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Abstract. The digital transformation of collaborative networked manufacturing 
enterprises requires building and applying digital models representing the set of 
resources and processes knowledge. Modelling such digital copy of the physical 
system to perform real-time validation and optimization is quite complex and 
thus needs a big amount of data and some modelling patterns representing the 
operational semantics of the modelled elements. Generally, the modelling action 
has a specific application type. For this reason, the core challenge of the digital 
transformation modelling is to create a modular “digital model”, namely a 
decomposable and re-composable model, towards different applications. The 
authors propose an approach based on the combination of data-driven and model-
driven approaches, to identify and formalize modelling patterns, that combine for 
developing a modular executable model of the studied system.  

Keywords: Data-Driven Approaches, Model-Based Approaches, Modularity, 
Knowledge sharing. 

1 Introduction 
 
In the age of the so-called “Factory of the Future” also named “Industry of the Future” 
or Industry 4.0 to name only a few of those initiatives, the transformation from an 
Automated Factory to an Autonomous Factory [1] needs to overcome the information 
asymmetry amongst technology, processes, people and organizations [2] along the 
entire system lifecycle. This action requires creating a so-called collaborative network 
enterprise [3]. The interactions between entities should be supported by computer 
networks. The collaborative network, in the design phase, guides the designers to 
interact with customers. Iteratively it lets them adjusting the network according to their 
expectations, improving the design models and achieving personalized product design 
[4]. In the production phase, it enables the simulation of the plant in a virtual space, 
identifying and optimizing the actual production and predicting failures. In the service 
phase, the collaborative network can provide value-added services with the support of 
physical simulation and data driven intelligence [5]. In the context of manufacturing 
processes, the prerequisite of a manufacturing network collaboration is to share skills 
and core competencies[6]. A “digitalization” approach enables the virtual replication 
of the factory to monitor and simulate real time physical processes. It allows to connect 
the entire value chain [7] by merging sensor data acquired from the physical world into 
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virtual or simulation-based models. It is then necessary to emulate the system behaviour 
thought realistic models. However, with the advent of cyber-physical systems (CPS) 
[8], it is hard to construct an accurate model by using traditional model-based 
approaches because of the complexity of the systems. On the other hand, recent 
advances in sensor technology [9] have enabled significant growth of data collection 
and analysis, leading researchers to focus on data-driven methods. 
The paper proposes the combination of a data-driven approach with a model-based 
approach [10] [11] to build a modular approach in order to help designers to generate 
models from collected data, based on a set of patterns representing standard functions 
of the real manufacturing processes. The core elements of a digital model are 
implemented by the fusion of sensor-based data, physical-based patterns and data-
driven models. They enable the creation of a reliable decision making system [12] for 
a collaborative network. At the same time, a modular approach needs to be developed 
for improving the efficiency of those digital models. 
 
2 State of Art 

The increasing complexity of manufacturing systems requires new approaches to detect 
production failures and diagnose operating profiles [5]. Model-based and data-driven 
approaches cope with such issue [10]. 
The model-based approaches compare simulated results with known information, 
represented by mathematical or physical equations. The model approach is based on a 
set of different models to represent the structure, the behaviour and the interactions of 
a physical system to be monitored or predicted [13] [14]. There are various models 
focusing on the representation of different characteristics of the reality here a not 
exhaustive list of the most studied and used:  
• A geometric model defines shapes, sizes, positions and it assemblies the relations 

of machine components [15]. It reflects the geometry, the kinematics, the logic and 
the interfaces of the real system [16].  

• A physical model analyses the phenomena, such as deformation, cracking and 
corrosion. It simulates the physical properties (e.g. function/capacity, cutting force, 
torque and wear) and loads (e.g. stress, resistance and temperature) [17].  

• A behaviour model describes the way the physical system is governed by driving 
factors (e.g. control orders) or disturbing factors (e.g. human interferences).  

• A collaborative information model [18] defines how different components interact 
and simulates the collaborative behaviour among several assets.  

• A decision-making model [18] makes the model capable of evaluating, reasoning, 
and validating. It consists of variable input, algorithms and a collection of 
constraints and rules. It includes rules of constraints, associations and deductions 
[13] and it stores and analyses the running status data, then it makes decisions using 
machine learning algorithm.  

The geometric, physical, behaviour and collaborative models are descriptive models 
[19], while the decision-making model is an intelligent model [19] and it could be 
related to data-driven approach. The data-driven approaches refer to models derived 
from processed data (e.g. sensor/actuator data) which represent the current state of the 
system [20]. Data driven models are designed to mine the hidden patterns and 
knowledge through the analysis of a huge amount of historical data [21]. The patterns 
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mining methods make use of the context data and they unveil the complex coupling 
relationships. The data driven approaches can be classified in supervised, unsupervised 
and reinforcement learning approaches [22]. The supervised learning develops model 
based on input and output data [10]. The algorithms of this class consist of a 
target/outcome variable (or dependent variable) which is to be predicted by a given set 
of predictors (independent variables). This approach  enables  to classify and determine 
a list of system’s defaults [23] with health indicators for each part of it [24]. The 
unsupervised learning [25], instead, discovers an internal representation from input data 
only. It has not any target or outcome variable to predict and estimate and are used to 
create autonomously clusters for different working regimes and machine conditions 
[26]. Finally, the reinforcement learning trains the machine to make specific decisions 
[27]. The machine is exposed to an environment where it trains itself continually using 
trial and error. Compared to supervised and unsupervised learning methods, the 
machine learns from past and tries to capture the best possible knowledge to make 
accurate business decisions [28].  
On the one hand, the data-driven approaches allow to integrate parameters across 
different domains of a collaborative network (e.g. product, process and logistics) into 
models that would be difficult to build with the traditional model-based modelling 
approaches [29]. The data-driven, in fact, aim at transforming the data into relevant 
information but the quality and scope of the data play a critical role [30]. 
On the other hand, the model-based approaches rely on the use of mathematical models 
to simulate the systems behaviour in different operating conditions but for complex 
systems, these models are not easy to develop and keep updated during the system life-
cycle [30]. At the same time, a single approach cannot be adapted to all different 
applications of a collaborative network because of the complexity and the variety that 
characterize manufacturing systems. Hybrid approaches [10] are been developed to 
cope with defined problem such as fault detection and diagnosis [31], prediction  or 
classification accuracy [32] only for specific application case. 
It means that is necessary to develop and standardize modelling patterns for developing 
a modular approach. Modularity, in fact, is concerned with shifting from rigid systems 
and inflexible production models toward an agile system. The modularity can be 
defined as the capability of system components to be separated and combined easily 
and quickly [33]. For the digital transformation modelling, the modularity is the ability 
to integrate, to add, and to replace models [34] based on the specific application. The 
idea behind a modular approach is to use, and especially re-use, predefined functional 
patterns, that are systematically developed and linked for the configuration of a holistic 
manufacturing system [35].  The paper presents a modular approach for discovering 
automatically data-driven pattern-based constructs in order to generate semi-automated 
models. 
 
3 Data-driven pattern-based constructs definition 

 
The modular design approach is developed to capture patterns from data and to share 
and to reuse knowledge encapsulated in a pattern among systems or processes operating 
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in a similar condition. It enables the virtual replication of an enterprise and then 
monitoring, simulating and predicting failures in manufacturing processes. The idea is 
to build knowledge-based modelling constructs representing data-driven patterns 
contextualised in different process’ situations. The critical point is discovering those 
data-driven patterns. FCA (Formal Concept Analysis) is a mathematical theory oriented 
at applications in knowledge representation [36]. It provides tools to group the data and 
to discover formal patterns by representing it as a hierarchy of formal concepts 
organised in a semi ordered set named lattice. Given a set of objects, a set of properties, 
and defined the relations between object and properties, a formal concept represents a 
subset of objects sharing the same sub-set of properties. A concept is constituted by two 
parts: its extension which consists of all objects belonging to the concept, and its 
intension which comprises all properties shared by those objects. This understanding 
allows a formal discovering of associations among concepts and consequently 
recognizing which concepts are closely related based on the set of shared properties. In 
this context, FCA is applied to discover automatically patterns from data. The patterns 
generated are selected and evaluated for detecting relationships, trends, associations, 
and anomalies that characterize a system in analysis. A pattern helps to discover useful 
knowledge from a collection of data. It can describe recurrent behaviours of the system 
or it can codify tacit associations that can be used to predict the future behaviour.  The 
patterns discovered are modelled in System Modelling Language (SysML) [37]. 
SysML provides nine interrelated types of diagrams to describe the function, the 
structure, the behaviour and the system requirements. It supports the specification, 
analysis, and verification of systems’ models.  
The modular approach developed is articulated in four different stages. The first stage 
is to define the knowledge structure in a data table (Fig.1).  The data table presents the 
objects on the rows and the properties on the columns. The cross indicates that exists a 
relation between an object and an attribute. In second stage, FCA converts 
automatically the data table into a lattice (Fig.2). The lattice presents nodes, connecting 
line and names. Nodes represent formal concepts and the lines connect objects and 
attributes belonging to a concept. The name of each objects is noted under nodes instead 
the name of each property above nodes. The third stage is to evaluate the patterns 
extracted from the lattice (Fig.3) and to detect  the behaviours, the associations to 
model. It is possible also to identify the relationships among patterns. The last stage is 
to generate the model of the pattern in SysML diagrams (Fig.4), based on the features 
defined in the previous step. The objects are modelled as blocks and the properties as 
value properties using the block definition diagram (bdd). The behaviour of a pattern is 
modelled as a set of actions to describe how the inputs are transformed into outputs. In 
particular, the state diagram (stm) models the behaviour defining states and events of 
an object during its lifetime. It simulates how the states change based on internal or 
external events. The parametric diagram (par) models the associations discovered in 
terms of constraints. Constraints represent physical laws or mathematical and logical 
operators or decisions that evaluate input parameters to return a result. The modular 
approach enables to create semi-automated models based on the patterns discovered.  
 
4 Case Study 

https://en.wikipedia.org/wiki/Subset
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An Italian SME, the Master Italy s.r.l, that produces small accessories for civil window 
frames, is here considered to test how to construct data-driven pattern. The process and 
the product in analysis are respectively the die casting aluminium and the steel corner. 
Die casting is a metal casting process that is characterized by forcing molten 
metal under high pressure into a mould cavity. The injection cycle of die casting 
aluminium process is composed by four different phases: 

1. Melting: the aluminium enters at the solid state and exits at the molten state. 
2. Injection: the molten aluminium is transferred, thought a plunger, into a 

chamber where it is injected into the mould.  
3. Moulding: the molten aluminium solidifies in the mould cavity.  
4. Extraction: an ejection mechanism pushes the casting out of the mould cavity.  

The data set presents the injection cycles as objects and technological parameters as 
properties (Fig.1). The technological parameters monitored are: plunger 
course‘C1’(m),‘ ),‘C2’(m), and time ‘T1’(sec) ‘T2’(sec),  in first and second stage of 
injection phase, multiplied course ‘CC’ (m), multiplied pressure ‘PM’ (bar), cavity 
pressure ‘PS’ (bar), clamping force ‘FC’ (N). The FCA is applied to determine the 
hierarchical lattice (Fig.2). There are five different range of values for each parameter. 
The first pattern extracted (Fig.3a) has a set of objects sharing the properties C2-1, T1-
2, C2-5, T2-1, PM-1, FC-3. The second pattern (Fig.3b) instead has the properties C2-
1, T1-2, C2-5, T2-1, PM-1, FC-4, PS-2. The objects of the patterns share most of 
properties (C2-1, T1-2, C2-5, T2-1, PM-1) but FC operates in the range 4 and it depends 
also on PS-2 in the pattern b). These are two different but correlated patterns. The 
parameters C1,C2,T1,T2,PM are parameters related to the injection stage, while FC and 
PS are related to the moulding stage. It means that there are physical equations between 
the technological parameters of the two phases. Clamping force (FC), in fact, refers to 
the force applied to a mould by the clamping unit of the injection moulding machine. 
In order to keep the mold closed, this force must oppose the separating force, caused 
by the injection parameters (C1,C2,T1,T2,PM). The required clamping force depends 
on the cavity pressure (PS) inside the mould and the projected area, on which the 
pressure acts. For this reason, the patterns are respectively the clamping pattern (a) and 
the pressure control pattern (b). The model of the compression pattern (Fig.4) presents 
the process stage as blocks and the technological parameters as value properties on the 
block definition diagram. The physical laws are modelled on the parametric diagram. 
The state diagram can simulate if all injection cycles (objects) of the clamping pattern 
are conformed to the quality product. In the clamping pattern, all parameters 
(properties) operate into the defined ranges. In the pression control pattern, the state of 
the property FC-4 closes out of range. It means that PS can be analysed to detect and to 
implement a strategy capable of preventing quality defects caused by FC. 
 
4 Conclusions and Future Works 
 
The paper presents how to construct data-driven patterns in order to create a modular 
approach for digital modelling transformation. The approach defines how to build a 
semi-automated model based on the patterns discovered automatically in FCA.  

https://en.wikipedia.org/wiki/Casting_(metalworking)
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Mold_cavity
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Fig.1 Data Table   

 
Fig 2. FCA Lattice  

 
Fig.3a) Clamping Pattern                                        Fig.3b) Pression Control Pattern 

 
Fig 4. SysML Structure and Behaviour Model of the Clamping Pattern 
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The patterns are systematically modelled in SysML and linked for the configuration of 
a holistic manufacturing system. The approach shows also how it is possible to discover 
the behaviours and associations from data and how to analyse the relationships between 
patterns. The goal is to use the same patterns for modelling other systems. The future 
works is to enrich the pattern’ semantics to create a comprehensive library of 
formalized data-driven patterns. In this way, data-driven patterns can be combined, 
based on the specific application, to create easily dynamic models. The approach tested 
is inductive. It means that the data suggests model about the meaning of their content. 
The future work is to develop a deductive approach. In this case, the modular design 
approach can be used also to verify if a certain model (or hypothesis) is consistent with 
the available data or if it necessary to implement a monitoring strategy to collect new 
data. 
Continued monitoring, data collection and analysis provide up-to-date information 
about the behaviours of the system in a continuous stream. Those actions enable to 
collect and convert data in information, share the information acquired, formalize the 
knowledge, joint performance measurements and leverage the skills and the 
knowledge. These benefits are in line with the collaboration-associated benefits of a 
collaborative network. 
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