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This supplemental document accompanies the article referred to as Calibration Plot for Pro-
teomics (CP4P): A graphical tool to visually check the assumptions underlying FDR control in
quantitative experiments, from Q. Giai Gianetto et. al.. It is a tutorial to the R package CP4P

(Calibration Plot for Proteomics).

1 Preliminary notions

1.1 Recap on p-values and on hypothesis testing

Figure 1: Graphical translation of testing protein Pi, to know whether it is di�erentially abun-
dant or not.

Having a list of m proteins {P1,P2, . . . ,Pi, . . . ,Pm}, one is interested in obtaining a list of
few proteins that are signi�cantly di�erentially abundant between two or more conditions. As
depicted on Fig. 1, one relies on several abundances measured across several replicates for each
condition, and a null hypothesis signi�cance test (or simply, a test) is considered. To do so, a
score (or a statistic), noted S, is de�ned to measure the extent to which the abundance values are
di�erent between conditions (the more di�erent the conditions, the greater the score). Then, one
compares the score S computed from observed abundances of Pi, noted si, to the theoretical
values it might have if there were no di�erences between conditions. Finally, the probability
pi = P(S ≥ si|H0), which is classically known as the p-value, is estimated to quantify if si is
in line with the theoretical distribution of the scores S when there is no di�erences. In this
formula, S ≥ si refers to the fact that one wants to estimate the probability of observing a
greater score than si while H0 refers to the fact that one estimates this probability under the so-
called null hypothesis, which practically means one assumes Pi to be non di�erentially abundant
(non-DA). In other words, pi indicates the probability that the distributions of abundances for
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Pi between the conditions look like what they indeed are, under the assumption that Pi is not
DA. Naturally, if pi is great, there is no reason to reject the idea that Pi is non-DA. On the
other hand, if pi is really small one naturally thinks there is little chance that Pi is not DA. As a
result, the hypothesis testing does not directly tell us which proteins are di�erentially abundant
(DA) or not; instead, it provides a list of m di�erent p-values, that are related to a protein each,
and that must be �ltered.

1.2 Recap on multiple test correction and on FDR

In a dataset with several thousands of proteins, even if one applies a very stringent �lter to the
p-values, it is possible to expect that several non-DA proteins are wrongly considered as DA
(such proteins are called false discoveries), just because they happen to have small p-values by
chance. This is why it is necessary to apply a multiple testing correction (MTC) afterward.

There are numerous MTC, among which the most popular ones are the methods which
control the false discovery rate (FDR). Introduced by Benjamini and Hochberg, FDR originally
referred to the estimation of the expectation of the proportion of false discoveries in a list of
putative discoveries, while now it often refers to a wider class of methods. However, to date, it is
possible to summarize a general pattern common to the most used FDR control procedures: (i)
compute pi (the p-value of Pi) ; (ii) reorder the protein list so that p(1) is the smallest p-value
and p(m) the greatest; (iii) transform each p(i) into p

∗
(i) the so-called adjusted p-value (sometimes

referred to as the q-value) which corresponds to the smallest FDR at which the corresponding
protein will be concluded DA ; (iv) cut the list to n ≤ m so that p∗(n) corresponds to the desired
FDR level.

However, most the procedure following this pattern are based on numerous mathematical
hypotheses that must be respected to avoid a spurious FDR control. The package CP4P proposes
simple graphical tools to control these assumptions, globally referred to as p-value calibration.

2 Before using CP4P

2.1 Obtaining the p-values

The �rst issue is to obtain them p-values for {P1,P2, . . . ,Pi, . . . ,Pm}. To do so in an automated
way, several pieces of software implement various statistical tests, among which the practitioner
has to choose. These pieces of software can be split into two groups: Those that are devoted to
proteomics, and which propose a biostatistics module pipelined to the output of the quantitation
module. For instance, the Maxquant suite proposes the module Perseus to process quantitative
datasets as the one depicted on Fig. 1. Alternatively, it is possible to use generic statistics
software, such as JMP or R. If the m p-values are not directly computed with R, it will be
necessary to import them in R, so as to run CP4P, as explained in Section 2.3. To do so, one
advises to export the p-values from the software that produced them, in a CSV �le. Most of the
biostatistics modules propose such CSV exports, either of the entire quantitative dataset, or of
the column of interest (which here contains the p-values).

2.2 Installing CP4P

The practitioner must have a recent version of R (3.2.0 or more recent1.) installed on his/her
workstation. Before installing CP4P itself, a number of packages must be installed from the
website of the BioConductor project or from the CRAN. To do so, the simplest way is to
copy/paste the following commands in the R console:

1The latest version of R is available at https://cran.r-project.org/bin/windows/base
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> source("http://bioconductor.org/biocLite.R")

> biocLite("limma")

> biocLite("qvalue")

> biocLite("multtest")

> install.packages("MESS")

Finally, CP4P can be installed with the following instruction:

> install.packages("cp4p")

Once CP4P has been installed, the package must be load in any new R session with the library()
function; Similarly, its help documentation can be accessed with the help() function:

> library(cp4p)

> help(cp4p)

2.3 Importing the p-values

Now the package CP4P is operational. The CSV �le containing either the p-values only or the
entire dataset can be imported with the read.table() function, the numerous arguments of
which are detailed in the R help. Basically, the following instruction is su�cient to import the
data:

> data = read.table("C:/.../repository/data.csv",sep=";",header=TRUE)

where the �rst argument, "C:/.../repository/data.csv" refers to the full name of the CSV
�le (including its path; note that, contrarily to windows, �/� are used instead of �\�), the second
argument refers to the symbol separating the columns (sep="\t" can be used if tabulations
separate the columns); �nally, the last argument indicates whether the �rst line of the �le
contains a header or not. Alternatively, it is possible to load one of the datasets accompanying
the package:

> data(LFQRatio2)

or

> data(LFQRatio25)

It is possible to check the import did not go wrong, by displaying the beginning of the dataset:

> head(data)

where data has to be replaced by LFQRatio2 or LFQRatio25 if you use the datasets accompanying
the package. If the dataframe does not only contain the p-values, it is more convenient to extract
the column containing the p-values before applying any of functions from CP4P:

> p=data[,i]

where i is the index of the column containing the p-values. From that point on, it is possible to
apply the various functions of CP4P, as follow:

> estim.pi0(p,pi0.method="ALL")

> calibration.plot(p,pi0.method="ALL")

The adjusted p-values with a given method (let us say "slim") results from the following com-
mand:
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> pv=adjust.p(p,pi0.method="slim")

The result of this function contains 2 columns, that diplay respectively, the original p-values:

> pv$adjp[,1]

and the adjusted ones:

> pv$adjp[,2]

3 Interpretation of the calibration plot

Figure 2: Typical graphical output of the calibration.plot() function on a dataset with
well-calibrated p-values. The black curve displays the cumulative distribution function of 1− pi
(i ∈ [1,m]) as a function of 1− pi. The blue line helps visualizing π0 (the proportion of non-DA
proteins) as its equation reads y = π0x. The A area between the right hand side peak of the
black curve and the blue line is colored in green: it depicts the extent to which the set of DA
proteins have di�erent p-values than other proteins, and consequently, the extent to which they
can be discriminated on the basis of a good FDR threshold. The DA protein concentration
measure reads 1 − A/T , where T is the gray triangle area (by construction, T = (1 − π0)/2).
The uniformity underestimation (in red) corresponds to the area where the black curve is above
the blue line apart from the peak at the left hand side (DA protein peak).

Basically, the function calibration.plot() of the CP4P package takes as input a vector of p-
values that have been previously computed at the hypothesis testing step. As output, it provides
a graph similar to Fig. 2, which displays (black curve) the cumulative distribution function of
1 − pi (i ∈ [1,m]) as a function of 1 − pi. As it clearly appears, the curve starts from point
[0,0], and is then roughly linear indicating that the non-DA proteins have p-values that are
roughly uniformly distributed. On the other hand, the curve becomes very peaky nearby the
[0.9, 1] interval, indicating that there is an important concentration of small p-values, most likely
corresponding to DA proteins.
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In addition, a blue line is displayed on the graphic. It is expected to have the same trend as
the linear part of the black curve, as illustrated on Fig. 2. The slope of this blue line corresponds
to an estimation of the proportion of non-DA proteins (classically noted π0), which is indicated
as non-DA protein proportion (in blue too). Concretely, its equation reads y = π0x. Note that
this gets theoretical justi�cations. Indeed, the cumulative distribution function of the 1-p-values
(denoted F1−p(x) = P (1−p ≤ x)) can be decomposed in two distributions, one associated to the
non-DA proteins (denoted F1−p|non−DA(x)) and another associated to the DA proteins (denoted
F1−p|DA(x)), i.e.:

F1−p(x) = π0 × F1−p|non−DA(x) + (1− π0)× F1−p|DA(x)

When p-values are quite high (1-p-values quite low), it is expected that they are only associated
to non-DA proteins and so that F1−p(x) = π0×F1−p|non−DA(x). If p-values associated to non-DA
protein are uniformly distributed between 0 and 1, we so get F1−p(x) = π0× (1− p) which gives
the equation of the blue line.

The area A between the right hand side peak of the black curve and the blue line is colored in
green. This area is important: it depicts the extent to which the set of DA proteins have di�erent
p-values than other proteins, and consequently, the extent to which they can be discriminated
on the basis of a good FDR threshold. The thinner this area, the better, as it amounts to having
DA proteins with p-values distinctly smaller than the others. In order to propose a quantitative
estimation of the quality of the distribution of the p-values in relationship with this green area,
we derived the DA protein concentration measure that reads 1−A/T , where T is the gray triangle
area (by construction, T = (1 − π0)/2). This concentration is written in green in the top left
corner of the calibration plot, and intuitively, the closer to 100% it is, the better. Note that this
quantity gets also theoretical justi�cations. Indeed, if we keep the same notations as before, the
area A can be expressed as A ≈

∫ 1

0
(F1−p(x)− π0F1−p|non−DA(x))dx=(1−π0)×

∫ 1

0
F1−p|DA(x)dx.

As a result, the DA protein concentration is an approximation of 1 − 2
∫ 1

0
F1−p|DA(x)dx =

2
∫ 1

0
Fp|DA(x)dx − 1. Because

∫ 1

0
Fp|DA(x)dx is close to 1 when the p-values associated to DA

proteins are distributed nearby 0, the DA protein concentration is expected close to 1.
Finally, the uniformity underestimation (in red) corresponds to the area where the black

curve is above the blue line apart from the peak at the left hand side (DA protein peak). In
order to get a conservative adjustment of the p-values (so that it does not under-estimate the
FDR), the black curve has to remain below the blue line. Indeed, if p(1) ≤ ... ≤ p(m) is the ordered
sequence of m available p-values, the traditional Benjamini-Hochberg procedure searches for the
largest k such that p(k) ≤ (k/m)α (α being the desired FDR level) and will lead to keep all
proteins for which this inequality is veri�ed. In such a framework, several authors have shown
that

FDR = π0α ≤ α

An adaptive FDR procedure searching for the largest k such that p(k) ≤ (k/m)α/π̂0 where π̂0 is
an estimate of π0 will imply

FDR = π0α/π̂0 ≈ α

Note that the greater π0 will be, the more stringent the FDR procedure will be ((k/m)α/π̂0
being lower). Thus, the true FDR is expected closer to the desired FDR level if π0 is adequately
estimated. An overestimation of π0 will lead to conservative p-value adjustments (in such a
case the true FDR will be inferior to the desired one). However, a major problem can occur
if π0 is underestimated since the true FDR can next be superior to the desired one (such as
it is no more controlled). The uniformity underestimation quantity allows to underline this
problem. In the ideal case, the left hand side of the black curve always remains below the blue
one and the uniformity underestimation is null. However, in practice, as long as the uniformity
underestimation remains small (below a guesstimate of 0.5), a procedure to adjust the p-values
can be safely used.
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Figure 3: Illustration of the �ALL� optional argument on a real dataset where the default π0
estimator is inaccurate.

As explained, the blue line is of prime importance for the overall visual assessment of the
p-value distribution. However, its slope, re�ecting π0 needs to be estimated since it is unknown.
However, as any estimator, it is possible to exhibit situations where the default one is inaccurate.
For this reason, one may want to use other state-of-the-art estimation methods instead. Con-
cretely, this is implemented in calibration.plot() with a second optional argument, which
can take several values:

• A value x between 0 and 1, which corresponds to the freely tuned proportion of non-DA
proteins, for cases where the pratitionner knows the precise content of the sample.

• The name of an estimation method among: �pounds� (default tuning), �st.boot�, �st.spline�,
�langaas�, �jiang�, �histo�, �abh�, �slim�.

• �ALL�: A di�erent line for the eight aforementioned methods is displayed so that the
practitioner chooses on his/her own, the most adapted one.

4 Subsequent processing

4.1 Exporting the adjusted p-values

Once the p-values are adjusted, the practitioner can either �nish his/her analysis within R (see
next section), or export them in a CSV �le, so as to go with another software, that he/she is
confortable with. The R command to export the p-values is the following:

> write.table(pv$adjp,"C:/.../repository/pv.csv",sep=";")

where pv.csv is the name of the output �le. In addition, it is possible to export any �gure
produced by CP4P by simply saving it into the desired format.
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4.2 Finalizing the analysis

The post-processing of the adjusted p-values is extremely simple, and is made of the following
steps: (1) order the adjusted p-value from the smallest one to the greatest one, (2) cut this list
at some given threshold T , so that the proteins with an adjusted p-value above T are said to
be DA with FDR=T . These are simple operations that can be done in R, or for those who are
not comfortable with programming, with software dedicated to proteomics (such as Perseus),
or even in MS Excel.

5 Supplemental illustrations

5.1 Extreme cases (simulations)

In the extreme case where all the proteins are DA, the blue line as well as the left hand side of
the black curve are supposed to follow the abscissa axis, up to the starting of the right hand
peak which depicts the small p-values of the DA proteins, such as illustrated on Fig. 4 (left). In
the other extreme case where all the proteins are non-DA, both the blue line and the black curve
follow the diagonal line, depicted by the upper edge of the grey triangle, such as illustrated on
Fig. 4 (right).

Figure 4: First extreme case where all the proteins are DA (left). Second extreme case where
all the proteins are non-DA (rigth).
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Figure 5: Comparison of all the π0 estimators (left). The corresponding volcano plot where
UPS1 proteins are represented in red (right).

5.2 Detailed illustrations of the LFQRatio2 dataset

This dataset contains UPS1 human proteins that are the only di�erentially abundant proteins
within the conditions (condition 1: 10fmol of injected UPS1 human proteins, and condition 2
5fmol of injected UPS1 human proteins, leading to a ratio that equates to 2) within a yeast
background, so that it is possible to trace back which are the DA and non-DA proteins. As the
number of DA proteins is known to be small, the π0 estimate must be as close to one as possible.
On Fig. 5 (left), the DA proteins corresponds to the top-post-and right-most vertical part of the
black curve.

For better understanding, the behavior of the 8 di�erent estimators are illustrated on Fig. 6,
as well as in Tab. 1. Note that on this dataset, �histo� and �st.boot� provide equal estimators.
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Figure 6: Other calibration plots, with di�erent π0 estimators, from left to right, from top to
bottom: �abh�, �slim�, �pounds�, �histo�, �jiang�, �st.boot�, �st.spline� and �langass�.

5.3 Detailed illustrations of the LFQRatio25 dataset

This dataset is similar to the previous one, except for the di�erences in PS1 concentrations:
25fmol of injected UPS1 human proteins for condition 1, and 10fmol for condition 2, leading to
a ratio of 2.5. Fig. 7 and 8 are the counterparts to Fig. 5 and 6 for this dataset.
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FDR control at 5%
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o
d st.spline 0.6706 0.0017 47.75% 17.24% 24/29

langaas 0.7122 0.0787 55.06% 17.24% 24/29
jiang 0.7131 0.0724 55.18% 17.24% 24/29
st.boot 0.7140 0.0662 55.29% 17.24% 24/29
histo 0.7140 0.0662 55.29% 17.24% 24/29
pounds 0.8425 0.0002 75.17% 13.04% 20/23
slim 0.9524 0.0001 97.25% 13.04% 20/23
abh 0.9703 0.0001 99.56% 13.04% 20/23
bh 1 0 - 13.04% 20/23

Table 1: Summary of the various π0 estimator in relation with various FDR thresholds. As
a reference value, the standard Benjamini-Hochberg (bh) procedure, where π0 is assumed to
equate 1, was also considered.

Figure 7: Comparison of all the π0 estimators (left). The corresponding volcano plot where
UPS1 proteins are represented in red (right).
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Figure 8: Other calibration plots, with di�erent π0 estimators, from left to right, from top to
bottom: �abh�, �slim�, �pounds�, �histo�, �jiang�, �st.boot�, �st.spline� and �langass�.

Finally, Tab. 2 summarizes the associated important values. Note that on this dataset too,
�histo� and �st.boot� provide equal estimators. Moreover, in this table, no thresholding on the
fold-change was considered prior to the FDR computation, yet such thresholding is of course
possible to reduce the number of selected proteins.

5.4 iSa dataset

This is the companion dataset to the following article: Bounab Y, Hesse A-M-, Iannascoli B, et al.
Proteomic Analysis of the SH2Domain-containing Leukocyte Protein of 76 kDa (SLP76) Interac-
tome. Molecular & Cellular Proteomics. 2013;12(10):2874-2889. doi:10.1074/mcp.M112.025908.
The various calibration plots can be found on Fig. 9 and 10: Fig. 9 (left) presents the various
π0 estimators. As a matter of fact, this dataset does not present any underestimation of the
uniform distribution for the non-DA. However, as with the UPS1 datasets, the DA concentration
is too low if one uses the �langaas�, �histo�, jiang� or �st.-� estimators. On the other hand �abh�
appears as more conservative than necessary, so that �pounds� or �slim� should be promoted.
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langaas 0.5298 0.0101 54.28% 29.41% 36/51
jiang 0.5498 0.0039 56.59% 27.08% 35/48
st.boot 0.5726 0.0039 59.38% 27.08% 35/48
histo 0.5726 0.0039 59.38% 27.08% 35/48
pounds 0.7447 0 80.83% 23.91% 35/46
slim 0.8964 0 96.25% 20.93% 34/43
abh 0.9660 0 99.80% 17.07% 34/41
bh 1 0 - 17.07% 34/41

Table 2: Summary of the various π0 estimator in relation with various FDR thresholds. As
a reference value, the standard Benjamini-Hochberg (bh) procedure, where π0 is assumed to
equate 1, was also considered.

The latter being more conservative, one selects it, as displayed on Fig. 9 (right). The calibration
plots with all the other estimators are diplayed on Fig. 10.

Figure 9: Comparison of all the π0 estimators (left). The �slim� estimator appears the most
adapted one (right).
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Figure 10: Other calibration plots, with di�erent π0 estimators, from left to right, from top
to bottom: �abh�, �pounds�, �histo�, �jiang�, �st.boot�, and on the last graphics �langass� or
�st.spline�, as these last two estimators provides similar plots.

Finally, whatever the FDR threshold, the number of selected proteins is more or less impor-
tant, depending on the chosen π0 estimator, as illustrated on Tab. 3. Let us note, that in this
table, no thresholding on the fold-change was considered prior to the FDR computation, yet
such thresholding is of course possible to reduce the number of selected proteins.
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d st.spline 0.3625 0.0178 79.55% 304 552 739

langaas 0.3636 0.0163 79.67% 304 552 738
st.boot 0.3731 0.0069 80.77% 300 544 733
jiang 0.3871 0.0047 82.44% 290 538 723
histo 0.4112 0.0128 85.37% 277 521 711
pounds 0.4924 0 92.15% 262 479 645
slim 0.6426 0 98.08% 229 432 579
abh 0.6980 0 99.02% 225 428 564
bh 1 0 - 194 371 476

Table 3: Summary of the various π0 estimator in relation with various FDR thresholds. As
a reference value, the standard Benjamini-Hochberg (bh) procedure, where π0 is assumed to
equate 1, was also considered.
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