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Abstract—High-performance computing (HPC) aims at devel-
oping models and simulations for applications in numerous sci-
entific fields. Yet, the energy consumption of these HPC facilities
currently limits their size and performance, and consequently the
size of the tackled problems. The complexity of the HPC software
stacks and their various optimizations makes it difficult to finely
understand the energy consumption of scientific applications. To
highlight this difficulty on a concrete use-case, we perform an
energy and power analysis of a software stack for the simulation
of frequency-domain electromagnetic wave propagation. This
solver stack combines a high order finite element discretization
framework of the system of three-dimensional frequency-domain
Maxwell equations with an algebraic hybrid iterative-direct
sparse linear solver. This analysis is conducted on the KNL-
based PRACE-PCP system. Our results illustrate the difficulty
in predicting how to trade energy and runtime.

I. INTRODUCTION

The advent of numerical simulation as an essential scientific
pillar has led to the co-development of hardware and software
capable of solving larger and larger problems at a tremendous
level of accuracy. The focus of performance-at-any-cost com-
puter operations has led to the emergence of supercomputers
that consume vast amounts of electrical power and produce so
much heat that large cooling facilities must be constructed to
ensure proper performance https://www.top500.org/green500.
To address this trend, the Green500 list puts a premium on
energy-efficient performance for sustainable supercomputing.
In the meanwhile, the high-performance computing (HPC)
community has faced the challenge with the emergence of
energy-efficient computing. While many innovative algorithms
[1], [2] have been proposed to reduce the energy consumption
of the main kernels used in the numerical simulations, fewer
studies [3] have tackled the overall energy analysis of a
complex numerical software stack.

This work was partially financially supported by the PRACE project funded
in part by the EU’s Horizon 2020 research and innovation programme (2014-
2020) under grant agreement 653838.

This work aims at conducting an energy and power analysis
of the simulation of frequency-domain electromagnetic wave
propagation, as detailed in Section II. Such a simulation is
representative of a numerical simulation involving the usage
of a complex software stack. In the present case, we study
the combined HORSE/MaPHyS numerical software stack. The
HORSE (High Order solver for Radar cross Section Eval-
uation) simulation software implements an innovative high
order finite element type method for solving the system of
three-dimensional frequency-domain Maxwell equations, as
presented in Section III. From the computational point of view,
the central operation of a HORSE simulation is the solution of
a large sparse and indefinite linear system of equations. High
order approximation is particularly interesting for solving high
frequency electromagnetic wave problems and, in that case,
the size of this linear system can easily exceed several million
unknowns. In this study, we adopt the MaPHyS [4] - [5] hybrid
iterative-direct sparse system solver, which is based on domain
decomposition principles [15]. MaPHyS is representative of
fully-featured adaptive sparse linear solvers [8], [10], [14], [16]
involving multiple numerical linear steps combining the usage
of dense and sparse direct numerical linear algebra kernels as
well as iterative methods, as further discussed in Section IV.

Energy consumption is a major concern putting a strain
on HPC infrastructures’ budget [1]. Additionnaly, peak power
consumption hampers the size of these infrastructures, chal-
lenging the electricity provisioning [2]. Power capping tech-
niques have been developed to control this power consumption
[11], [12]. While these techniques dynamically limit the power
consumption of running nodes, we argue here that a better
understanding of HPC applications behavior could be more
beneficial in finding an adequate trade-off between perfor-
mance, power and energy consumption. The objective of this
paper is to study the energy profile of a complex software stack
that is representative of numerical simulations. To perform the
energy and power analysis, we rely on two tools, Bull Energy
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Optimizer (BEO) and High Definition Energy Efficiency Vi-
sualization (HDEEVIZ). We first study the behavior of the
MaPHyS hybrid solver in a standalone fashion, showing the
energy profiles of each of its numerical steps. We then study
the behavior of the overall HORSE/MaPHyS simulation stack
on a realistic 3D test case.

The rest of the paper is organized as follows. Section
II briefly presents the high order discretization technique
employed while Section III presents the HORSE simulation
tool that implements it. Section IV presents the MaPHyS
sparse hybrid solver that is used to solve the underlying sparse
linear system. Section V presents the methodology employed
to conduct our energy analysis and discusses the energy profile
of the considered software stack, before concluding in Section
VI.

II. NUMERICAL APPROACH

During the last 10 years, discontinuous Galerkin (DG)
methods have been extensively considered for obtaining an
approximate solution of Maxwell’s equations. Thanks to the
discontinuity of the approximation, this kind of methods has
many advantages, such as adaptivity to complex geometries
through the use of unstructured, possibly non-conforming,
meshes, easily obtained high order accuracy, hp-adaptivity and
natural parallelism. However, despite these advantages, DG
methods have one main drawback particularly sensitive for
stationary problems: the number of globally coupled degrees
of freedom (DoF) is much larger than the number of DoF
required by conforming finite element methods for the same
accuracy. Consequently, DG methods are expensive in terms
of both CPU time and memory consumption, especially for
time-harmonic problems. Hybridization of DG (HDG) meth-
ods [13] is devoted to address this issue while keeping all
the advantages of DG methods. HDG methods introduce an
additional hybrid variable on the faces of the elements, on
which the definition of the local (element-wise) solutions is
based. A so-called conservativity condition is imposed on the
numerical trace, whose definition involves the hybrid variable,
at the interface between neighbouring elements. As a result,
HDG methods produce a linear system in terms of the DoF
of the additional hybrid variable only. In this way, the number
of globally coupled DoF is reduced. The local values of
the electromagnetic fields can be obtained by solving local
problems element-by-element. We have recently designed such
a high order HDG method for the system of 3D time-harmonic
Maxwell’s equations [13].

III. SIMULATION SOFTWARE

HORSE is a computational electromagnetic simulation soft-
ware for the evaluation of radar cross section (RCS) of
complex structures. This software aims at solving the full
set of 3D time-harmonic Maxwell equations modeling the
propagation of a high frequency electromagnetic wave in
interaction with irregularly shaped structures and complex
media. It relies on an arbitrary high order HDG method that
is an extension of the method proposed in [13]. This HDG

method designed on an unstructured possibly non-conforming
tetrahedral mesh, leads to the formulation of an unstructured
complex coefficient sparse system of linear equations for the
DoF of the hybrid variable, while the DoF of the components
of the electric and magnetic fields are computed element-
wise from those of the hybrid variable. This software is
written in Fortran 95. It is parallelized for distributed memory
architectures using a classical SPMD strategy combining a
partitioning of the underlying mesh with a message-passing
programming model using the MPI standard. One important
computational kernel of this software is the solution of a large
sparse linear system of complex coefficients equations. In a
preliminary version of this software, this system was solved
using parallel sparse direct solvers such as MUMPS [7] or
PaStiX [9]. However, sparse direct solvers may have a limited
scalability when it comes to solve very large linear systems
arising from the discretization of large 3D problems. In this
paper, we instead rely on a hybrid iterative/direct solver. We
employ the MaPHyS solver, discussed below, to do so.

IV. MAPHYS ALGEBRAIC SOLVER

The solution of large sparse linear systems is a critical
operation for many academic or industrial numerical sim-
ulations. To cope with the hierarchical design of modern
supercomputers, hybrid solvers based on algebraic domain
decomposition methods have been proposed, such as PDSLin
[14], ShyLU [16], HIPS [8] or HPDDM [10]. Among them,
approaches consisting of solving the problem on the interior of
the domains with a sparse direct method and the problem on
their interface with a preconditioned iterative method applied
to the related Schur Complement have shown an attractive
potential as they can combine the robustness of direct methods
and the low memory footprint of iterative methods.

MaPHyS (Massively Parallel Hybrid Solver) [4] - [5] is a
parallel linear solver, which implements this idea. The under-
lying idea is to apply to general unstructured linear systems
domain decomposition ideas developed for the solution of
linear systems arising from PDEs. The interface problem,
associated with the so-called Schur complement system, is
solved using a block preconditioner with overlap between
the blocks that is referred to as Algebraic Additive Schwarz.
Although MAPHYS has the functionality of exploiting two
level parallelism using threads within an MPI process, this
feature was not used in this study and focus was made on flat
MPI performance only. MAPHYS makes use of a sparse direct
solver as a subdomain solver such as MUMPS or PaStiX.
The parallelization of the direct solver relies on a specific
partitioning of the matrix blocks. PaStiX and MUMPS make
extensive use of highly optimized dense linear algebra kernels
(e.g., BLAS kernels).

A representation of the software architecture is given in
Figure 1.
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Fig. 1. Software architecture of the solver stack.

V. NUMERICAL AND PERFORMANCE RESULT

A. Experimental setup

For the numerical simulations reported below we have used
the PaRtnership for Advanced Computing in Europe - Pre-
Commercial Procurement (PRACE-PCP) Intel “Manycore”
Knights Landing (KNL) cluster Frioul at GENCI-CINES. Each
node is a KNL 7250 running at 1.4GHz with 68 cores and up
to 4 threads per core (272 threads per node) with 16 GB of
MCDRAM and 192 GB of RAM.

The MaPHyS solver is used in version 0.9.6. PaStiX 6.0 is
employed internally for processing subdomains (see ”sparse
direct step” below) and MUMPS 5.0.2 is used for processing
the coarse space for the dense+CSC variant (see ”dense+CSC”
below). We rely on Intel MKL 2017.0.0 for achieving high
performance BLAS and LAPACK. In particular, the Intel MKL
DSYGVX routine is used for computing the eigenvalue problem
in the subdomains in the case of the dense+CSC variant (see
”dense+CSC” below).

The energy measurements are performed with two tools
developed by Atos-Bull: BEO v1.0 and HDEEVIZ. The former
has been used to obtain accurate measures of the total energy
spent for the MaPHyS computation; the latter to visualize with
a fine time resolution the variations of the energy consumption
during the execution.

B. MaPHyS used in standalone mode

The weak scalability of the MaPHyS solver is first investi-
gated in a standalone mode. For these experiments, we solve
a 3D Poisson problem on a 2.5D domain that corresponds
to a beam and a 1D decomposition, as shown in Figure 2.
Each subdomain has at most two neighbors and is essentially
a regular cube of size 403 (i.e., each subdomain has approxi-
mately 64,000 unknowns). The energy performance has been

TABLE I
MAIN CHARACTERISTICS OF THE NUMERICAL EXAMPLE CONSIDERED IN

THE STANDALONE MAPHYS EXPERIMENTS.

Num. of Num. of Global Global
nodes domains matrix size Schur size

1 64 4,305,041 211,806

2 128 9,033,444 426,974

3 192 14,202,169 642,142

4 256 19,826,576 857,310

5 320 25,922,025 1,072,478

measured with BEO as the total energy consumed by the job.
We have also used the Bull HDEEVIZ graphic tool for a
detailed visualization of the energy consumption over time. In
Figure 5, we display the energy profile provided by this tool
on a typical run of MaPHyS. The main steps of the hybrid
solver can be observed by matching the execution time given
by HDEEVIZ with the MAPHYS output timers. Thus we can
identify these four steps:

• analysis: corresponds to the initialization of MaPHyS,
reading the subdomain from dumped files and performing
some preliminary index computations and communica-
tions;

• sparse direct: corresponds to the factorization of the
local matrix associated with internal unknowns and the
computation of the Schur complement associated with the
interface unknowns;

• precond: the preconditioning step consists of the compu-
tation of the local preconditioner and involves neighbor
to neighbor communications plus the factorization of the
assembled local Schur complement. This factorization
might be either dense or sparse depending on the pre-
conditioning strategy further described below;

• iterative: the iterative step aims at computing the solution
of the Schur complement system using a preconditioned
Krylov subspace method; that is the Conjugate Gradient
for the Poisson problem or GMRES for the electromag-
netic computation.

The local matrices are read from files, which is both time
and energy consuming but not really relevant to MaPHyS
performance, since the matrices are usually computed locally
and directly provided to the solver by the application codes
such as HORSE for the experiments reported in the next
section. This file access appears on the profile before the
analysis starts.

We have considered five test cases whose properties are
displayed in Table I and assessed three numerical variants of
the solver that are referred to as:

• dense: we consider the fully assembled local Schur com-
plements to build the additive Schwarz preconditioner;
only dense linear algebra kernels, cpu intensive with very
regular memory access patterns, are then used in the
preconditioner application at each iteration of the iterative
step.



Fig. 2. 2.5D test case with 6 subdomains along a 1D decomposition, used for the standalone MaPHyS experiments.
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Fig. 3. Step by step time performance for MaPHyS.

• sparse: the entries of the local dense Schur complements
that are smaller than a given relative threshold (10−5) are
discarded; the resulting sparse matrices are then used to
build the additive Schwarz preconditioner; mostly sparse
linear algebra kernels, less cpu demanding with very
irregular memory access patterns, are then used when
applying the preconditioner in the iterative part.

• dense+CSC: in addition to the previously described dense
preconditioner, a coarse space correction [6] (CSC) is ap-
plied to ensure that the convergence will be independent
from the number of subdomains. In this experiment we
compute five vectors per subdomain to create the coarse
space. The coarse space being relatively small compared
to the global problem, computations are centralized onto
one process and solved by the direct solver (MUMPS in
the experiments reported here).

As it can be seen in Figure 5 (power profile of the dense
variant on a single node execution), the memory energy
consumption represents a significant part of the total (45.7%),
which is consistent with the current trend: floating point
operations are cheap while memory accesses are relatively
costly. One can furthermore observe that the setup and analysis
parts of the run have a low energy consumption. The three
numerical steps of the MaPHyS solver can be clearly identified
through the combined observation of the memory and CPU
power profiles. The iterative solve step appears quite clearly
as a large plateau, where the power consumption is high for
memory and low for CPU. It is consistent with the fact that
this step is memory bound with many communications and

relatively few computations. The total energy consumed by
the node is 5.6 Wh = 20,160 J, which corresponds to the
results given by BEO for this case.

We also report the total energy of the job provided by BEO,
the total time to solution, the number of iterations and the
time spent in the iterative step, in figures 4a, 4b, 4c and 4d,
respectively. The time of each step of the solver is represented
Figure 3. A value is missing for the “sparse” curve with 128
subdomains due to measurement error.

We observe that, despite the extra-memory traffic due to
indirections, the fact that it induces much fewer floating
point operations than the dense variant leads to a lower
overall energy consumption. The high energy required by the
dense+CSC preconditioner is mainly due to the setup of the
CSC, which is both memory and CPU demanding. Because the
dense and sparse preconditioners do not implement any global
coupling numerical mechanisms, the number of iterations is
expected to grow as the number of subdomains for the 1D
decomposition of the domain on the Poisson test example. This
poor numerical behavior can be observed in Figure 4c, while
it can be seen that the coarse space correction (dense+CSC
variant) plays its role and ensures a number of iterations
independent from the number of domains (see [6] for further
insights on the numerical properties of the method). This nice
numerical behavior translates in terms of time to solution for
the iterative part where the dense+CSC method outperforms
the two other variants. However, the overhead of the setup
phase for the construction of the coarse space, which requires
the solution of generalized eigenproblems, is very high and
cannot be amortized at that intermediate scale if only a single
right-hand side has to be solved (which would not be the
case for, e.g., radar cross section evaluation as considered in
Section V-C, where multiple right-hand sides must be solved
in real-life test cases). Nonetheless, the relative ranking in
terms of power requirements are different. Through a simple
linear regression, we can observe that the average power
requirements are about 328, 326 and 321 W/node for the
dense, sparse and dense+CSC preconditioners, respectively.

C. Scattering of a plane wave by a PEC sphere

We now consider a more realistic problem that consists in
the scattering of a plane wave with a frequency F=600 MHz by
a perfectly electric conducting (PEC) sphere. The contour lines
of the x-component of the electric field are displayed in Figure
6a, and the obtained RCS is plotted in Figure 6b together
with a comparison with a reference RCS obtained from a
highly accurate (but costly) BEM (Boundary Element Method)
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Fig. 4. Time and energy performance for MAPHYS .

Fig. 5. Power dissipation over the execution time of MaPHyS, visualized with HDEEVIZ.

calculation. This problem is simulated using the coupled
HORSE/MaPHyS numerical tool. The underlying tetrahedral
mesh contains 37,198 vertices and 119,244 elements. We have
conducted a series of calculations for which the number of

iterations of the MaPHyS interface solver has been fixed
to 100. Simulations are performed using a flat MPI mode,
binding one MPI process per physical core without any shared
memory parallelism. We consider the following two situations:



(a) Contour lines of the x-component of the electric field. (b) Contour lines of the x-component of the RCS.

Fig. 6. Scattering of a plane wave by a perfectly electric conducting sphere.

TABLE II
PERFORMANCE OF THE COUPLED HORSE/MAPHYS SOFTWARE STACK.
SCATTERING OF A PLANE WAVE BY A PEC SPHERE. TIMINGS FOR 100

ITERATIONS OF THE INTERFACE SOLVER OF MAPHYS.

Method # sub-dom. # nodes Wall Energy Power
time consum. requir.
(sec) (kJ) (kW)

HDG 16 1 143.0 40 0.3
P1 32 2 54.4 35 0.6

64 4 21.0 38 1.8
64 8 20.2 68 3.4

128 16 9.5 98 10.3

HDG 64 4 104.7 114 1.1
P2 64 8 102.6 199 1.9

128 16 38.3 187 4.9
256 16 15.8 125 7.9

HDG 64 8 415.7 724 1.7
P3 128 16 130.5 480 3.7

256 16 48.7 240 4.9

HDG 128 16 383.4 1,287 3.4
P4 256 16 132.5 538 4.0

HDG 128 4 96.4 123 1.3
Pk 128 8 89.5 187 2.1
k=1,4 256 4 32.2 96 3.0

256 8 35.2 114 3.2
256 16 31.1 179 5.8

(a) the interpolation order in the HDG discretization method
is uniform across the cells of the mesh; (b) the interpolation
order is adapted locally to the size of the cell based on goal-
oriented criterion. In the latter situation, we distribute the
interpolation order such that there are at least 9 integration
points (degrees of freedom of the Lagrange basis functions)
per local wavelength. For the particular tetrahedral mesh used

in this study, we obtain the following distribution of poly-
nomial approximation within the mesh elements: 12,920 P1

elements, 70,023 P2 elements, 31,943 P3 elements and 4,358
P4 elements. For a given mesh, a uniform interpolation order
is not necessarily the best choice in terms of computational
cost versus accuracy, especially if the mesh is unstructured as
it is the case here. Increasing the interpolation order allows
for a better accuracy at the expense of a larger sparse linear
system to be solved by MaPHyS. Distributing the interpolation
order according to the size of the mesh cells allows for a good
trade-off between time to solution and accuracy.

The performance in terms of both time and energy con-
sumption are reported in Table II. In this table, the number
of subdomains also corresponds to the total number of core
or MPI processes. The number of MPI processes per node
can be deduced from the number of nodes. First of all, in
most of the tested configurations, we observe a superlinear
speedup, as a result of the reduction of the size of the local
discretization matrices within each subdomain. The size n of
the local matrices roughly decreases linearly with the number
of domains but the arithmetic complexity for their factorization
is O(n2) that leads to this superlinear effect. We first note, as
expected, that the energy consumption with higher values of
the interpolation order increases, since the size of the HDG
sparse linear system increases drastically. For a given number
of subdomains, a second noticeable remark is that the energy
consumption increases when the number of MPI processes
per node decreases; this leads to a higher network traffic and
moving data through the network is more costly than moving
them in memory. For instance, for the HDG-P1 method, Using
a decomposition of the tetrahedral mesh in 64 subdomains, the
energy consumption is equal to 38 kJ on 4 nodes (i.e., with
16 MPI processes per node) and 68 kJ on 8 nodes (i.e., with 8



MPI processes per node). A similar behavior is observed for
the HDG-P2 method and a 64 subdomain decomposition.

The power consumption increases with the number of nodes
due to their idle power consumption (i.e. power consumption
when being switched one but performing no useful task). Yet,
this characteristic does not order the energy consumption.
Indeed, for the HDG-P1 method, the energy consumption is
higher with 1 node than with 2 or 4 nodes, but lower than
with 8 or 16 nodes. This situation highlights the fact that the
most energy-efficient solution is not always the faster time-
to-solution or the least number of nodes: the trade-off lies
in-between these two performance metrics and is specific to
the considered solving method.

A final comment is that the use of a locally adapted
distribution of the interpolation order allows for a substantial
reduction of the energy consumption for a target accuracy.
This is in fact the result of lowering the computing time
solution because of the reduction of the size of the problem,
as it can be seen by comparing the figures for the HDG-P4

and HDG-Pk methods with a 256 subdomain decomposition.
Finally, for a given test example, the best computing time does
not correspond to the best energy to solution; the policies to
determine the best trade-off between these two criteria will be
the subject of future work.

VI. CONCLUSION

Through the experiments conducted within this work, sev-
eral lessons have been learnt on the numerical software
designer side. For the numerical linear algebra solvers, we
have seen that the best time to solution solver is also the best
in terms of energy to solution, but not necessarily in terms of
power requirement. From the application perspective, we have
observed that the local polynomial order adaptivity, i.e., HDG-
Pk not only provides the best trade-off in terms of amount
of memory and number of floating point operations, but also
a nice trade-off in terms of energy consumption. As for the
linear solver, the best option in terms of energy might not be
the best one in terms of power.
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