-processing helps reducing the inconsistency of requirements speci&cations by leveraging rich
sentence features and latent co-occurrence relations. It is applied through: i) a Part-Of-Speech tagger (Klein,
2003), ii) an entity tagging through a supervised training data, iii) a temporal tagging through a rule-based
temporal tagger and iv) co-occurrence counts and regular expressions. %is pre-processing approach improved
the performance of an existing classi&cation method.

Pre-processing data for redundancy detection is used in (Fu, 2017) by performing standard NLP techniques
such as removing English stop words and striping o$ the newsgroup related meta-data (including noisy head-
ers, footers and quotes). %e Joint Neural Network for redundancy detection approach in (Fu, 2017) also uses
normalized bag-of-words (BOW) as a pre-processing approach. %e normalized BOW generates a global uni-
gram based dictionary mapping. With the presence of the uni-gram indexer, the authors could readily remove
low frequency terms and lengthy snippets.

2.3 K-means

K-means clustering is a type of unsupervised learning approach, which is used on unlabeled data (i.e., data
without de&ned categories or groups). %e goal of this algorithm is to cluster the data into k groups (k number
of groups).

Classifying requirements is an important task in requirements engineering. Recently, some studies intro-
duce k-means in requirements classi&cation tasks. Notably, (Abad, 2017) applies di$erent approaches such as
i) topic modelling using Latent Dirichlet Allocation (LDA) and Biterm Topic Model (BTM) and ii) clustering
using K-means, Hierarchical approach and Hybrid (k-means and hierarchical) to classify requirements into
functional (FR) and non-functional requirements (NFR).

3. Datasets

To test our approach, we extracted requirements from 22 industrial speci&cations (~2000 pages). From this,
we constructed three di$erent datasets (corpus1, corpus2 and corpus3) explained below. For con&dentiality
issues, we are not allowed to reveal the identity of the companies. %e main features considered to validate our
datasets are: 1) texts following various kinds of business style and format guidelines imposed by companies, 2)
texts coming from various industrial areas: aeronautic, automobile, spatial, telecommunication, &nance, ener-
gy. %ese datasets enable us to analyze di$erent types of redundancy and inconsistency in terms of frequency
and context. We present characteristics of these datasets (written in English) as follows:

Corpus1: dataset that contains 38 requirements fully redundant according to our expert,
Corpus2: dataset that contains 42 requirements fully inconsistent according to our expert,
Corpus3: dataset that contains 337 requirements randomly chosen with no a priori information
of redundancy and inconsistency,

%e expert in this work means requirements engineer with more than 15 years of experiences (industrial and
academic).

4. Clustering Approach

In this section, we present the basics of k-means clustering algorithm and the results of our approach.
We also analyze the impact of the pre-processing step on the results.

4.1 K-means algorithm

%e k-means algorithm is used to partition a given set of observations into a prede&ned amount of k clusters.
K-means algorithm is a very popular approach due to its e'ciency. However, it needs a prede&ned value
of K as an input, which is the main issue about using this algorithm.

Some researchers focus on this issue and present solutions based on the graphical (e.g. elbow approach,
silhouette and Inertia or numerical value (e.g. statistic gap (Mohajer, 2010)). We use in this paper the following
solutions to calculate the value of K:

Inertia: calculated as the sum of squared distance for each point to its closest centroid, i.e., its as-
signed cluster. It can be recognized as a measure of how internally coherent clusters are.
Statistic gap: calculates a goodness of clustering measure. %e statistic gap standardizes the graph
of log(W

k
), where W

k
 is the within-cluster dispersion, by comparing it to its expectation under

an appropriate null reference distribution of the data (Mohajer, 2010).

4.2 Determining the best number of K

We apply the k-means algorithm on the datasets already detailed in section 3. To choose the best similarity
metric, we tested di$erent similarity metrics such as Euclidean distance, TF-IDF, JACCARD, Correlation and
Dice. K-means is applied using the Euclidean distance as similarity metric since we had best results comparing
to other similarity metrics according to our expert.

We &rst begin by determining the best number of K by calculating the inertia in &gure 2.
According to &gure 2, determining visually the number of k cannot always be unambiguously identi&ed. We

can estimate the number of K between 25 and 30. To leverage this ambiguity, we choose to apply the statistic
gap approach which allows to obtain a numerical value re#ecting the coherence of the clusters.

Fig. 2. Inertia curve for Corpus1 dataset

We apply the statistic gap to our datasets and the best number of k is presented in Table 1.

4.3 Validation approach

Since we use an unsupervised clustering approach, we do not have any ground truth about the redundancy
and/or the inconsistency of the requirements. So, we give the results related to the best value of k to our domain
expert in order that the expert evaluates the relevance of the generated clusters. A cluster may contain one or
more requirement(s).

For a given k value, the validation is done according to two methods:
 “Strict” validation (SV): we assume that a relevant cluster contains 100\% correct requirements (fully
redundant or incoherent requirements), which means that we discard clusters with partially relevant
requirements. Also, we consider only clusters with more than one requirement.
 “Average” validation (AV): we calculate the average of relevant requirements per cluster.

AV
k
= (∑i=1, k precision(C

i
))/ k’ (1)

where AV
k
 is the average validation for a given value of k. k is the number of clusters. k’ is the number

of clusters which their number of requirements is >1. i {1, k} is the value of k and precision(c
i
) is de&ned

as:

precision(C
i
)= NumberofRelevantRequirements/TotalNumber-

ofRequirements
(2)

4.5 Classi"cation results with the pre-processing step

For the pre-processing step, we use the Part-Of-Speech (POS) tagging and Noun chunking from SpaCy3 as
a popular tool in natural language processing &eld. SpaCy is a free open-source library featuring state-of-the-
art speed and accuracy and a powerful Python API.

A6er applying this tagging approach, we proceed to detect technical terms according to some combination
of tags.

According to our RE expert, technical business terms are o6en expressed in open or hyphenated compound
words (e.g. high speed, safety-critical) and we observe that they are always parts of a noun chunk4. For this
paper, we &rst extracted all noun chunks from our Corpus1, then observed the syntactic patterns inside noun
chunks referring to POStags, obtained by SpaCy. %e most used 13 combination patterns in business terms
are selected and validated in collaboration with our RE expert: for example, noun-noun (e.g. runway overrun),
adjective-noun (e.g. normal mode), proer_noun-noun (e.g. BSP data), adjective-adjective-noun (e.g. amber
visual indication), noun-noun-noun (e.g. output voltage value).

So, we apply the k-means algorithm on dataset containing technical terms to see the impact of this pre-pro-
cessing on the results. Table 2 summarizes the di$erent results obtained from the same experiments presented
in 4.3.

3 https://spacy.io/.
4 A noun chunk is a noun plus the words describing the noun.

Table 1. Results: Best value of K, validation results and the associated number of relevant clusters for each dataset.

Dataset Best value of K SV (Nb. of relevant clusters) AV (Nb. of relevant clusters)

Corpus1 30 100% (8) 100% (8)

Corpus2 17 100% (15) 100% (15)

Corpus3 26 22% (4) 30.96% (18)

Table 2. Results with pre-processing: Best value of K, validation results and the associated number of relevant clusters for each
dataset.

Dataset Best value of K SV (Nb. of relevant clusters) AV (Nb. of relevant clusters)

Corpus1 28 100% (10) 100% (10)

Corpus2 24 92.85% (13) 92.85% (13)

Corpus3 36 22.22% (6) 39.20% (27)

In Corpus1 dataset, we have 100% of relevant clusters and 10 relevant clusters for which the number
of requirements is greater than 1 in both validations. %e clustering has detected clusters with the right re-
dundancy information but two more relevant clusters than the clustering without preprocessing. In this case,
the tagging has shown its e'ciency to improve redundancy detection results.

In Corpus2 dataset, we have 92.85% of relevant clusters and 13 relevant clusters which their number
of requirements is greater than 1 in both validations. %e clustering has detected clusters with the right in-
consistency information but two less relevant clusters than the clustering without preprocessing. In this case,
the preprocessing has shown its ine'ciency to improve inconsistency detection results.

In Corpus3 dataset, we have the same relevant value of the strict validation comparing to the Table 1. How-
ever, the number of relevant clusters is higher. For the average validation, we clearly see an improvement of the
percentage of relevant clusters and the total number of relevant clusters. %e preprocessing has improved the
rate of the redundancy/inconsistency detection.

5. Discussion

%e k-means results are given to our domain expert to judge the best value of k from his/her own do-
main-based expertise. We found a di$erence between the generated k value (according to the statistic gap) and
the best value according to our expert.

For the results without pre-processing, the results are as follows: for to Corpus1, our expert assume that
23 (instead of 30) is the best value of k with 100% of relevance (for SV) and with 13 relevant clusters (instead
of 8). For Corpus2, our expert assumes that 18 (instead of 17) is the best value of k with 100% of relevance (for
SV) and with 16 relevant clusters (instead of 15).

For the results with pre-processing, the results are as follows: for to Corpus1, our expert assume that 23 (in-
stead of 28) is the best value of k with 100% of relevance (for SV) and with 14 relevant clusters (instead of 13).
For Corpus2, our expert assumes that 25 (instead of 24) is the best value of k with 100% of relevance (for SV)
and with 15 relevant clusters (instead of 13).

%e nature of the dataset is very important to de&ne the best value of k. In fact, if the dataset contains too
many identical requirements, the k-means algorithm tends to cluster these requirements together and then
very similar requirements will be discarded from these clusters and putted in other clusters. %is is the case
for Corpus3 where we found repetitions of many requirements. We should then take into consideration this
characteristic to analyze more e'ciently speci&cations.

Also, we experiment this clustering approach on large dataset (not mentioned above) with ~900 require-
ments. %is type of dataset is very noisy with many identical requirements belonging to di$erent chapters
or sections. %e results on this dataset are not satisfying. Taking into consideration the information about
document hierarchy could help us to analyze di$erent sub-documents and then shorter datasets to &nd the
best clusters.

6. Conclusion

In this paper, we proposed an automatic approach for redundancy and inconsistency detection in require-
ments engineering context. %is approach is based on an arti&cial intelligence technique and more precise-
ly unsupervised machine learning algorithm, k-means. %is approach is tested on real industrial datasets
with di$erent characteristics of redundancy and/or inconsistency. Also, we introduced the pre-processing
step based on the NLP pre-processing to see the impact of this latter to the k-means results. We used Part-
Of-Speech (POS) tagging and noun chunking to detect technical business terms associated to the requirements
documents that we analyze.

K-means algorithm is tested according to the best k value generated by the statistic gap method. According
to Corpus1 (redundant) and Corpus2 (inconsistent), k-means provides very relevant results by providing only
clusters (with more than one requirement) with relevant information. Pre-processing has improved the rate
of redundancy detection but not the rate of the inconsistency detection. According to Corpus3, the results
show the importance of the pre-processing step to improve the clustering results in terms of precision and
the number of detected clusters.

Even with high quality results for Corpus1 and Corpus2, we are not able yet to di$erentiate redundancy or
inconsistency in very similar clusters in Corpus3. To overcome this shortcoming, we plan to apply another
clustering approach on similar clusters. %is new clustering will be based on semantic features. Also, we plan
to eliminate identical requirements belonging to the same chapter before applying clustering to improve clus-
tering. A6er improvements, this work will be integrated in the industrial tool: Semios for requirements5.

Acknowledgements

%is work is &nancially supported by the Occitanie region of France in the framework of CLE (Contrat
de recherche Laboratoires-Entreprises)-ELENAA (des Exigences en LanguEs Naturelles à leurs Analyses Au-
tomatiques) project.

References

Dermeval, D. (2016). Applications of ontologies in requirements engineering: a systematic review of the liter-
ature. Requirements Engineering, 21(4), 405-437.

Frenay, B. & Verleysen, M. (2014). Classi&cation in the Presence of Label Noise: A Survey. IEEE Transactions
on Neural Networks and Learning Systems, 25(5), 845-869.

Belsis, P., Koutoumanos, A. & Sgouropoulou, C. (2014). PBURC: a patterns-based, unsupervised requirements
clustering framework for distributed agile so6ware development. Requirements Engineering, 19(2), 213-225.

Anil, K. Jain (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666.

Rago, A., Marcos, C. & Diaz-Pace, J.A. (2016). Identifying duplicate functionality in textual use cases by align-
ing semantic actions. So"ware & Systems Modeling, 15(2), 579-603.

Falessi, D., Cantone, G. & Canfora, G. (2013). Empirical Principles and an Industrial Case Study in Retriev-
ing Equivalent Requirements via Natural Language Processing Techniques. IEEE Trans. So"w. Eng., 39(1),
18-44.

Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner, S., Domann, C. & Streit, J. (2010).
Can Clone Detection Support Quality Assessments of Requirements Speci&cations?. Proceedings of the 32Nd
ACM/IEEE International Conference on So"ware Engineering,Volume 2, 79-88.

Fu, X., Ch’ng, E., Aickelin, U. & See, S. (2017). 2017 CRNN: A Joint Neural Network for Redundancy Detection.
IEEE International Conference on Smart Computing (SMARTCOMP), 1-8.

Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G. & Schneider, K. (2017). What Works Better? A Study
of Classifying Requirements. IEEE 25th International Requirements Engineering Conference (RE), 496-501.

5 http://www.semiosapp.com/index.php?lang=en.

Klein, D. & Manning, C.D. (2003). Accurate Unlexicalized Parsing. In: Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics, Volume 1, 423-430.

MacQueen, J. (1967). Some method for classi&cation and analysis fo multivariante observations. L.M. Le Cam,
J. Neyman, J. (eds.), Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1, University of California Press, 281-297.

Winkler, J. & Vogelsang, A. (2016). Automatic Classi&cation of Requirements Based on Convolutional Neural
Networks. IEEE 24th International Requirements Engineering Conference Workshops (REW), 39-45.

Ott, D. (2013). Automatic Requirement Categorization of Large Natural Language Speci&cations at Mer-
cedes-Benz for Review Improvements. Requirements Engineering: Foundation for So"ware Quality:
19th International Working Conference, REFSQ 2013, Essen, 50-64.

Knauss, E., Damian, D., Poo-Caamaño, G. & Cleland-Huang, J. (2012). Detecting and classifying patterns
of requirements clari&cations. In: 20th IEEE International Requirements Engineering Conference (RE),
251-260.

Allan, J., Lavrenko, V., Malin, D. & Swan, R. (2000). Detections, bounds and timelines: Umass and tdt-3.
Proceedings of Topic Detection and Tracking Workshop (TDT-3), Vienna, VA, 167-174.

Brown, P.F., deSouza, P.V., Mercer, R.L., Watson, T.J., Pietra, V.J.D. and Lai, J.C. (1992). Class-Based n-gram
Models of Natural Language. Computational Linguistics, 18(4), 467-480.

Mohajer, M., Englmeier, K.-H. & Schmid, V.J. (2010). A comparison of Gap statistic de&nitions with and with-
out logarithm function, Vol 96, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-11920-3.

Hull, E., Jackson, K. & Dick, J. (2011). Requirements Engineering. Springer-Verlag London.

Glas, R.L. (2002). Facts and Fallacies of So"ware Engineering. Addison-Wesley Professional.

Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R. & Moroney, G. (2004). Error Cost Escalation %rough
the Project Life Cycle. Proceedings of the 14th Annual International Symposium, Toulouse, France.

Galin, D. (2003). So"ware Quality Assurance: From #eory to Implementation. Pearson.

Bourque, P. (2004). Guide to the So"ware Engineering Body of Knowledge (SWEBOK) Guide. IEEE Computer
Society.

Berry, D.M., Kamsties, E. & Krieger, M.M. (2003). From Contract Dra"ing to So"ware Speci$cation: Linguistic
Sources of Ambiguity. https://fr.scribd.com/document/76672102/Ambiguity-Handbook.

Alshazly, A.A., Elfatatry, A.M., Abougabal, M.S., (2014). Detecting defects in so"ware requirements speci$cation,
Alexandria Engineering Journal, 53(3), 513-527.

