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Abstract 

Wetlands are a key habitat within the Mediterranean biodiversity hotspot and provide important ecosystem services for human well-being. 

Remote sensing (RS) has significantly boosted our ability to monitor changes in Mediterranean wetlands, especially in areas where little 

information is being collected. However, its application to wetlands has sometimes been flawed with uncertainties and unrecognized errors, to a 

large extent due to the inherent and specific ecological characteristics of Mediterranean wetlands. We present here an overview of  the state of 

the art on RS techniques for mapping and monitoring Mediterranean wetlands, and the remaining challenges: delineating and separating wetland 

habitat types; mapping water dynamics inside wetlands; and detecting actual wetland trends over time in a context of high, natural variability. The 

most important lessons learned are that ecologists’ knowledge need to be integrated  with  RS  expertise  to  achieve  a  valuable  monitoring  

approach  of  these ecosystems. 

1.  INTRODUCTION: THE CHALLENGES OF MONITORING WETLANDS STATUS AND 

TRENDS WITH REMOTE SENSING (RS) DATA 
Mediterranean wetlands are part of a global biodiversity hotspot, hosting many endemic species (e.g. Darwall et al., 

2014). Their global importance stretches further as they produce a global share of the ecosystem services that is 

greater than their relative habitat extent (Zedler and Kercher, 2005). With current decreasing trends in natural 

habitat extent and regionally increasing human population numbers (MWO, 2012a), the importance of the 

remaining, increasingly threatened Mediterranean wetlands will only further increase. The importance of 

Mediterranean wetlands is acknowledged in multiple Multilateral Environmental Agreements (MEAs), especially  the  

Ramsar  Convention  (e.g.  Gardner  et  al.,  2015;  Ramsar Convention Secretariat, 2015), one of the most influential 

agreements for the conservation of wetlands globally. The monitoring of changes in Mediterranean wetland state 

and extent therefore provides crucial information for decisions makers and feeds into a diversity of policy reporting 

activities at different spatial scales (e.g. Beltrame et al., 2015; MWO, 2012a, b, 2014; Perennou et al., 2016; Plan 

Bleu, 2009). 

The use of satellite imagery for wetland inventories and monitoring offers a great potential because of repeated, 

homogeneous coverage of large areas (e.g. Dadaser-Celik et al., 2008; Ozesmi€ and Bauer, 2002; Rebelo et al., 2009; 

Rosenqvist et al., 2007). The production and interpretation of wetland habitat maps have gone through a steep 

learning curve, leading to a wide diversity of available products (Guo et al., 2017). The emergence of new satellites 

offers possibilities to further improve our understanding of changes in wetlands. The Sentinels of the European 
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Copernicus Program form a recent initiative, which provides free optical and radar observations at a high spatial 

resolution (10-20 m)  and short revisiting time. All technical improvements will potentially allow us to better 

distinguish different wetland habitats. 

However, this is also a moment where progress already made can be easily lost as new RS tools and new mapping 

nomenclatures have to be developed for the new satellite data. International cooperation and collaborative 

development of RS methods, guidelines and best practices are required to avoid duplication of efforts, foster 

progress and innovation, and provide long-term access to the developed products, methods and tools. The new 

GEO-Wetlands   initiative  of  the  Group  on  Earth  Observations  (GEO) addresses this requirement and several of 

the projects contributing to this chapter form a part of this initiative. 

This chapter presents the improvements in the monitoring of Mediterranean wetlands using RS, starting from the 

end of the 80s, when the first maps based on CORINE land cover (CLC) (Bossard et al., 2000) were produced, up to 

the most recent monitoring efforts of 2016. It should be emphasized that many of the issues that will be covered are 

not Mediterranean specific, but rather are specific to (semi)-arid regions. Ephemeral wetlands, rice  paddies, artificial  

wetlands, irregular  precipitations, all  occur across the globe, and our Mediterranean review should thus be seen as 

a regional case study with lessons that are applicable globally. We use this overview to raise awareness of the 

challenges of using RS to monitor wetland habitats, some of which have still to be embraced. The most crucial 

recommendation for advancing our capacity to use RS for the monitoring of Mediterranean wetlands is that iterative 

exchanges between wetland ecologists, hydrologists and RS experts are necessary for obtaining credible results (e.g. 

Skidmore et al., 2015). 

To be able to reflect on our capacity to monitor Mediterranean wetlands, we first present three of their 

characteristics that are drivers of their rich biodiversity, but that also generate challenges for monitoring change. Of 

course there are common general challenges related to the mapping of wetland habitats using RS data, but here we 

focus on those that particularly affect wetlands in arid and semiarid areas such as the Mediterranean. The true 

specificities of this region, e.g., how wetlands are classified for management   purposes under  local,  regional  and  

international  legislation  on wetlands, or how nomenclatures have led to over- or underestimation of regional 

habitats, do not lessen the applicability of most lessons to other bioclimatic regions too. Finally, we emphasize that 

many of the challenges reviewed below have either been addressed recently, or will be discussed further in Sections 

2-4, with suggestions on how to address them. 

1.1 Characteristic 1: Wetland Habitats and Surface Water Dynamics 

The Ramsar Convention takes a broad approach in determining the wetlands  which  come  under  its  mandate.  In  

the  text  of  the  convention (Article 1.1), wetlands are defined as: “areas of marsh, fen, peatland or water, whether 

natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including 

areas of marine water the depth of which at low tide does not exceed six meters” (Ramsar Convention Secretariat, 

2013). 

These different wetland types have a variable level of detectability using RS data and, therefore, their identification, 

delineation and monitoring are challenging from a pure RS point of view. In particular, there is a frequent confusion 

between flooded areas (or surface waters) and wetlands in RS studies, despite their major ecological difference: 

some wetlands are only rarely and partly flooded, whereas many non-wetland habitats (e.g. agricultural or forest) 

can occasionally be flooded. For example, the GIEMS dataset (Global Inundation Extent from Multi-Satellites) and 

other measurements of surface water are frequently assimilated to wetland extents (Aires et al., 2013;  Fluet-

Chouinard  et  al.,  2015;  Papa  et  al.,  2006;  Prigent  et  al., 2001, 2012). These two essential metrics are in fact 

quite distinct, as national statistics for Mediterranean countries show (Fig.1), and confusing them may lead to 

underestimations or overestimations of the total amount of wetland habitats. 
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One of the main reasons why RS tools often underestimate the extent of wetland habitats is that the spatiotemporal 

dynamics of flooded areas are difficult to tackle, even with good time series. For instance, some ephemeral wetlands 

are rarely flooded and are often missed by RS datasets recording “surface  waters.”  Conversely,  identifying  and  

delineating  flooded  areas under a dense vegetation canopy are crucial for the monitoring of several Red List 

habitats, but still difficult to assess using optical RS data, where the presence of water is not easily detected under 

dense emergent vegetation (see Section 3.2 for some possibilities offered by new Synthetic Aperture Radar (SAR) 

data). 

  

Figure 1: Comparison between national estimates of total wetland surface for Mediterranean countries (Mediterranean Wetland 
Observatory, green; after Perennou et al., 2012; Global Lakes and Wetlands Database, brown; after Lehner and Döll, 2004) and surface 
waters (Global Surface Water, blue; after Pekel et al., 2016). 

As a result, what is often mapped as “flooded areas” are in fact only the “open water areas,” leading to an 

underestimation of the real flooded areas. Fig. 2 illustrates a lake in Algeria mapped using the Global Surface Water 

dataset, a Landsat-based approach using optical data (Pekel et al., 2016) where parts that are temporally flooded are 

indicated as dry for more than 30 years (from 1984 to 2015). This is contrary to local ecological  knowledge  of  this  

well-known  Ramsar  site  (Saifouni  and Bellatreche, 2014). The reason is simple: dense aquatic vegetation hinders 

the detection of truly inundated areas. 

1.2 Characteristic 2: Artificial vs Natural Wetland Habitats and Their Relevance for Biodiversity 

Wetland  habitats,  hydrology  and  water  quality  have  been  thoroughly manipulated  by  humans  for  centuries  

so  wetlands  that  are  strictly “natural” in their functioning are rare. It is therefore challenging to draw the line  
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Figure 2: (Left) Landsat-8 image 2015-05-12 for Tonga Lake (R/G/B: SWIR/NIR/R), in Algeria. (Right) Water occurrence map. The water 
occurrence map would suggest that part of the wetland was never flooded between 1984 and 2015 (areas in white within red circles) 
despite that local experts identified these areas as temporarily inundated during this period and covered by dense aquatic 
vegetation(SaifouniandBellatreche, 2014). Left: Landsat 8 image: Courtesy of the U.S. Geological Survey. Right: The Global Surface Water 
dataset, produced from Landsat remote sensing data (after Pekel et al. 2016). 

between “natural wetlands” and “artificial wetlands,” given that many intermediate situations exist, e.g., very old 

modified wetlands that have reverted to a “near-natural” state in terms of habitats, while still having a strongly man-

modified hydrology and water quality. Despite this difficulty,  ecologists  routinely  use  the  distinction  “natural”  

and  “artificial” (e.g. Sebastian-Gonzalez  and Green, 2016). 

One of the main reasons for the monitoring of Mediterranean wetlands is to obtain estimates of changes in habitat 

extent and related impacts on biodiversity. Of all the species that Mediterranean wetlands host, an important part is 

endemic and many Red List species depend on natural wetland habitats (MWO, 2012b; Riservato et al., 2009). 

Artificial wetlands host a significantly lower biodiversity (e.g. Sebastian-Gonzalez and Green, 2016), and it is 

therefore important to be able to separate them reliably from natural wetlands (e.g. distinguishing a natural lake 

from a reservoir; a natural lagoon from a salina). But, in practice, telling the difference based on RS data alone is not 

always possible. Use of object-based classifications or of a predefined matrix to discriminate natural from man-made 

wetlands have been proposed (Camilleri et al., 2017). However, natural and artificial wetlands are often similar in 

shapes and updating an artificial wetland matrix can pose a problem for routine monitoring over large geographical 

scale comprising several hundreds of sample sites. Finally, and related to artificialization, water quality too has a 

profound impact on biodiversity, and RS monitoring methods are making progress (e.g. Brezonik et al., 2005; Ritchie 

et al., 2003; Sandstrom et al., 2016; Tyler et al., 2006; Vihervaara et al., 2017). 

1.3 Characteristic 3: Strong Inter-and Intra annual Variability  

The rate with which changes take place and the variability of water availability in wetlands in arid or semiarid regions 

such as the Mediterranean is a challenge for the detection of long-term trends. Although some changes take place 

rapidly and are relatively easy to detect (e.g. construction of a dam), others are slower and show greater variation 

over time (e.g. reduced water availability due to climate change, or agricultural land abandonment transforming it 

back gradually into a “natural” wetland), making it difficult to distinguish when a site has definitely changed or is 

“only” temporarily affected. 
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Mediterranean climate conditions vary irregularly within and between years. In the driest areas of North Africa, large 

wetlands (e.g. chotts and sebkhas) can remain virtually devoid of water for years, and refill irregularly depending  on  

erratic  rains.  Assessing  the  boundaries  of  such  wetlands through RS poses challenges, since long time series of 

images may be required to capture the full, potential extent of a given wetland, independently from its highly 

variable level of filling. Images that by chance focus on a dry period may be prone to misinterpretation as “severe 

reduction in the wetland size”. Long-term, slow changes like the impact of declining precipitation are difficult to 

detect under such highly variable conditions and a reduction in wetland extent even more so. Clouds, which bring 

precipitation and refill wetlands, are an additional, frequent obstacle to obtaining good time series of satellite 

images, and may hinder the detection of flood extent in crucial periods. 

Based on these characteristics, many of which are common to other arid and semiarid regions beyond the 

Mediterranean basin, we can identify three challenges for the use of RS to monitor trends in Mediterranean 

wetlands: (1) the delineation and separation of habitat types; (2) the mapping of the water dynamics inside 

wetlands; and (3) the detection of trends over time with respect to a naturally occurring variability. 

In the next sections, we demonstrate how these challenges have previously led to errors in the interpretation of RS 

data for Mediterranean wetlands monitoring, how some challenges have been recently overcome and which other 

ones remain to be addressed. Table1 presents a schematic guide to how these issues will be covered. 

2.  DELINEATION AND SEPARATION OF HABITAT TYPES 
Temporal detection of changes in habitat type and extent of Mediterranean wetlands first requires that the 

delineation and separation of habitat types  is  consistent  over  time.  Second,  to  determine  the  nature  of the 

changes, the methods and nomenclature need to be constructed coherently. Key elements for delineating and 

mapping wetlands using RS are quality images; rules for detection of significant changes in wetland habitats; a 

wetland nomenclature; procedures for interpreting habitat classes; and robust validation  procedures. Despite  

precautions, land  cover  misclassifications always occur (Kleindl et al., 2015), and a known margin of error is usually 

accepted by specialists. However, known and unknown type errors can easily outweigh the credibility of habitat 

maps if the mentioned key elements are not carefully developed and implemented. Known and unknown errors can 

be caused by intrinsic technical limitations, human errors, or an interaction of both. Misclassifications can be 

significantly reduced when local knowledge and ecological expertise of Mediterranean wetlands are combined with 

technical RS expertise. 
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Tableau 1: Schematic of the Challenges Posed by Wetland Remote Sensing and of Some of the Solutions Currently Applied 

Inherent Characteristics of 
Wetlands in Arid Regions 
Such as the 
Mediterranean That 
render the Interpretation 
of RS information Difficult 

Progress Made to Date Remaining Challenges 

Remaining challenges in bold are applicable to more than one of the characteristics in left column, but are only mentioned once. 

2.1 Wetland Habitat Nomenclature 

To produce maps for habitat monitoring derived from optical RS data, a nomenclature is required to identify and 

delineate separate habitats. Ideally the nomenclature consists of classes that are both ecologically relevant and 

distinguishable with optical RS data. In the absence of a satisfying standardized nomenclature for Mediterranean 

wetlands, most initiatives developed their own, which has led to a multitude of nomenclatures with varying degrees   

of   applicability   at   different   scales   and   geographic   regions (Tomaselli et al., 2013). For instance, the 

GlobWetland-II (GW-II) ESA project (GlobWetland-II, 2012) developed a hybrid hierarchical typology between the 

European Union’s CLC (European Commission/JRC and EEA,   1997)   and   the   Ramsar   Convention’s   nomenclature   

(Ramsar ConventionSecretariat,2010).Whereas CLC encompasses all classes of land cover to be found in Europe with 

only 11 classes being predominantly wetlands, the Ramsar typology(Ramsar Convention Secretariat,2010)provides 

ecologically  relevant  and  detailed  descriptions  of  wetlands  comprising 42 classes, but does not cover other 

habitats, which are out of the scope of the Ramsar Convention. Another example of hybrid classification developed 

for specific purposes is from the Horizon-2020 SWOS (Satellite-based Wetlands Observation Service) project that 

combines the hierarchical Mapping and Assessment of Ecosystem Services (MAES) nomenclature with wetland 

classes to monitor their potential for ecosystem services. 

When nomenclatures do not contain many wetland-relevant classes, such as the much used CLC in European 

countries, a significant part of wetland habitats can go undetected as they are merged with larger (e.g. agricultural) 

classes. This was for instance the case in France where wet meadows, nationally one of the most important wetland 

types in terms of area, ended up being lumped with dry meadows in CLC, and therefore not identified as “wetlands” 

in the final maps (Perennou et al., 2012). 

From an ecological point of view, a more detailed nomenclature is appealing because its application may provide 

better estimates of biodiversity and ecosystem services. However, use of ancillary data is then necessary to produce 

reliable maps from RS data. Ancillary data may include preexisting local land cover maps, in situ data, literature, VHR 

images and contextual data (e.g. topography, hydrology, precipitations). Collecting this information may be realistic 

when working at the scale of a site level or for a limited number of habitats, but less feasible at large scales. For 

instance, of the 103 different classes developed in GW-II, the 55 classes for wetlands comprised many classes that 
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eventually proved difficult or even impossible to segregate using RS data alone. In theory, the hierarchical structure 

should have allowed mapping at higher level only, when the information available did not allow separating finer 

(lower-rank) classes. However, in practice, the lack of ancillary data often translated into detailed maps of high 

uncertainty although confusion matrices (see below) were developed. Unfortunately, this uncertainty is rarely 

estimated when mapping biodiversity and ecosystem services (e.g. Rocchini et al., 2011), resulting in visual 

representations that may be powerful, but include lots of unacknowledged errors (Hauck et al., 2013). This should 

eventually be overcome by not placing on the mapping operators any pressure for always having final results using 

the most precise habitat type level, rather accepting maps with less precise classes that are more accurately 

mapped. This could be done by aggregating habitat types into broader classes(higher levels in hierarchical 

nomenclatures),when dealing with regional assessments involving many sites and limited ancillary data. Aggregating 

land cover categories into less numerous classes has been shown to increase thematic map accuracy (Kleindl et al., 

2015), thereby reducing the classification errors and increasing time efficiency for multiple sites assessments(e.g. 

MWO,2014).However, it also reduces the capacity to monitor specific habitat transformations at wide scales, which 

is the main interest of using RS data. In addition, coarse land cover categories are likely to provide insufficient 

information if the maps are to be used to inform management decisions. Clearly, an overarching, hierarchical 

nomenclature is needed to make both local and broad-scale assessments, but deciding on the most relevant level of 

detail to use needs to be carefully set depending on the scale of the work (local vs regional) and the purpose for 

which the map will be used, and taking into account the necessary trade-off between more classes and more 

confusion risks. 

Another approach that is particularly useful to document habitat transformation consists of using the Earth 

Observation Data for Habitat Monitoring (EODHaM) system developed by Lucas et al. (2015). Using the hierarchical 

land cover classification system(LCCS)from the Food and Agriculture Organization (FAO), this approach uses a 

combination of pixel and object-based procedures. The first four levels of the FAO LCCS can be obtained based on 

simple rules that can be quantified by RS: vegetated vs non vegetated areas, herbs vs trees, terrestrial vs aquatic, 

cultivated vs natural, etc. Combined with expert local knowledge (e.g. available land cover land use maps), these 

methods are also applicable to other nomenclatures (e.g. EUNIS, Annex I) for generating habitat maps. An additional 

module quantifies changes in the LCCS classes and their components, being particularly useful to monitor ecosystem 

evolution and support decisions relating to the use and conservation of protected areas, including wetlands. 

2.2 Quality Images 

Distinguishing different wetland types or wetlands from other habitat types based on satellite images often requires 

several scenes from contrasting seasons. This is the case for instance for separating ricefields (which are artificial 

wetlands) from dry crops or from reedbeds (natural wetlands), since the 

seasonalfloodingregimeorplantphenologyarekeycriteriatodistinguishthese habitats. The initial Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM) data had intrinsic limitations in temporal resolution, which 

limited the detection and interpretation of wetlands. In some areas, a too low image frequency for previous time 

periods (e.g. during the 80s and before)increased  the probability that over a given year, no cloud-free images would 

be available which is a challenge especially in the rainy season. This leads to incorrect habitat mapping caused by 

omission errors (when a habitat is left out of the category being evaluated) or commission errors (when a habitat is 

incorrectly included in the category being evaluated). 

Several solutions have been tested to overcome these misclassifications, each with their own limitations. For 

instance, periods over which RS images are used were extended, sometimes up to 2 years around official dates, to 

acquire enough  satellite  scenes  at  different  seasons  (GlobWetland-II, 2011).This however reduces the variability 

that can be detected over shorter time scales. Another approach, which has become available recently, is the 

inclusion of higher frequency images, e.g., SAR data from Sentinel-1 and optical data from Sentinel-2, which will 

certainly be useful for reducing the error rates due to image availability. 
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To reduce the unknowns when not enough ancillary data are available, mapping can focus on broad habitat classes 

encompassing gall those that cannot be separated (e.g. “water bodies” instead of “natural lakes” vs “man-made 

reservoirs”) (Mediterranean Wetlands Observatory internal protocol). This approach, however, will not permit the 

detection of all habitat transformations that take place. 

To improve the accuracy of habitat delineation, especially for retrospective analysis, the number of images can be 

increased. New technologies, such as Sentinel can provide a higher number of images in a shorter time span, but to 

have a similar number of images for a date in the past requires searching for images at such a very large range 

around the intended date (e.g. sometimes ±  2 years in the case of GlobWetland-II, 2012) that interand  intraannual  

variation  can  no  longer  be  distinguished.  While  this approach is reasonable for detecting and delineating natura 

habitat types that are unlikely to change much over a few years, it leads to systematic over estimations of specific 

habitat classes in agricultural landscapes with a highcrop rotation frequency, such as rice. Flooded fields that are 

used for rice production are counted as wetlands and by aggregating images of multiple years,the total surface 

covered with (flooded) rice fields in any year is summed up, rather than averaged. This can lead to an overestimation 

of rice fields up to three times their actual surface, e.g., in CLC (Perennou et al., 2012). However, the availability of 

new optical and SAR RS data with very high temporal resolutions (Landsat-8, Sentinel-1 and Sentinel-2) allows to 

better capture interannual dynamics of habitats such as ricefields (Fig. 3). 

 

Figure 3: Comparison  between  two  different  methods  delineating  rice  fields  in  the Camargue in 2016 an object-based classification of 8 
Landsat-8 (L8) images covering the whole hydroperiod and using the GEO classifier software developed by the SWOS project (total rice 
fields area ¼ 11,201ha); and a “field reality” consisting of a land cover map provided by the Regional Natural Park management body, based 
on aerial photographs interpretation (total rice fields area ¼ 10,694ha). Rice field areas are almost the same, with a little overestimation for 
the L8-derived map (90% of existing rice fields are detected using L8 images). 
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2.3 Procedures for Interpreting Habitat Classes  

Technical experts that create RS maps are not necessarily familiar with all the (wetland) habitat types and wetland 

ecology. Therefore, field data are crucial for training and validating maps, as are explicit guidelines for identifying 

and reducing  supervised  classification  omission  and  commission  errors,  and obtaining comparable results from 

different operators. These guidelines should include explicit decision rules on how particular habitat types should be  

separated,  their  flooding  calendar,  vegetation  phenology  and  how/ when/what ancillary data would best assist 

the mapping, considering which habitat types are commonly confounded in the Mediterranean. They should also 

assist with what to do in borderline cases, i.e., situations where the habitat delineation and identification can lead to 

two different habitat type interpretations, both being valid from different wetland perspectives. For instance, 

decreasing water levels in a man-made reservoir will expose banks that, when covered by aquatic vegetation, appear 

very similar to natural marshes and could be mapped as such. In a dry year, the falling water levels in a reservoir may 

consequently be misinterpreted as a decrease in man-made reservoir habitat coupled with an increase in (natural) 

marshes (e.g. MWO, 2014). Such decision rules are clearly a much needed avenue for future research, and 

developments are ongoing but remain so far unpublished. 

In summary, when human decisions are required to produce accurate maps, clear, detailed and explicit guidelines 

and training data will enhance map quality by reducing both the variability between individual mappers, as well as 

reducing classification errors. This in turn greatly increases the replicability of results. 

2.4 Validation Procedures 

Despite having diligently applied nomenclatures using the best available RS and  ancillary  data  with  interpretation  

protocols,  errors  can  still  occur (Kleindl et al., 2015; see also Box 1). To keep them within acceptable limits, the 

produced maps should always be checked and validated. This process of validation can rely on comparing the 

produced maps with “reality” by using spatially and temporally specific reference material, combined with a critical, 

independent assessment based on wetland ecology expertise. 

For land cover maps, the ideal situation is an in situ (field) information verification at a date sufficiently close to the 

satellite image(s) used, but RS-derived maps can also be compared with other independent and more accurate 

maps, such as often produced by local management bodies, usually based on a higher spatial resolution data and 

integrating more complex thematic details, or with some regional wetland inventories (e.g. Congalton, 1991; Fluet-

Chouinard et al., 2015; Sanchez et al., 2015). Known borderline cases and clusters of often confused habitat types 

can be reviewed by wetland experts to further decrease uncertainties in habitat identifications. In addition, wetland 

experts can easily detect some habitat identification errors bycomparing produced maps or their trends over time. 

For instance, after a dam is built on a river and the reservoir fills up, the habitat behind the dam should be identified 

as a “human-made reservoir/lake” and should not be identified as an (expanding) “river habitat,” i.e., a natural 

wetland type (Fig. 4). 
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Figure 4: A typical error affecting the largest man-made wetland in Syria: Al-Assad reservoir on the Euphrates, mapped as a “Permanent 
river.” Background: Landsat TM 200606-24 (R/G/B: SWIR/NIR/R). Data from GlobWetland-II, 2014. GlobWetland-II, a regional pilot project 
of the Ramsar Convention on Wetlands: handbook. GW-II project documentation.  Jena Optronik, Jena, Germany. 110 p.  
http://www.globwetland.org/.  
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BOX 1 A Quality Control Exercise of Mediterranean Wetland Mapping Using RS Data—The 

GlobWetland-II Case Study 

 

The GlobWetland-II (GW-II) project (ESA DUE project, 2010–14) aimed at producing a homogeneous assessment of 284 

wetlands spread all over the Mediterranean region (Fig. 5) and their change over time (1975–1990–2005), using Landsat 

imagery. The approach followed in the project accumulated uncertainties due to many of the challenges presented in this 

chapter. In this box, we present an analysis of the Mediterranean Wetlands Observatory (internal document) in which we 

quantified the errors of the habitats mapped in the GlobWetland-II project. The quality control consisted of the scrutiny of 

the database on three possible inconsistencies: (1) unrealistically large changes in habitat surface; (2) uncommon transitions 

in habitat types; and (3) mismatch of the habitat type identification with habitat type observations from the field, the 

literature and the Ramsar database. These three inconsistencies are partly based on insufficient ecological understanding of 

the Mediterranean wetlands and partly based on a too general understanding of the mapping of habitat changes. The 

quality control weapplied therefore typically represents an integration of technical and ecological knowledge that can 

greatly reduce uncertainties in RS monitoring of (Mediterranean) wetlands. 

The quality control assessment showed that, in the initial analysis, errors with an absolute value of over 1000ha of “Natural 

wetland areas” occurred on c.24% of all sites in at least one of the years; misclassifications of more than 

 

Figure 5: Distribution of the GlobWetland-II project sites. 
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A confusion (or error) matrix is an important requirement(e.g. Camilleri et al., 2017). It should be developed using 

ancillary data to quantify for each habitat class, or aggregation  of classes, the risk of confusion withother classes and 

the overall error rate (both omission and commission). This will in turn allow any user to understand the limit of the 

end products and their margins of error, whether for decision making or for use in ecological modelling. Accepted 

error margins in wetland assessments at a single site are typically in the order of 10%-20% (E.G. Dadaser-Celik et al., 

2008; Guo et al., 2017, Rapinelt et al., 2015). 

 

BOX 1 A Quality Control Exercise of Mediterranean Wetland Mapping Using RS Data—

The GlobWetland-II Case Study— cont’d 

 

10,000 ha of natural wetlands were found on 5% of the sites, and two sites had more than 100,000ha of natural 

wetland areas incorrectly classified. To put these numbers in perspective, a total of 1.97 million ha of natural 

wetland habitat was mapped in the Mediterranean region across the 284 sites in 2005. The misclassifications 

generated both under- as well as overestimations (Fig. 6) and were not systematic. This means that their effect 

compensated each other to a variable extent in different years for the pan-Mediterranean assessment. 

Overall, these errors lead to a distortion and an overall underestimation of the actual loss of natural wetlands, 

which proved to be 30% higher than initially estimated (i.e. a natural wetland habitat loss of 13% instead of 10% in 

30 years). The errors also caused an underestimation of the overall gain in human made wetlands which turned out 

to be +159% instead of the originally reported +54%. A re-analysis of the whole dataset had to be undertaken, using 

new internal decision rules of the Mediterranean Wetlands Observatory based upon the lessons learnt from the 

first, flawed analysis (e.g. Beltrame et al., 2015; MWO, 2014). 

The steps followed can be viewed as a quality control for end products, i.e., both for maps and for key indicator 

values, such as the natural and artificial wetland surface at each date. This example of a posteriori quality control 

clearly demonstrates the need for wetland expertise and data to validate the remotely sensed produced maps. 

 

 

Figure 6: Cumulated errors (in hectares) for the surface areas of natural wetland habitats for the 284 sites per studied 
period. 
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In the GW-II project,the initially reported error rate across multiple sites was 12.4% for all habitat classes and 10.6% 

for wetland habitat classes (GlobWetland-II, 2014), although it later proved to be significantly higher. In two ongoing 

projects, SWOS (http://swosservice.eu/)  and  GlobWetland-Africa  (http://globwetland-africa.org/), error margins of 

15% are considered  acceptable. 

Similarly, when monitoring at wide geographical scales using standard RS-based approaches, results on status and 

trends (such as total areas of the different habitats at different dates) can also be checked for any unlikely and 

implausible changes. Wetland experts play a crucial role in detecting unlikely habitat changes which require a closer 

look. For instance, the transition of a freshwater lake into a coastal brackish lagoon, or transitions of thousands of 

hectares from lagoons into marshes are very unlikely over a 6-15 years period (see e.g. Ernoulet al., 2012). To 

increase the reliability of the errors rates produced by the validation protocol, when designing a ground-truthing 

validation protocol, wetland experts need to pay special care to identify what can or cannot actually be validated. 

Validation procedures for outputs (maps and trend indicators) are therefore most effective when they include both 

RS and wetland ecology expertise. 

2.5 Concluding Remarks 

The delineation and identification of Mediterranean wetland habitats can be tricky. RS specialists may not be able to 

grasp all the implications of how wetlands function and change over time. Ecologists and managers may also not 

understand the complexities and caveats (miss-classification errors) of creating remotely sensed maps of ephemeral 

wetland habitats. Technical development should therefore be coupled with ecological knowledge notably in deciding 

upon the required detail of nomenclatures, availability of ancillary data, accessibility to reliable information for the 

selection of training data (field information, ancillary data or local knowledge) and image  frequencies, as well as 

development of explicit interpretation guidelines and validation procedures. An integrated approach can significantly 

improve the quality and accuracy of produced maps and indicators. 

3.  MAPPING THE WATER DYNAMICS OF WETLANDS 
Beyond identifying wetland habitats, mapping flooded areas is essential, since wetland biodiversity reacts to flooding 

regimes, both in terms of quantity  (flooded  surfaces)  and  timing  (hydrological  cycles).  The flood regime 

influences the distribution of aquatic plant species and communities aswellaswetlandprimaryproductivity(Dı´az-

Delgadoetal., 2016; Tamisier and Grillas, 1994). The key elements for delineating and mapping flood extent  and  

water  dynamics  using  RS  include  ability  to  distinguish 

“inundated/flooded”vs“open/surfacewater”areas;goodseasonalcoverage of the whole hydroperiod; and a validation 

procedure involving groundtruth data and/or expertise on wetland ecology/hydrology. 

3.1 Mapping Inundated or Open Water Areas  

In this discussion,we define flooded (or inundated) areas as being covered by water irrespective of vegetation 

presence, and open (or surface) waters as flooded areas free of vegetation. This distinction is ecologically relevant, 

as key biodiversity features differ between these two zones. For instance, large flocks of wintering waterbirds will 

usually favour open waters, but not   flooded   areas   with   dense   emergent   vegetation   (Tamisier   and Dehorter, 

1999). Yet, flooding regimes are important for the maintenance of emergent vegetation, which is typically used by 

waterfowl for nesting activities. As already discussed, imprecise terms may lead to ambiguous maps and/or 

interpretations (e.g. Aires et al., 2014). A more precise use of terminology would significantly increase the 

consistency and coherence between maps of flooding regimes. 

Mapping  flooded  areas, especially under vegetation is a particular challenge. Although some long SAR wavelengths 

can penetrate vegetation (Hess et al., 2003), dense, emergent aquatic vegetation hinders the detection of water 

when using multispectral optical or radar sensors (Cazals et al., 2016; Horritt and Mason, 2001), in a variable way 

depending on the dominant  species  (Davranche  et  al.,  2013).  SAR  sensors  generally  perform slightly better 



14 

 

although they do not penetrate the vegetation completely. As a consequence, “open water” areas which are easier 

to detect are often considered to represent “inundated/flooded areas” (e.g. Aires et al., 2014) causing  the  true  

extent  of  flooded  areas  to  be  underestimated  (Fluet-Chouinard et al., 2015; Smith, 1997). 

Currently, a combination of optical and SAR images offers the most reliable results (Toyr€   €a et al., 2002), and the 

Sentinel-1 and -2 developments are likely to make this approach feasible at larger and finer scales. Additionally, 

some tools using the mid-infrared band of SPOT-5 images have shown promising results for the mapping of surface 

water dynamics independently of vegetation type and density in shallow marshes (Davranche et al., 2013). A newly 

developed index, the Automated Water Extraction Index (AWEI; Feyisa et al., 2014) significantly increases the 

detection of surface water, by reducing the risk ofconfusion with other darksurfaces. Such accuracyproblems 

remained frequent until recently (Feyisa et al., 2014; Sanchez et al., 2015). The capacity of mapping water dynamics 

even under dense vegetation using Landsat-8 data was also improved by combining water indices like the Modified 

Normalized Difference Water Index (MNDWI: Xu, 2006) with vegetation indices like the Temperature Vegetation 

Dryness Index (TVDI: Gastal, 2016; Sandholt et al., 2002). However, in all cases, the use of ancillary data is strongly 

recommended to estimate mapping accuracy of flooded areas. 

3.2 Images Covering the Whole Hydroperiod 

Mapping the water dynamics of wetlands requires that the flood extent is mapped at different dates throughout the 

annual hydrological cycle (e.g. Camilleri et al., 2017). This information is often overlaid to produce a single map  

providing  flooding  duration  of  different  wetlands  according  to classes, e.g., as “Never,” “Seasonally” and 

“Permanently flooded” areas (GlobWetland-II,  2011)  over  a  given  cycle,  or  as  flood/submersion frequencies,  

i.e.,  percentages  of  the  analysed  images  in  which  a  given pixel was flooded (e.g. Davranche et al., 2013; Pekel et 

al., 2016; also see Fig. 7), or in terms of days/months (e.g. Dı´az-Delgado et al., 2016). Obviously, increasing the 

number of scenes will increase the precision of flooding duration estimation for highly seasonal wetlands. In the 

past, due to limited availability of cloud-free optical images, “water dynamics” maps have been produced   with   as   

little   as   two   images   from   a   hydrological   year (GlobWetland-II, 2011), which is not sufficient for monitoring 

short-term dynamics of wetland hydrology having a seasonal water regime. SAR satellites provide an improvement 

for mapping open water dynamics throughout the year due to their independence of daylight and cloud cover. 

Furthermore, some sensors offer the ability to detect water overgrown by vegetation. Although several SAR satellite 

missions have been launched in the past decades, ERS, ENVISAT ASAR, TerraSAR-X and ALOS PALSAR to name a few, 

water body monitoring was hindered by infrequent data acquisition schemes and acquisition cost. General 

overviews on the use of SAR for wetland monitoring and water mapping are provided in Brisco (2015) and White et 

al. (2015). 

A rather large and consistent historical image archive is available from the ASAR C-Band sensor aboard ESA’s 

ENVISAT satellite, which was operated from 2002 to 2012. In particular its Wide Swath Mode (WSM), although not 

optimal due to its limited VV polarization and low spatial resolution (150m), has been successfully used in several 

water mapping studies (e.g. Bartsch et al., 2008; Kuenzer et al., 2013; Matgenetal.,2011; Schlaffer et al., 2015)and 

also specifically to characterize wetlands by Schlaffer et al. (2016). 

With ESA’sSentinel-1mission,currently consisting of two satellites with  a combined repeatrate of down to 6 days and 

data provided at no cost, water dynamics mapping at high resolution and temporal frequency now becomes easier 

and cheaper. At the time of writing still only few publications can be found on Sentinel-1 water mapping, but it has 

been used for flood detection by, e.g., Boni et al. (2016) and Twele et al. (2016). Like ASAR WSM data, Sentinel-1 

images are acquired in VV polarization. Thus, the imagery is very sensitive to waves, which can easily be mistaken for 

land surfaces (Brisco, 2015), as shown for instance in Fig. 7. 
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Figure 7: Backscatter characteristics of water surfaces under different environmental conditions.Smooth water surfaces(left) appear as 
dark,while wind-induced waves generate a much brighter signal (right). The reduced contrast between water and land surfaces in the right 
image will result in large areas of water to be mistaken for land in automated classifications. Camargue, Southern France, Sentinel-1 IW VV, 
acquired on January 31, 2015 and February 05, 2015, respectively (approx. 50 Â 42km2). Produced from ESA remote sensing data. 

 

Figure 8: Camargue, France: 2015 intraannual open water dynamics based on SAR data from Sentinel-1 Interferometric Wide Swath mode 

(IW). All available images acquired on 75 days throughout the year were included. Though an improvement from previous maps, some 

inconsistencies remain. Produced from ESA remote sensing data. 

One opportunity to circumvent this is by analysing the dense time series of images of individual pixels instead of the 

mostly used per image classification. For instance, Schlaffer et al. (2015, 2016) used harmonic models to estimate 

seasonal behaviour of SAR backscatter and detect outliers for flood detection. Fig. 8 shows an example of a time-

series analysis technique, which assesses not only a pixel’s intensity but also its class likeliness based on the 

temporal stability of the observed pixel. This way, images acquired under suboptimal conditions(e.g.heavy clouds or 

wind-induced waves) can be reliably classified, although the single scene shows no contrast between land and sea 

surfaces. This ongoing research will be extended to historic ASAR and ERS data once the approach has been refined 

to a satisfactory degree of accuracy. In the meantime, care has to be taken for trend analysis where flood regime 

maps are compared over time, notably for past trend analysis going back further than 1980. 
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3.3 Validation of Flood Regime Maps 

Flood regime mapping has its own challenges and a thorough comparison with ground-truth data is required to 

validate final maps. Validation is less frequently performed for the flooding regime than for habitat classification, but 

Davranche et al. (2013) and Thomas et al. (015) found overall accuracy rates of 83% in the Camargue, France, and 

93%-95% for the Macquarie marshes, Australia, respectively. A particularly robust field validation covering 6000 

points in 31 ground-truth field campaigns from 2003 to 2013 was implemented in the Donana marshes, Spain, with 

an accuracy estimate of 94% (Diaz-Delgado et al., 2016). 

A situation where careful validation is required is where hydrological cycles do not show regular annual patterns, 

e.g., in large temporary wetlands in arid regions which do not fill up completely every year, and whose outermost  

parts  often  remain  dry.  These margins should nevertheless not be identified as switching from dry (e.g. steppe) 

habitat to wetland habitat, depending on their seasonal or annual flood conditions (e.g. Fig. 9). To avoid these 

misclassifications which can lead to large errors in wetland area estimation, interpretation procedures may 

recommend to carefully reevaluate all rapid and unlikely back-and-forth shifts between dry land and wetland 

habitats. 

3.4 Concluding Remarks 

The hydroperiod is a crucial indicator for monitoring trends in ecology, functions and services of  Mediterranean 

wetlands. Unfortunately, the mapping of flooding regime is also technically difficult.With increasing availability of 

multiple images per year, hydrological cycles as well as water extent under vegetation will potentially be better 

captured.However,for the interpretation of trends detected by RS, ecological knowledge is required to distinguish 

unpredictable variations typical of Mediterranean wetlands from actual habitat transitions. 

4.  DETECTION OF TRENDS OVER TIME 
Opportunities and difficulties to identify habitat and flood extent of Mediterranean wetlands given the uncertainties 

in land cover maps and the irregularity of flooding regimes have been addressed in the two preceding sections. Use 

of RS observation to estimate long-term trends in ecosystem quality and biodiversity, infer some complementary 

challenges. 

4.1 Uncertainty of Detecting Trends 

A major question when it comes to detecting changes in Mediterranean wetlands is how to quantify the actual rates 

of change when they are in practice often inferior to, or of the same order as the error estimation. For instance, 

MWO(2014) detectedalossof10%innaturalwetlandsinasample of 214 sites between 1975 and 2005. However, the 

habitat classification error rate was estimated at 12.3% for any given year. In such cases, because the estimate falls 

within the confidence interval, a cautionary approach would be to refrain from estimating any quantitative loss; on 

the other hand, a qualitative systematic trend (e.g. an overall loss in wetland habitat) can still be tested rigorously, 

e.g., through nonparametric statistics applied to the large sample of sites. For a quantitative approach, the recent 

improvements in image resolution and frequency still need to be translated into lower error rates (i.e. narrower 

confidence intervals) for habitat mapping, so as to allow the detection of wetland habitat trends of, e.g., 5%-15%. 

Incertainty and error rates differ between habitat classes; for instance fewer errors are made when identifying sand 

and beaches than wet meadows. This means that the uncertainty of detected transformations of habitats depends 

on the habitat types involved, as reflected in the confusion matrices. Error rates for habitat identification are likely to 

decrease over time with the increasing availability of high-quality images, ancillary data and Mediterranean wetland 

expertise. To date, there is no estimation of the impact of the combined uncertainties on the detection of long-term 

trends (especially retrospectively) in Mediterranean wetlands, mainly due to a lack of validation data for older maps 

and this is unlikely to change. 
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Figure 9:   A typical confusion affecting large wetlands in arid zones (Chott Ech-Chergui, Algeria) in 1975 (upper map) and 2005 (lower): a 
higher inundation level in 2005 due to higher rainfalls in previous years was mapped as “large increase in marshes, i.e. natural wetland 
area” (+147,000ha), and conversely as a “decrease in terrestrial habitats  such as Steppes/Pastures.” In reality the chott  area did not vary; 
only its level of flooding did. At the pan-Mediterranean scale, this lead initially to underestimating the true natural wetland loss, since in 
the total figures for the 284 sites, this apparent “increase” offset 147,000ha of actual loss elsewhere (GlobWetland-II, 2014).  

4.2 Detecting Long-Term Changes When Flooding Extent Varies Interannually 

Seasonal wetlands under dry climates (e.g. chotts and sebkhas) pose a particular challenge due to their extreme 

hydrological variability. Under such climates, rainfall is erratic and unpredictable, and so is the resulting extent of 

flooding  in  these  typically  large  wetlands  (see  example  of  Chott  Ech-Cherguy above fig. 9). Comparing two 

maps at a 15-20 interval may result, by chance alone, in comparing a very dry vs a relatively wet year—or the 

reverse—and a superficial analysis would conclude to a large increase (or conversely, decrease) in the flooding 

extent in a given site. 

Detecting accurate long-term trends in wetland flooding remains an important issue, given the increasing human 

(e.g. MWO, 2012a) and climate (Giorgi and Lionello, 2008) pressure on freshwater in arid areas. One way to address 

this issue is to consider that trends in flooding regimes can only be assessed by using multiple seasonal maps over 

several years (e.g. the GSW produced by Pekel et al. (2016) and covering 32 years from 1984 to 2015). Although this 

approach is more time consuming, it will likely provide higher accuracy in trend estimations. 

RS methods could also potentially borrow from ecological methods which aim to identify trends despite having very 

noisy data, e.g., occupancy or abundance modelling and other demographic modelling techniques. 
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4.3 Biodiversity: Changes in Ecosystem Quality 

Tracking changes in wetland types and extent is important but distilling indications on ecosystem quality bring us 

closer to the monitoring of trends in biodiversity. Here we zoom into efforts on identifying habitat fragmentation, 

time lags in responses of Mediterranean biodiversity to water shortage and measures of water quality. 

Many studies and projects have developed habitat fragmentation indices (e.g. Liu et al., 2014; Tomaselli et al., 2012), 

most of which are based on the assumption that a reduction in (natural) habitat extent should be interpreted as an 

increase of habitat fragmentation. Some of these indices are based on the evaluation of the landscape connectivity 

using specific metrics related to the size of habitat patches and the distance between them (Minor and Urban, 2008). 

However in the case of Mediterranean wetlands characterized by temporary water coverage, the variability in intra 

and interannual surface water is not necessarily linked to these fragmentation metrics. For instance, temporary 

ponds may be connected during times of high water availability and separated in periods of water shortages—

without any implication in terms of habitat fragmentation. This dynamic is natural for Mediterranean wetlands and 

occurs with a frequency which is not always predictable. The detection of trends in habitat fragmentation therefore 

has to take into account the ecological reality of what defines a temporary wetland habitat in the Mediterranean 

region (Perennou et al., 2013). Assessing long-term trends in wetland fragmentation will therefore require data 

series analysed over a long period to distinguish natural variability in habitat delineation from a long-term 

degradation of habitat extent. This should be used carefully, and only when long time series of data are available. 

Long-term data series are also required for predicting the impacts of changes in flooding regimes on Mediterranean 

biodiversity. Many taxa and species are adapted to unpredictable availability of water and long periods of water 

shortages. For instance, the flamingo Phoenicopterus ruber is a long-lived species with an optional nesting behaviour 

adapted to fluctuating conditions; the mosquito Ochlerotatus caspius lays quiescent eggs on the ground which can 

survive to long periods of drought (Balenghien et  al.,  2010);  damselflies  found  in  brackish  temporary  marshes  in  

the Camargue exhibit strong interannual variations in abundance related to marsh flooding duration (Aguesse, 

1961); abundance of breeding passerines in temporary reedbeds depends on the duration of flooding from June 

through December in the preceding year, which determines food level during the following nesting season (Poulin et 

al., 2002). This means that the impact of one dry spell on overall species richness and abundances is hard to predict, 

and that species richness and abundances may react with a time lag relative to long-term trends in water shortages: 

longer time series are therefore required. 

A key component of ecosystem quality is water quality. It is a long-term driver for biodiversity in Mediterranean 

wetlands, especially because nutrient runoff and pesticides from agriculture, as well as wastewater from settlements 

often end up in wetland habitats (EEA, 2012). Beyond pollutants, other substances like suspended particulate 

materials (SPMs) originating from soil erosion can affect biodiversity. Eutrophic (nutrient-rich) waters are usually 

characterized by a high productivity and a poor plant and animal species richness. Nutrients cannot be directly 

estimated by RS, but high nutrient availability often leads to massive development of algae. Since the concentration 

of chlorophyll a, the main pigment in algae, can be estimated from RS data (e.g. Brezonik et al., 2005; Matthews, 

2011; Odermatt et al., 2012; Ritchie et al., 2003), it often serves as an index for algal biomass and as a proxy for 

eutrophication. 

Turbidity is another common water quality parameter that can be estimated from RS data (Dogliottietal.,2015; 

Ritchieetal.,2003). Turbidity is related to the concentration of SPM. At this moment, it is not possible to separate  

artificial  from  natural  turbidity  based  on  RS  data  alone.  The suspended particles will affect the transparency of 

the water and therefore the transmittance of sunlight through the water, which can result in low plant productivity. 

In addition, the dissolved organic matter (DOM) present in natural waters is known to absorb light and therefore also 

affects water transparency.  The  coloured  fraction  of  the  dissolved  organic  matter (CDOM) is an optically active 

substance that affects the reflectance measured by the satellite sensor, and which thereby can be estimated based 

on RS data (Beltran-Abaunza et al., 2014). These substances bind metals as well as organic contaminants, and 
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organic substances from discharges are one major cause of pollution in surface waters, which can have a strong 

effect on biodiversity.  

Especially adapted high-frequency images do exist for estimating water quality parameters (e.g. MERIS and Sentinel-

3), but the spatial resolution is only300m,which limits the applicability to larger water bodies.Inaddition, a proper 

estimation of the water quality requires that the water is optically deep, i.e., that the bottom substrate cannot be 

seen from the surface. Many shallow wetlands are not of sufficient depth for RS to provide useful information and 

indicators on these issues. Improvements are expected from new images of high spatial resolution provided by 

Sentinel-2A (launched in 2015) and 2B (launched in 2017), which should enhance our capability to monitor water 

quality from space in smaller water bodies. Sentinel-2 applications are especially relevant for small lakes and for 

patchy waters where few or no information exists. In these habitats, Sentinel-2 can contribute to a first assessment 

of the water condition, in terms of eutrophication, transport of suspended sediments and distribution of invasive 

floating plants such as the water hyacinth Eichhornia crassipes. 

4.4 Concluding Remarks  

The ultimate objective of detecting and quantifying trends in Mediterranean wetlands and their biodiversity over 

time is a challenge that largely remains unsolved.  New  Sentinel-3  data  could  provide  promising  advances  and 

potential on estimates of water quality. More work is needed to address how we can relate computations of flood 

regimes to changes in quality of ecosystems and their related species richness and abundances. 

5.  CONCLUSIONS 
The use of RS data for the mapping and monitoring of wetlands of arid and semi arid areas such as the 

Mediterranean has improved since 1980. To allow for the progress made to be included in the RStools and 

interpretation procedures that are being developed for new types of RS data, we here summarize the most 

important progress made in the form of recommendations, as well as the challenges that still need to be addressed. 

By identifying current best methods as well as gaps, this chapter contributes to the development of a repository for 

best practices of wetland RS under the framework of GEO Wetlands, and to applications beyond the Mediterranean 

ecoregion. 

In general, the uncertainties that come with any method applied to RS data can be greatly reduced by integrating 

ecological expertise and ground truth data in the different steps of the technical process. This chapter uses several 

ways to do this. To increase accuracy of RS products, ecological understanding of the habitats and their dynamics is 

required. This can be achieved by developing RS products through active collaboration with ecologists and site 

managers. This would allow RS experts to improve monitoring tools and ecology experts to recognize both the value 

and the limitations of RS data, as recommended by Skidmore et al. (2015). 

The development of a robust habitat nomenclature for Mediterranean wetlands that would fulfil the needs of 

scientists, managers and decision makers is a tricky task, especially for an application to areas where we can only 

rely on RS data for monitoring these habitats. Habitat maps using typologies with many classes require enhanced 

validation procedures with ancillary data or expert knowledge. To ensure low uncertainties in largescale mapping 

exercises, the number of habitat classes can be reduced, but this also means that some of the changes, i.e., those 

occurring within one of the enlarged habitat classes, will go undetected. In addition, if the purpose of a map is to 

inform management decisions, a more detailed classification may be required. 

Uncertainties can be  further  reduced  and  consistency  across  maps increased, through the development of 

protocols for habitat identification based on integrated knowledge of wetland ecology and hydrology and RS  

techniques.  In particular,  interpretation  protocols  which  stipulate explicit decision rules for habitat identification 

as well as rigorous validation procedures, can both help reduce and quantify the error estimates for each habitat 

class. Any mapping activity should be complemented by a systematic validation phase that should be developed and 
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continuously adapted to include unlikely habitat transformations, recurrent interpretation errors, risks of confusion 

between habitats and flood extent, and focused efforts on difficult clusters of habitats. 

To date, a number of challenges have been solved at the local scale of one site through the use of local experts or 

available ancillary data, and for assessing  one-off,  recent  situations  through  improved  satellite  imagery. 

However, that does not solve the double challenge for larger-scale assessments or multisite assessments (e.g. the 

Mediterranean region), and for retroactive studies, i.e., comparisons with the earlier periods of RS. Progress is still 

needed to better segregate particular habitats, such as wetmeadows from other  meadows,  lagoons  and  lakes  

from  their  peripheral  marshes,  and ricefields from other crops. Estimates of changes in Mediterranean wetland 

biodiversity would be greatly improved if we could better separate similarlooking natural vs man-made habitats, 

e.g., lakes vs reservoirs or fish ponds, or lagoons vs salinas. Citizen science could be used for these, for instance by 

getting people to send their photos, or using online georeferenced photos to confirm classifications. Changes in the 

flood regimes of Mediterranean wetlands still requiresbetter detection of flooding under dense and/or emergent 

vegetation, as well as the development of procedures for distinguishing the natural variability in hydrological cycles 

from long-term trends. And, last but not least, the ability to develop reliable tools for monitoring long-term trends in 

wetlands of arid and semiarid areas such as the Mediterranean will require the quantification of uncertainties, both 

for individual maps and for changes derived from comparison of maps over time. 
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