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Abstract: In mass-spectrometry based quantitative proteomics, the false discovery rate control
(i.e. the limitation of the number of proteins which are wrongly claimed as di�erentially abun-
dant between several conditions) is a major post-analysis step. It is classically achieved thanks
to a speci�c statistical procedure which computes the adjusted p-values of the putative di�eren-
tially abundant proteins. Unfortunately, such adjustment is conservative only if the p-values are
well-calibrated ; the false discovery control being spuriously underestimated otherwise. However,
well-calibration is a property that can be violated in some practical cases. To overcome this
limitation, we propose a graphical method to straightforwardly and visually assess the p-value
well-calibration, as well as the R codes to embed it in any pipeline.
Keywords: False discovery rate; Relative quanti�cation experiments; Statistical signi�cance.

Figure 1: Typical graphical out-
put of the calibration.plot()

function on a dataset with well-
calibrated p-values.
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In high-throughput proteomics, relative bottom-up quanti�cation refers to the search of
di�erentially abundant proteins between at least two conditions. First, several replicated samples
for each condition are digested with trypsin, then analyzed by liquid chromatography and tandem
mass spectrometry. Second, the output of these analyses is processed by bioinformatics tools, so
as to identify peptides, to aggregate them into proteins, and to provide an abundance value for
each replicate and each protein [1]. Third, a statistical test is performed to �nd proteins which
are di�erentially abundant (DA) in one of these conditions (see supplemental material). The
test outcomes do not directly separate DA proteins from non-DA proteins but provide instead
a list of p-values that are related to a protein each, and that must be interpreted and �ltered:
there are sometimes proteins that are not DA while having low p-values, possibly leading to false
discoveries. This is why FDR (false discovery rate) control is required afterward.

Introduced by Benjamini and Hochberg [2], FDR originally referred to the estimation of the
expectation of the proportion of false discoveries in a list of putative discoveries. Since then,
numerous other improvements to the method were proposed [3, 4, 5], as well as variations on
the statistical quantity to control [6, 7]. However, to date, it is possible to summarize a general
pattern common to the most used FDR control procedures: (i) compute pi (the p-value of the
ith protein in a protein list of length m) ; (ii) reorder the protein list so that p(1) is the smallest
p-value and p(m) the greatest; (iii) transform each p(i) into p

∗
(i) the so-called adjusted p-value (or

q-value [6]) which corresponds to the smallest FDR at which the corresponding protein will be
concluded DA; (iv) cut the list to n ≤ m so that p∗(n) corresponds to the desired FDR level.

The theoretical foundations of FDR require that the raw p-values respect some speci�c as-
sumptions [8]: there is an unknown proportion π0 of non-DA proteins, the p-values of which are
uniformly distributed on the [0,1] interval, while the remaining p-values (corresponding to DA
proteins) are concentrated nearby zero. If this strong mathematical hypothesis is violated (in
such a case, the p-values are said badly-calibrated), the FDR control may be spurious, possibly
leading to false biological conclusions. If the p-values are badly calibrated, in theory, it is pos-
sible to rely on few speci�c FDR control procedures that require less restrictive mathematical
assumptions: The �rst one is the Benjamini-Yekutieli procedure [4]. However, in most of the
cases, it is so conservative that it drastically reduces the number of proteins that can be as-
sumed DA; so that practitioners are reluctant to use it, whatever its statistical robustness. The
second one is to rely on some permutation-based procedure [7, 9]. However, for the number of
permutations to be high enough to ensure reliable results, it is mandatory to have more samples
than in usual proteomics experiment, making them hardly compliant with everyday proteomics
constraints. As a result, it is most important to check, at least visually, that the p-values are
well-calibrated.

This calibration issue has long been known in statistics [10], in genome-wide association stud-
ies [11, 12], or in meta-analyses [13]. Yet, to the best of our knowledge, it has not penetrated
the proteomics community so far. This is a concern as it is frequent to remove entries of the
protein list for sensible reasons (e.g., proteins with low fold-change, or proteins identi�ed with
weak evidence, etc.). Such a �ltering is guided by the practitioner's motivations, and it has no
reason to operate uniformly over the range of p-values. Thus, it may involve a change in their
distribution, leading to bad-calibration cases. This is why, we proposed a set of R functions, em-
bedded in a dedicated package named CP4P (Calibration Plot for Proteomics) [14], which
allows to visually assess the well-calibration of the p-values.

The function calibration.plot() of the CP4P package takes as input a vector of previously
computed p-values. As output, it provides a graph similar to Fig. 1, which displays (black
curve) the cumulative distribution function of 1− pi (i ∈ [1,m]) as a function of 1− pi such as
advocated in [10]. As it clearly appears, the curve starts from point [0,0], and is then roughly
linear indicating that the non-DA proteins have p-values that are roughly uniformly distributed.
On the other hand, the curve becomes very peaky nearby the [0.9, 1] interval, indicating that
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there is an important concentration of small p-values, most likely corresponding to DA proteins.
Moreover, a blue line is displayed. It is expected to have the same trend as the linear part of

the black curve, as illustrated on Fig. 1. The slope of this blue line corresponds to an estimation
of the proportion of non-DA proteins (classically noted π0), which is indicated as non-DA protein

proportion (in blue too). Concretely, its equation reads y = π0x.
The area A between the right hand side peak of the black curve and the blue line is colored in

green. This area is important: it depicts the extent to which the set of DA proteins have di�erent
p-values than other proteins, and consequently, the extent to which they can be discriminated
on the basis of a good FDR threshold. The thinner this area, the better, as it amounts to having
DA proteins with p-values distinctly smaller than the others (so that the false non-discovery
rate [15] is expected to be smaller). To propose a quantitative estimation of the quality of the
p-value distribution in relationship with this green area, we derived the DA protein concentration

measure that reads 1−A/T , where T is the gray triangle area (by construction, T = (1−π0)/2).
This concentration appears in green in the top left corner of the plot; intuitively, the closer to
100%, the better: For instance, on Fig. 1, the concentration is nearly perfect (96.8%), while on
Fig. 3(right), it is too low (52.7%) to expect a clear discrimination of the DA proteins.

Finally, the uniformity underestimation (in red) corresponds to the area where the black
curve is above the blue line apart from the peak at the left hand side (DA protein peak). To
get a conservative adjustment of the p-values (so that it does not under-estimate the FDR),
the black curve has to remain below the blue line (see [8], or [2] for justi�cations). In the ideal
case, the left hand side of the black curve always remains below the blue one and the uniformity
underestimation is null. However, in practice, as long as the uniformity underestimation remains
small (below a guesstimate of 0.5), p-values can be adjusted.

As explained, the blue line is of prime importance for the visual assessment of the p-value
distribution. However, its slope, re�ecting π0 needs to be estimated since it is unknown. To
do so, the Pounds estimator proposed in [16] is used by default: in addition to rely on solid
theoretical foundations, it appears to provide good estimations on most of our experiments.
However, as any estimator, it is possible to exhibit situations where it is inaccurate. For this
reason, one may want to use other state-of-the-art estimation methods instead. Concretely,
this is implemented in calibration.plot() with a second optional argument, which can take
several values:

• A value x between 0 and 1, corresponding to the freely tuned proportion of non-DA
proteins, for cases where the pratitionner knows the precise content of the sample.

• The name of an estimation method among: �pounds� [16] (default), �st.boot� [11], �st.spline� [17],
�langaas� [18], �jiang� [19], �histo� [20], �abh� [3], �slim� [21].

• �ALL�: A di�erent line for the eight aforementioned methods is displayed so that the
practitioner chooses on his/her own, the most adapted one. This is illustrated on Fig. 2
from a controlled dataset1 containing only 38 DA proteins among 1481 proteins (π0 =
97.4%), so that the Pounds estimator is rather inaccurate (≈ 85%). This points out the
interest of choosing alternative methods (such as the �abh� in this case).

Conveniently, calibration.plot() comes along with adjust.p(), a function which binds
the classical p-value adjustment method [22] with an extra argument that allows choosing the
estimation method for π0. It is possible to give its numerical value (by default, the parameter
is tuned to π0 = 1 to enforce maximal conservativeness, see [2]), or the name of any of the
eight aforementioned methods. Finally, if the practitioner is not satis�ed by any π0 estimation
method, while expecting a precise FDR level, it remains possible to use the �bky� method [5]

1The Sigma UPS1 equimolar mixture, spiked in a yeast background. This dataset can be found on the
ProteomeXchange repository with the identi�er PXD002370.
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Figure 2: Illustration of the
�ALL� optional argument on a
real dataset where the default π0
estimator is inaccurate.

which dynamically tunes π0. Despite the drawback of linking π0 to an arbitrary FDR level,
this last option remains interesting as this procedure is theoretically proven to be conservative.
Note that in this package, we have promoted FDR control procedures of the BH family. How-
ever, other methods exists, that control a slightly di�erent quantity, as described in [6]. Once
the well-calibration is assessed, any practitioner is free to use another method, regardless our
implementations.

For better understanding, Fig. 3 displays two counter-examples: In the �rst example (Fig. 3-
left), the p-values of a simulated dataset2 are not correctly distributed (i.e. badly calibrated):
π0 makes sense and the DA protein concentration is close to 1. However, the uniformity un-

derestimation is clearly too high: there are too many high p-values (close to 1) so that the
assumption of uniformity is not respected and the FDR control underestimates the true pro-
portion of false discoveries. On Fig. 3-right, the same dataset as in Fig. 2 has been considered
and the �st.boot� method has been applied. As a result, π0 is badly estimated: even if almost
no red area shows up, there is a too big green area according to the expectations. Indeed, π0
should be set to a value really close to 100% (the real value being 97.4% in this example). This
example is detailled in the CP4P tutorial (supplemental data), along with a calibration study
of the proteomics experiments described in [23].

To conclude, FDR control procedures rely on strong assumptions that must be checked before
proper application. Thanks to CP4P, proteomicians can visually assess the well-calibration of the
p-values and estimate the proportion of non-DA proteins in relative quanti�cation experiments.
CP4P allows processing any quantitative datasets, regardless the experimental design (nature
and hierarchy of replicates, number of conditions, etc.), it is easy-to-use and it can be embedded
in any bioinformatics pipeline via the CRAN [14].
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α1 = 1, β1 = 20, α2 = 5 and β2 = 1.
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Figure 3: (Left) A simulated example of badly-calibrated p-values; (Right) A real dataset where
π0 is inaccurately estimated.
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