Emmanuel Agullo 
email: emmanuel.agullo@inria.fr
  
Luc Giraud 
email: luc.giraud@inria.fr
  
Stéphane Lanteri 
email: stephane.lanteri@inria.fr
  
Gilles Marait 
email: gilles.marait@inria.fr
  
Anne-Cécile Orgerie 
email: anne-cecile.orgerie@irisa.fr
  
Louis Poirel 
email: louis.poirel@gmail.com
  
  
  
  
  
  
  
  
Energy Analysis of a Solver Stack for Frequency-Domain Electromagnetics

High-performance computing (HPC) aims at developing models and simulations for applications in numerous scientific fields. Yet, the energy consumption of these HPC facilities currently limits their size and performance, and consequently the size of the tackled problems. The complexity of the HPC software stacks and their various optimizations makes it difficult to finely understand the energy consumption of scientific applications. To highlight this difficulty on a concrete use-case, we perform an energy and power analysis of a software stack for the simulation of frequency-domain electromagnetic wave propagation. This solver stack combines a high order finite element discretization framework of the system of three-dimensional frequency-domain Maxwell equations with an algebraic hybrid iterative-direct sparse linear solver. This analysis is conducted on the KNLbased PRACE-PCP system. Our results illustrate the difficulty in predicting how to trade energy and runtime.

I. INTRODUCTION

The advent of numerical simulation as an essential scientific pillar has led to the co-development of hardware and software capable of solving larger and larger problems at a tremendous level of accuracy. The focus of performance-at-any-cost computer operations has led to the emergence of supercomputers that consume vast amounts of electrical power and produce so much heat that large cooling facilities must be constructed to ensure proper performance https://www.top500.org/green500. To address this trend, the Green500 list puts a premium on energy-efficient performance for sustainable supercomputing. In the meanwhile, the high-performance computing (HPC) community has faced the challenge with the emergence of energy-efficient computing. While many innovative algorithms [START_REF] Balaprakash | Multi Objective Optimization of HPC Kernels for Performance, Power, and Energy[END_REF], [START_REF] Gholkar | PShifter: Feedback-based Dynamic Power Shifting Within HPC Jobs for Performance[END_REF] have been proposed to reduce the energy consumption of the main kernels used in the numerical simulations, fewer studies [START_REF] Li | The Power-Performance Tradeoffs of the Intel Xeon Phi on HPC Applications[END_REF] have tackled the overall energy analysis of a complex numerical software stack. This work was partially financially supported by the PRACE project funded in part by the EU's Horizon 2020 research and innovation programme (2014-2020) under grant agreement 653838.

This work aims at conducting an energy and power analysis of the simulation of frequency-domain electromagnetic wave propagation, as detailed in Section II. Such a simulation is representative of a numerical simulation involving the usage of a complex software stack. In the present case, we study the combined HORSE/MaPHyS numerical software stack. The HORSE (High Order solver for Radar cross Section Evaluation) simulation software implements an innovative high order finite element type method for solving the system of three-dimensional frequency-domain Maxwell equations, as presented in Section III. From the computational point of view, the central operation of a HORSE simulation is the solution of a large sparse and indefinite linear system of equations. High order approximation is particularly interesting for solving high frequency electromagnetic wave problems and, in that case, the size of this linear system can easily exceed several million unknowns. In this study, we adopt the MaPHyS [START_REF] Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF] - [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF] hybrid iterative-direct sparse system solver, which is based on domain decomposition principles [START_REF] Mathew | Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations[END_REF]. MaPHyS is representative of fully-featured adaptive sparse linear solvers [START_REF] Gaidamour | A parallel direct/iterative solver based on a Schur complement approach[END_REF], [START_REF] Jolivet | Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems[END_REF], [START_REF] Li | Factorizationbased sparse solvers and preconditioners[END_REF], [START_REF] Rajamanickam | ShyLU: A hybrid-hybrid solver for multicore platforms[END_REF] involving multiple numerical linear steps combining the usage of dense and sparse direct numerical linear algebra kernels as well as iterative methods, as further discussed in Section IV.

Energy consumption is a major concern putting a strain on HPC infrastructures' budget [START_REF] Balaprakash | Multi Objective Optimization of HPC Kernels for Performance, Power, and Energy[END_REF]. Additionnaly, peak power consumption hampers the size of these infrastructures, challenging the electricity provisioning [START_REF] Gholkar | PShifter: Feedback-based Dynamic Power Shifting Within HPC Jobs for Performance[END_REF]. Power capping techniques have been developed to control this power consumption [START_REF] Kelley | Adaptive Power Profiling for Many-Core HPC Architectures[END_REF], [START_REF] Khan | RAPL in Action: Experiences in Using RAPL for Power Measurements[END_REF]. While these techniques dynamically limit the power consumption of running nodes, we argue here that a better understanding of HPC applications behavior could be more beneficial in finding an adequate trade-off between performance, power and energy consumption. The objective of this paper is to study the energy profile of a complex software stack that is representative of numerical simulations. To perform the energy and power analysis, we rely on two tools, Bull Energy Optimizer (BEO) and High Definition Energy Efficiency Visualization (HDEEVIZ). We first study the behavior of the MaPHyS hybrid solver in a standalone fashion, showing the energy profiles of each of its numerical steps. We then study the behavior of the overall HORSE/MaPHyS simulation stack on a realistic 3D test case.

The rest of the paper is organized as follows. Section II briefly presents the high order discretization technique employed while Section III presents the HORSE simulation tool that implements it. Section IV presents the MaPHyS sparse hybrid solver that is used to solve the underlying sparse linear system. Section V presents the methodology employed to conduct our energy analysis and discusses the energy profile of the considered software stack, before concluding in Section VI.

II. NUMERICAL APPROACH

During the last 10 years, discontinuous Galerkin (DG) methods have been extensively considered for obtaining an approximate solution of Maxwell's equations. Thanks to the discontinuity of the approximation, this kind of methods has many advantages, such as adaptivity to complex geometries through the use of unstructured, possibly non-conforming, meshes, easily obtained high order accuracy, hp-adaptivity and natural parallelism. However, despite these advantages, DG methods have one main drawback particularly sensitive for stationary problems: the number of globally coupled degrees of freedom (DoF) is much larger than the number of DoF required by conforming finite element methods for the same accuracy. Consequently, DG methods are expensive in terms of both CPU time and memory consumption, especially for time-harmonic problems. Hybridization of DG (HDG) methods [START_REF] Li | A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations[END_REF] is devoted to address this issue while keeping all the advantages of DG methods. HDG methods introduce an additional hybrid variable on the faces of the elements, on which the definition of the local (element-wise) solutions is based. A so-called conservativity condition is imposed on the numerical trace, whose definition involves the hybrid variable, at the interface between neighbouring elements. As a result, HDG methods produce a linear system in terms of the DoF of the additional hybrid variable only. In this way, the number of globally coupled DoF is reduced. The local values of the electromagnetic fields can be obtained by solving local problems element-by-element. We have recently designed such a high order HDG method for the system of 3D time-harmonic Maxwell's equations [START_REF] Li | A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations[END_REF].

III. SIMULATION SOFTWARE

HORSE is a computational electromagnetic simulation software for the evaluation of radar cross section (RCS) of complex structures. This software aims at solving the full set of 3D time-harmonic Maxwell equations modeling the propagation of a high frequency electromagnetic wave in interaction with irregularly shaped structures and complex media. It relies on an arbitrary high order HDG method that is an extension of the method proposed in [START_REF] Li | A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations[END_REF]. This HDG method designed on an unstructured possibly non-conforming tetrahedral mesh, leads to the formulation of an unstructured complex coefficient sparse system of linear equations for the DoF of the hybrid variable, while the DoF of the components of the electric and magnetic fields are computed elementwise from those of the hybrid variable. This software is written in Fortran 95. It is parallelized for distributed memory architectures using a classical SPMD strategy combining a partitioning of the underlying mesh with a message-passing programming model using the MPI standard. One important computational kernel of this software is the solution of a large sparse linear system of complex coefficients equations. In a preliminary version of this software, this system was solved using parallel sparse direct solvers such as MUMPS [START_REF] Amestoy | Multifrontal parallel distributed symmetric and unsymmetric solvers[END_REF] or PaStiX [START_REF] Hénon | PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems[END_REF]. However, sparse direct solvers may have a limited scalability when it comes to solve very large linear systems arising from the discretization of large 3D problems. In this paper, we instead rely on a hybrid iterative/direct solver. We employ the MaPHyS solver, discussed below, to do so.

IV. MAPHYS ALGEBRAIC SOLVER

The solution of large sparse linear systems is a critical operation for many academic or industrial numerical simulations. To cope with the hierarchical design of modern supercomputers, hybrid solvers based on algebraic domain decomposition methods have been proposed, such as PDSLin [START_REF] Li | Factorizationbased sparse solvers and preconditioners[END_REF], ShyLU [START_REF] Rajamanickam | ShyLU: A hybrid-hybrid solver for multicore platforms[END_REF], HIPS [START_REF] Gaidamour | A parallel direct/iterative solver based on a Schur complement approach[END_REF] or HPDDM [START_REF] Jolivet | Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems[END_REF]. Among them, approaches consisting of solving the problem on the interior of the domains with a sparse direct method and the problem on their interface with a preconditioned iterative method applied to the related Schur Complement have shown an attractive potential as they can combine the robustness of direct methods and the low memory footprint of iterative methods. [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF] is a parallel linear solver, which implements this idea. The underlying idea is to apply to general unstructured linear systems domain decomposition ideas developed for the solution of linear systems arising from PDEs. The interface problem, associated with the so-called Schur complement system, is solved using a block preconditioner with overlap between the blocks that is referred to as Algebraic Additive Schwarz. Although MAPHYS has the functionality of exploiting two level parallelism using threads within an MPI process, this feature was not used in this study and focus was made on flat MPI performance only. MAPHYS makes use of a sparse direct solver as a subdomain solver such as MUMPS or PaStiX. The parallelization of the direct solver relies on a specific partitioning of the matrix blocks. PaStiX and MUMPS make extensive use of highly optimized dense linear algebra kernels (e.g., BLAS kernels).

MaPHyS (Massively Parallel Hybrid Solver) [4] -

A representation of the software architecture is given in Figure 1. 

V. NUMERICAL AND PERFORMANCE RESULT

A. Experimental setup

For the numerical simulations reported below we have used the PaRtnership for Advanced Computing in Europe -Pre-Commercial Procurement (PRACE-PCP) Intel "Manycore" Knights Landing (KNL) cluster Frioul at GENCI-CINES. Each node is a KNL 7250 running at 1.4GHz with 68 cores and up to 4 threads per core (272 threads per node) with 16 GB of MCDRAM and 192 GB of RAM.

The MaPHyS solver is used in version 0.9.6. PaStiX 6.0 is employed internally for processing subdomains (see "sparse direct step" below) and MUMPS 5.0.2 is used for processing the coarse space for the dense+CSC variant (see "dense+CSC" below). We rely on Intel MKL 2017.0.0 for achieving high performance BLAS and LAPACK. In particular, the Intel MKL DSYGVX routine is used for computing the eigenvalue problem in the subdomains in the case of the dense+CSC variant (see "dense+CSC" below).

The energy measurements are performed with two tools developed by Atos-Bull: BEO v1.0 and HDEEVIZ. The former has been used to obtain accurate measures of the total energy spent for the MaPHyS computation; the latter to visualize with a fine time resolution the variations of the energy consumption during the execution.

B. MaPHyS used in standalone mode

The weak scalability of the MaPHyS solver is first investigated in a standalone mode. For these experiments, we solve a 3D Poisson problem on a 2.5D domain that corresponds to a beam and a 1D decomposition, as shown in Figure 2. Each subdomain has at most two neighbors and is essentially a regular cube of size 40 3 (i.e., each subdomain has approximately 64,000 unknowns). The energy performance has been measured with BEO as the total energy consumed by the job.

We have also used the Bull HDEEVIZ graphic tool for a detailed visualization of the energy consumption over time. In Figure 5, we display the energy profile provided by this tool on a typical run of MaPHyS. The main steps of the hybrid solver can be observed by matching the execution time given by HDEEVIZ with the MAPHYS output timers. Thus we can identify these four steps:

• analysis: corresponds to the initialization of MaPHyS, reading the subdomain from dumped files and performing some preliminary index computations and communications; • sparse direct: corresponds to the factorization of the local matrix associated with internal unknowns and the computation of the Schur complement associated with the interface unknowns; • precond: the preconditioning step consists of the computation of the local preconditioner and involves neighbor to neighbor communications plus the factorization of the assembled local Schur complement. This factorization might be either dense or sparse depending on the preconditioning strategy further described below; • iterative: the iterative step aims at computing the solution of the Schur complement system using a preconditioned Krylov subspace method; that is the Conjugate Gradient for the Poisson problem or GMRES for the electromagnetic computation.

The local matrices are read from files, which is both time and energy consuming but not really relevant to MaPHyS performance, since the matrices are usually computed locally and directly provided to the solver by the application codes such as HORSE for the experiments reported in the next section. This file access appears on the profile before the analysis starts.

We have considered five test cases whose properties are displayed in Table I and assessed three numerical variants of the solver that are referred to as:

• dense: we consider the fully assembled local Schur complements to build the additive Schwarz preconditioner; only dense linear algebra kernels, cpu intensive with very regular memory access patterns, are then used in the preconditioner application at each iteration of the iterative step. Step by step time performance for MaPHyS.

• sparse: the entries of the local dense Schur complements that are smaller than a given relative threshold (10 -5 ) are discarded; the resulting sparse matrices are then used to build the additive Schwarz preconditioner; mostly sparse linear algebra kernels, less cpu demanding with very irregular memory access patterns, are then used when applying the preconditioner in the iterative part. • dense+CSC: in addition to the previously described dense preconditioner, a coarse space correction [START_REF] Agullo | Robust coarse spaces for Abstract Schwarz preconditioners via generalized eigenproblems[END_REF] (CSC) is applied to ensure that the convergence will be independent from the number of subdomains. In this experiment we compute five vectors per subdomain to create the coarse space. The coarse space being relatively small compared to the global problem, computations are centralized onto one process and solved by the direct solver (MUMPS in the experiments reported here).

As it can be seen in Figure 5 (power profile of the dense variant on a single node execution), the memory energy consumption represents a significant part of the total (45.7%), which is consistent with the current trend: floating point operations are cheap while memory accesses are relatively costly. One can furthermore observe that the setup and analysis parts of the run have a low energy consumption. The three numerical steps of the MaPHyS solver can be clearly identified through the combined observation of the memory and CPU power profiles. The iterative solve step appears quite clearly as a large plateau, where the power consumption is high for memory and low for CPU. It is consistent with the fact that this step is memory bound with many communications and relatively few computations. The total energy consumed by the node is 5.6 Wh = 20,160 J, which corresponds to the results given by BEO for this case.

We also report the total energy of the job provided by BEO, the total time to solution, the number of iterations and the time spent in the iterative step, in figures 4a, 4b, 4c and 4d, respectively. The time of each step of the solver is represented Figure 3. A value is missing for the "sparse" curve with 128 subdomains due to measurement error.

We observe that, despite the extra-memory traffic due to indirections, the fact that it induces much fewer floating point operations than the dense variant leads to a lower overall energy consumption. The high energy required by the dense+CSC preconditioner is mainly due to the setup of the CSC, which is both memory and CPU demanding. Because the dense and sparse preconditioners do not implement any global coupling numerical mechanisms, the number of iterations is expected to grow as the number of subdomains for the 1D decomposition of the domain on the Poisson test example. This poor numerical behavior can be observed in Figure 4c, while it can be seen that the coarse space correction (dense+CSC variant) plays its role and ensures a number of iterations independent from the number of domains (see [START_REF] Agullo | Robust coarse spaces for Abstract Schwarz preconditioners via generalized eigenproblems[END_REF] for further insights on the numerical properties of the method). This nice numerical behavior translates in terms of time to solution for the iterative part where the dense+CSC method outperforms the two other variants. However, the overhead of the setup phase for the construction of the coarse space, which requires the solution of generalized eigenproblems, is very high and cannot be amortized at that intermediate scale if only a single right-hand side has to be solved (which would not be the case for, e.g., radar cross section evaluation as considered in Section V-C, where multiple right-hand sides must be solved in real-life test cases). Nonetheless, the relative ranking in terms of power requirements are different. Through a simple linear regression, we can observe that the average power requirements are about 328, 326 and 321 W/node for the dense, sparse and dense+CSC preconditioners, respectively.

C. Scattering of a plane wave by a PEC sphere

We now consider a more realistic problem that consists in the scattering of a plane wave with a frequency F=600 MHz by a perfectly electric conducting (PEC) sphere. The contour lines of the x-component of the electric field are displayed in Figure 6a, and the obtained RCS is plotted in Figure 6b together with a comparison with a reference RCS obtained from a highly accurate (but costly) BEM (Boundary Element Method) q q q q q q q q q q q q q q 0 50000 100000 150000 200000 64 128 192 256 320
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q q q q q q q q q q q q q q 0 10 20 calculation. This problem is simulated using the coupled HORSE/MaPHyS numerical tool. The underlying tetrahedral mesh contains 37,198 vertices and 119,244 elements. We have conducted a series of calculations for which the number of iterations of the MaPHyS interface solver has been fixed to 100. Simulations are performed using a flat MPI mode, binding one MPI process per physical core without any shared memory parallelism. We consider the following two situations: (a) the interpolation order in the HDG discretization method is uniform across the cells of the mesh; (b) the interpolation order is adapted locally to the size of the cell based on goaloriented criterion. In the latter situation, we distribute the interpolation order such that there are at least 9 integration points (degrees of freedom of the Lagrange basis functions) per local wavelength. For the particular tetrahedral mesh used in this study, we obtain the following distribution of polynomial approximation within the mesh elements: 12,920 P 1 elements, 70,023 P 2 elements, 31,943 P 3 elements and 4,358 P 4 elements. For a given mesh, a uniform interpolation order is not necessarily the best choice in terms of computational cost versus accuracy, especially if the mesh is unstructured as it is the case here. Increasing the interpolation order allows for a better accuracy at the expense of a larger sparse linear system to be solved by MaPHyS. Distributing the interpolation order according to the size of the mesh cells allows for a good trade-off between time to solution and accuracy.

The performance in terms of both time and energy consumption are reported in Table II. In this table, the number of subdomains also corresponds to the total number of core or MPI processes. The number of MPI processes per node can be deduced from the number of nodes. First of all, in most of the tested configurations, we observe a superlinear speedup, as a result of the reduction of the size of the local discretization matrices within each subdomain. The size n of the local matrices roughly decreases linearly with the number of domains but the arithmetic complexity for their factorization is O(n 2 ) that leads to this superlinear effect. We first note, as expected, that the energy consumption with higher values of the interpolation order increases, since the size of the HDG sparse linear system increases drastically. For a given number of subdomains, a second noticeable remark is that the energy consumption increases when the number of MPI processes per node decreases; this leads to a higher network traffic and moving data through the network is more costly than moving them in memory. For instance, for the HDG-P 1 method, Using a decomposition of the tetrahedral mesh in 64 subdomains, the energy consumption is equal to 38 kJ on 4 nodes (i.e., with 16 MPI processes per node) and 68 kJ on 8 nodes (i.e., with 8 MPI processes per node). A similar behavior is observed for the HDG-P 2 method and a 64 subdomain decomposition.

The power consumption increases with the number of nodes due to their idle power consumption (i.e. power consumption when being switched one but performing no useful task). Yet, this characteristic does not order the energy consumption. Indeed, for the HDG-P 1 method, the energy consumption is higher with 1 node than with 2 or 4 nodes, but lower than with 8 or 16 nodes. This situation highlights the fact that the most energy-efficient solution is not always the faster timeto-solution or the least number of nodes: the trade-off lies in-between these two performance metrics and is specific to the considered solving method.

A final comment is that the use of a locally adapted distribution of the interpolation order allows for a substantial reduction of the energy consumption for a target accuracy. This is in fact the result of lowering the computing time solution because of the reduction of the size of the problem, as it can be seen by comparing the figures for the HDG-P 4 and HDG-P k methods with a 256 subdomain decomposition. Finally, for a given test example, the best computing time does not correspond to the best energy to solution; the policies to determine the best trade-off between these two criteria will be the subject of future work.

VI. CONCLUSION

Through the experiments conducted within this work, several lessons have been learnt on the numerical software designer side. For the numerical linear algebra solvers, we have seen that the best time to solution solver is also the best in terms of energy to solution, but not necessarily in terms of power requirement. From the application perspective, we have observed that the local polynomial order adaptivity, i.e., HDG-P k not only provides the best trade-off in terms of amount of memory and number of floating point operations, but also a nice trade-off in terms of energy consumption. As for the linear solver, the best option in terms of energy might not be the best one in terms of power.
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 22 Fig. 2. 2.5D test case with 6 subdomains along a 1D decomposition, used for the standalone MaPHyS experiments.
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TABLE I MAIN

 I CHARACTERISTICS OF THE NUMERICAL EXAMPLE CONSIDERED IN THE STANDALONE MAPHYS EXPERIMENTS.

	Num. of Num. of	Global	Global
	nodes	domains	matrix size Schur size
	1	64	4,305,041	211,806
	2	128	9,033,444	426,974
	3	192	14,202,169	642,142
	4	256	19,826,576	857,310
	5	320	25,922,025	1,072,478

TABLE II PERFORMANCE

 II OF THE COUPLED HORSE/MAPHYS SOFTWARE STACK. SCATTERING OF A PLANE WAVE BY A PEC SPHERE. TIMINGS FOR 100 ITERATIONS OF THE INTERFACE SOLVER OF MAPHYS.

	Method # sub-dom. # nodes	Wall	Energy	Power
				time	consum.	requir.
				(sec)	(kJ)	(kW)
	HDG	16	1	143.0	40	0.3
	P 1	32	2	54.4	35	0.6
		64	4	21.0	38	1.8
		64	8	20.2	68	3.4
		128	16	9.5	98	10.3
	HDG	64	4	104.7	114	1.1
	P 2	64	8	102.6	199	1.9
		128	16	38.3	187	4.9
		256	16	15.8	125	7.9
	HDG	64	8	415.7	724	1.7
	P 3	128	16	130.5	480	3.7
		256	16	48.7	240	4.9
	HDG	128	16	383.4	1,287	3.4
	P 4	256	16	132.5	538	4.0
	HDG	128	4	96.4	123	1.3
	P k	128	8	89.5	187	2.1
	k=1,4	256	4	32.2	96	3.0
		256	8	35.2	114	3.2
		256	16	31.1	179	5.8
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