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Plasmon dispersion in graphite: A comparison of current ab initio methods
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We perform a systematic study of the macroscopic dielectric function and electron energy loss (EEL) spectra
for graphite. We obtain the dispersion behavior for the π plasmon, as a function of the momentum transfer q for
two nonequivalent paths that traverse the first four Brillouin zones. We carry out these calculations within both
time-dependent density functional theory (with two exchange-correlation functionals) and the Bethe-Salpeter
equation. Additionally, we explore the effects of using the complete excitonic Hamiltonian (with all electron-
hole pairs and antipairs), and within the Tamm-Dancoff approximation (neglecting antipairs). By analyzing the
behavior of the macroscopic dielectric function, we are able to determine which peaks are predominantly from
plasmonic behavior or only interband transitions. We compare the calculated spectra against several experiments
that span almost five decades; our results present clear trends that follow the physical origins of the observed
peaks. We carry out this study over a large range of momentum transfer in order to better evaluate the different
theoretical methods compared to experiment, and predict the plasmonic behavior beyond available experimental
data. Our results indicate that including the complete Hamiltonian with the exciton coupling included is essential
for accurately describing the observed EEL spectra and plasmon dispersion of graphite, particularly for low
values of momentum transfer. However, the solution of the Bethe-Salpeter equation is computationally intensive,
so time-dependent density functional theory methods used in conjunction with the complete Hamiltonian may
be an attractive alternative.
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I. INTRODUCTION

The study of the optical spectra of solids yields important
insight into the underlying electronic and structural properties
of a material. When an incident photon is absorbed by a
material, the system is energetically excited from its ground
to an excited state, forming an electron-hole pair or exci-
ton, a localized quantum of neutral electron-hole (e-h) pairs
bound by the Coulomb attraction. From a theoretical stand-
point, ab initio calculations are essential tools for elucidating
these excited-state electronic properties of solids, surfaces,
and nanostructures. Ground-state properties can be calculated
accurately using density functional theory (DFT) [1,2], but
the aforementioned electronic excitations necessitate further
theoretical developments. Time-dependent density functional
theory (TDDFT) [3] is a natural extension of DFT, and is
able to successfully describe spectra like electron energy loss
spectroscopy (EELS) or inelastic x-ray scattering of simple
semiconductors, as well as the photoabsorption cross section
of simple molecules. However, while the use of the local
density approximation (LDA) in DFT yields qualitative (and
more often than not, quantitative) agreement with experi-
ment for the ground-state properties of many materials, the
same cannot be said for using the adiabatic LDA (ALDA)
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functional [3] in TDDFT (the TDDFT equivalent of DFT-
LDA). This functional does not consistently improve the
calculated optical spectra of solids with respect to the common
random phase approximation (RPA), where the exchange-
correlation functional, the main ingredient of TDDFT, is ne-
glected. It is in fact well known [4] that today functionals and
approximations to TDDFT are not well suited for accurately
calculating the absorption spectra of most solids [4,5], where
excitonic behavior predominates.

Thus, the behavior of complex electronic excitations can
only be accurately described by making use of many-body
perturbation theory (MBPT) [6]. In particular, using Hedin’s
GW approximation [7] followed by solving the Bethe-Salpeter
equation (BSE) [4,8–11] allows for the accurate calculation
of the optical properties of many physical systems, within
a completely ab initio framework [12–23]. In general, ab-
sorption and scattering spectroscopies (that concern neutral
excitations) are very well described by the BSE [4,24–27].
Within this GW/BSE approach, excitons are described as a
combination of e-h pairs of a noninteracting system; we can
convert the problem to an effective eigenvalue problem in
the e-h basis. However, nanoscale materials involve a huge
number of e-h pairs, which makes solving the BSE extremely
costly from a computational standpoint. The Tamm-Dancoff
approximation (TDA) [6] is an approximation that only con-
siders positive-energy e-h pairs, effectively neglecting the in-
teraction between e-h pairs at positive and negative (antipairs)
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energies. The non-Hermitian BS problem is thus reduced to a
Hermitian problem that can be solved with efficient and stable
iterative methods. The Haydock recursion scheme [28–30]
is one of the most efficient and computationally inexpensive
iterative methods used for dealing with the Hamiltonian.
Thanks to this reduction in the computational complexity, the
TDA has been applied to a variety of systems [31–33].

Excitations from plasmons, collective oscillations of the
electronic density that induce a macroscopic polarization, can
also feature very prominently in the measured EEL spectra
for some materials. These oscillations involve the creation of
e-h antipairs; thus, these plasmonic features are inherently ill
described by the TDA [34–37]. Accurately describing both
plasmonic and excitonic features is essential if we wish to
accurately characterize and analyze the system; therefore, we
require a suitable test case in order to carry out a complete
study of these theoretical methods. Optimally, this reference
material will display plasmonic behavior, be theoretically
and experimentally well characterized, and have continued
relevance in current research. We consider that bulk graphite
meets these requirements and can make for a very effective
benchmark. Early work revealed accurate band structure cal-
culations [38,39] that continue to be experimentally studied by
very precise photoemission and ARPES experiments [40,41].
A great variety of EELS [42–47] and absorption [47–49]
measurements have been carried out with relevant theoretical
developments, including detailed analysis of the low-energy
(π ) and high-energy (π + σ ) plasmons. Concerning the actual
plasmon dispersion, there is very recent work [50,51] featur-
ing very high resolution EELS measurements for a variety of
values of momentum transfer. Lastly, graphite continues to
be of relevance as the precursor of graphene, which presents
its own unique spectroscopic characteristics [51–56], many of
which can be explained through its relationship with graphite.

Therefore, our motivation for this study is to compare
the available theoretical frameworks and apply them towards
a reference material, graphite, with a solid body of consis-
tent experimental characterization behind it. We perform a
systematic study of the macroscopic dielectric function and
EEL spectra for graphite, in order to elucidate the π -plasmon
dispersion behavior as a function of the momentum transfer
q for two nonequivalent paths that encompass the first four
Brillouin zones. We carry out these calculations within both
TDDFT (with two exchange-correlation functionals) and the
BSE; additionally, we explore the effects of using the com-
plete excitonic Hamiltonian (with all e-h pairs and antipairs),
and within the TDA (neglecting antipairs). The resulting
spectra are consistent with previous results featured in the
literature, and we can accurately discern which peaks derive
from plasmonic behavior or from interband transitions. How-
ever, as each method considers very different approximations,
the peak positions and intensity change substantially. We
study these characteristics and compare them against several
experiments that present consistent tendencies, even though
they were carried out in different periods and by different
groups. Our calculated spectra present clear trends that follow
the physical origins of the observed peaks. Given the large
momentum transfer values (up to q = 3.22 Å−1), and the
comparison of several methods with various experiments, we
consider this to be a thorough benchmark for future reference.

This paper is organized as follows. In Sec. II, we present
the theoretical framework that describes the aforementioned
methods. In Sec. IV, we present our results for the q-
dependent plasmon dispersion over two separate, nonequiv-
alent paths in the Brillouin zone, and show several detailed
comparisons with experiment. We list our conclusions and
final remarks in Sec. V.

II. THEORY

In order to better explain the differences between the
TDDFT and BSE frameworks, we will describe them in the
same formalism for clarity and ease of interpretation. The key
quantity measured in absorption and EELS is the macroscopic
dielectric function, εM; specifically, Im εM is measured in
absorption experiments, while −Im (1/εM) is measured in
EELS. The macroscopic dielectric function is connected to
the inverse dielectric function ε−1 as

εM(ω) ≡ lim
q→0

1

[ε−1(q, ω)]G=G′=0
,

where G and G′ are reciprocal lattice vectors. We can express
ε−1 for both TDDFT and the BSE as a Dyson-like equation,

D = D(0) + D(0)KD. (1)

For TDDFT, D is the two-point polarizability χ , from which
we can obtain the inverse dielectric function ε−1 = 1 − vχ (v
is the Coulomb potential); for the BSE, D is the two-particle
correlation function L which yields χ by contracting two of
its four indices,

χ (1, 2) = L(1, 1+, 2, 2+), (2)

where (1) is shorthand notation for specific position, time, and
spin states.

The two theories can be recast in the same equation, but
this similarity in form hides some key differences [57,58]:

(1) TDDFT leads to two-point equations for describing the
propagation of the density; BSE describes the propagation of
an electron (e) and a hole (h), and thus leads to four-point
equations [as evident from Eq. (2)].

(2) In TDDFT, D(0) is the independent-particle response
function χ (0) constructed with the Kohn-Sham (KS) orbitals
and eigenvalues; in the BSE formalism, D(0) is the indepen-
dent quasiparticle response L(0) constructed using quasiparti-
cle eigenvalues and eigenfunctions (obtained, for example, via
a GW calculation as done in this work).

(3) In TDDFT, the kernel K = v + fxc, where fxc is
the functional derivative with respect to the density of the
exchange-correlation potential vxc, and so fxc = δvxc/δρ. For
the BSE, K = v − W with W the screened version of the bare
Coulomb interaction v.

Regarding this last point, different approximations are
possible for vxc and thus fxc. In this work, we will compare
the adiabatic local density approximation (ALDA), where the
exchange-correlation potential is taken in the LDA,

f ALDA
xc = δvLDA

xc /δρ,

and the random phase approximation (RPA), where

f RPA
xc = 0.
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In the case of the BSE, the screening term W is commonly
taken in a static version calculated at the RPA level [4,57].
While v enters in the kernel K as a repulsive e-h exchange
interaction and is responsible for the local-field effects, the
second term in both theories ( fxc or −W ) describes the at-
tractive interaction which is the origin of the excitonic effects,
including the formation of bound excitons.

In order to obtain a spectral representation of D (given that
only a small number of transitions will contribute to each part
of the spectrum), it is useful to reformulate the Dyson-like
Eq. (1) as an eigenvalue problem [4,34,59,60] by introducing
an effective two-particle excitonic Hamiltonian, Hexc, thus
obtaining an eigenvalue problem,

Hexc(qr )Aλ(qr ) = Eλ(qr )Aλ(qr ).

The excitonic Hamiltonian is written in a basis of electron-
hole transitions (n1k1 → n2k2). These transitions can be clas-
sified as resonant transitions, (v, k − qr ) → (c, k), or antires-
onant transitions, (c, k) → (v, k + qr ), depending on whether
the band index n is associated with an occupied valence (v)
band or an unoccupied conduction (c) band. Lastly, qr is
a momentum transfer belonging to the first Brillouin zone
[23]. The excitonic Hamiltonian has a block matrix form
[22,23,25,36],

Hexc =
(

R CR,A

CA,R A

)
.

When working in the long-wavelength limit (qr → 0), A =
−R∗ and CA,R = −[CR,A]∗. The diagonal A and R blocks
are Hermitian, while the coupling C blocks are symmetric.
When dealing with a generic momentum transfer qr �= 0 then
A �= −R∗ and the coupling terms are no longer symmetric,
effectively doubling the computational cost of evaluating Hexc.

By taking advantage of the fact that the off-diagonal
terms are typically significantly smaller than the resonant
terms, it is possible to reduce the computational cost by
using the Tamn-Dancoff approximation (TDA) [6] by setting
the off-diagonal coupling terms C to zero. In other words,
the interaction between e-h pairs at positive and negative
(antipairs) energies is neglected, and only one e-h pair is
assumed to propagate in any time interval. Considering the
different nature and locality of excitons and plasmons, it is
clear that the TDA is more unreliable for describing plasmons,
where the density oscillations involve the excitation of large
numbers of e-h antipairs. Nevertheless, due to the success
obtained in describing the optical absorption of solids and
thanks to the remarkable numerical advantages, the TDA has
been applied to many different systems [57]. Under the TDA
the Hamiltonian becomes a Hermitian operator, enabling the
use of efficient iterative schemes for solving the BSE such as
the Haydock recursion method [15,22,28–30,61].

The advantage of having the spectral representation of the
excitonic Hamiltonian is clear; instead of inverting a matrix
for each frequency, we are only required to diagonalize it once
for all [60]. Regardless of the framework (TDDFT or BSE) or
the method used for diagonalizing the excitonic Hamiltonian,
it is possible to obtain the macroscopic dielectric function
from the eigenvalues (Eλ) and eigenstates (Aλ) [4]; this is then
used to calculate the theoretical spectra that can be directly
compared with experimental data. The general expression for

TABLE I. Naming scheme employed for the calculations fea-
tured in this work.

Label Type Hamiltonian fxc

BSE CP/TD MBPT Full/Tamm-Dancoff
ALDA CP/TD TDDFT Full/Tamm-Dancoff δvLDA

xc /δρ

RPA CP/TD TDDFT Full/Tamm-Dancoff 0

εM is

εM (ω)

= 1 − lim
q→0

v0(q)
∑
λ,λ′

⎡
⎣∑

(n1,n2 )

〈n1|e−iq·r|n2〉 A(n1,n2 )
λ

Eλ − ω − iη
S−1

λ,λ′

×
∑

(n3,n4 )

〈n4|eiq·r′ |n3〉A∗(n3,n4 )
λ

(
fn4 − fn3

)⎤⎦,

with occupation functions fni , long-range component of the
Coulomb potential v0, and overlap matrix

Sλ,λ′ =
∑
n1n2

A∗(n1n2 )
λ A(n1n2 )

λ′ .

In the TDA, the Hamiltonian becomes Hermitian and the
eigenstates Aλ are mutually orthogonal. This results in a
greatly reduced expression for the macroscopic dielectric
function,

εTDA
M (ω) = 1 − lim

q→0
v0(q)

∑
λ

∣∣∑
(n1,n2 )〈n1|e−iq·r|n2〉A(n1,n2 )

λ

∣∣2

Eλ − ω − iη
.

Note that for large momentum transfer,

−Im ε−1
M (q, ω) = Im εM(q, ω)

[Re εM(q, ω)]2 + [Im εM(q, ω)]2

≈ Im εM(q, ω),

(3)

since Re εM(q, ω) → 1, and Im εM(q, ω) is very small [23].
Thus, the EEL spectra will increasingly mimic the absorption
spectra for large values of q.

Table I enumerates the labels that we will use for the
remainder of this work, and the particular method described
by each label.

III. COMPUTATIONAL DETAILS

The electronic ground state and band structure of bulk
graphite were calculated using DFT-LDA [1,2], using norm-
conserving Troulliers-Martins pseudopotentials [62] using the
plane-wave basis method implemented within the ABINIT
[63,64] code. Our calculated DFT band structure is identical to
previously reported results [65]. We constructed the graphite
structure using lattice constants a = 2.45 Å and c = 6.69 Å,
obtained from structural optimization studies. The ground-
state energy was calculated using an 11 × 11 × 4 Monkhorst-
Pack grid of k points, with an energy cutoff of 20 Ha.

We then selected two separate k-point grids for carrying
out our study of plasmon dispersion over different momentum
values, q. These momentum vectors follow two in-plane paths
along the Brillouin zones: first, from � to the M point of
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kx

ky

M1 M4

K1

M3

K4

Γ

FIG. 1. First four Brillouin zones with the two selected paths (1)
� to M in the fourth zone (M4), and (2) � to K in the fourth zone
(K4), along which we calculate the EEL spectra and macroscopic
dielectric function.

the fourth zone (M4), and second, from � to the K point
of the fourth zone (K4). Both paths pass through various
points of symmetry; see Fig. 1 for a graphical representa-
tion. The selected �-centered 14 × 14 × 2 (392 k points)
and 12 × 12 × 2 (288 k points) grids were chosen due to
the easy accommodation to the desired q values (commonly
used in experiments) along both paths, and because they
offered an acceptable compromise between convergence and
computational expense. For the � → M4 path we used both
grids in order to provide a more dense sampling of q vectors.
For the � → K4 path, the 12 × 12 × 2 grid naturally accom-
modates the K1 ( 1

3
1
3 0) and K4 ( 2

3
2
3 0) points. The pertaining

Kohn-Sham structure (KSS) and screening files were then
constructed using 100 total bands, with a total cutoff energy
of 20 Ha. The final KSS file includes a shift of (0.1, 0.2, 0.3)
in order to improve convergence over the total number of k
points.

Lastly, we used the DP/EXC code [66,67] to execute the
calculation of the macroscopic dielectric function (ε) and the
EEL spectra for different values of q. We obtained converged
spectra using 12 shells of reciprocal-space vectors (G), 20
shells of plane waves, and 80 total bands for all methods, ex-
cept when explicitly noted otherwise. Local-field effects have
been taken into account in every calculation presented here.
The macroscopic dielectric functions and EEL spectra have a
0.6 eV Gaussian broadening applied to them. Furthermore,
in order to simulate the band-structure stretching obtained
from GW results [68], a stretching of 10% was applied to
the valence-band energies, and 5% to the conduction band
energies. These parameters and corrections were kept uniform
across all methods studied here. 400 iterations were used for
calculations that make use of the Haydock iterative method
[15,22,28–30,61].

The DP/EXC code was enabled to use the PETSc [69]
and SLEPc [70] libraries for diagonalizing [71] the complete
excitonic Hamiltonian using MPI parallelism. In fact, it is
the inclusion of these libraries that makes it possible to solve
the BSE CP (with coupling terms included) in a reasonable

amount of time. All other calculations use the OpenMP par-
allel API, for efficient parallelization and memory use on
a single machine. The Supplemental Material [72] contains
detailed computational benchmarks concerning these calcula-
tions.

IV. RESULTS

We calculate the macroscopic dielectric functions and the
subsequent EEL spectra over an energy range between 0 to
15 eV, enough to cover the dispersion behavior of the π -
plasmon for each value of momentum transfer q. Figure 1
depicts the two selected in-plane q paths along which we
calculate our results. The � → M4 path has only variation
of qx, and passes through the M point of the first zone.
The � → K4 path varies both qx and qy and passes through
the K point of the first zone and the M point of the third
zone. As mentioned in Sec. III, we used 14 × 14 × 02 and
12 × 12 × 02 k-point grids for these calculations, allowing us
to evaluate the q dependence in steps of 1/14 and/or 1/12
for each path. Shared points between these two grids (�, M1,
and M4) are virtually identical, meaning that both grids have
acceptable convergence.

A plasmon excitation is identified as the point where
Re εM = 0 (crossing from negative to positive), and Im εM

is nearly zero. For convenience, we will refer to this as the
plasmon criterion [73]; therefore, peaks in the EEL spec-
tra that meet this condition will naturally be understood to
be plasmon excitations. The general physical picture of the
q-dependent plasmon dispersion is as follows. The shape
and intensity of Re εM(q, ω) are indicative of the electron
screening behavior, and Im εM(q, ω) is indicative of interband
transitions [65]. Plasmonic behavior for small values of q
are present in the EEL spectrum, with the thin peaked π

plasmon appearing around 7 eV. For values of q < 1.0 Å−1,
the plasmon criterion is met and the plasmon peak occurs very
close to the point where Re εM(q, ω) is zero. This holds true
for both the � → M, and � → K directions. For larger values
of q, the plasmon criterion is no longer met, as Re εM(q, ω)
takes on only positive values; however, the EEL spectrum still
presents defined peaks that correspond to interband transitions
only [65]. This is in accordance to Eq. (3), where the EEL
spectra will begin to be less and less affected by the reduced
screening of Re εM(q, ω), and essentially mimic Im εM(q, ω).

In Fig. 2, we present a general comparison of the EEL
spectra and macroscopic dielectric function between the dif-
ferent methods, centered around the energy range of the π

plasmon. For this low value of q = 0.21 Å−1, the peak in the
EEL spectra meets the aforementioned plasmon criterion and
the plasmon peak energy position matches the zero crossing
(from negative to positive) of Re εM(q, ω). Im εM(q, ω) (not
shown) is also very small around this transition point. The
plasmon peak is present for all calculated methods; however,
peak position and intensity vary significantly between them.
The predominant difference in peak intensity comes from the
inclusion of the coupling terms in the excitonic Hamiltonian.
Considering the applied broadening, methods that include
these coupling terms (BSE CP, ALDA CP, and RPA CP) have
peak intensities that are closer to experiment [43,45,65]; the
remaining methods produce peaks that are roughly twice as
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FIG. 2. Top panel: Comparison of the different theoretical EEL
spectra in the π -plasmon region at the same momentum transfer
q = 0.21 Å−1. Bottom panel: The corresponding real part of the
dielectric function, Re εM. The plasmon criterion is met for this low
value of q; however, the plasmon peak position and intensity vary
widely between each method.

intense. The ALDA and RPA calculations yield spectra that
are generally quite similar. We will discuss the peak positions
in more detail below when addressing the q-dependent plas-
mon dispersion.

Figure 3 depicts the differences introduced into both the
EEL spectrum and the dielectric function when applying
valence (conduction) band stretching of 10% (5%). As men-
tioned above, this band stretching is taken from GW results
[68] and compares very well with photoemission measure-
ments [65,74]. Both the EEL spectrum and dielectric function
are shifted towards higher energies; however, the nature of the
stretching causes a redistribution of the band energies, which
causes changes in both the peak position and intensities.
Since these values are applied to the DFT band energies
that are used subsequently in the calculation of the dielectric
function, this behavior is consistent across all methods, and
for all calculated values of q. This stretching improves the
agreement of the peak positions between the calculated and
the experimental EELS spectra.

In Fig. 4, we present the q-dependent dispersion behavior
of the π plasmon, for values of q along the � → M1 path.
Colored points represent the different calculations, while the
black squares are data points from high-resolution EELS
measurements reproduced with permission from Ref. [51].
The peaks in the EEL spectra split into two branches: a main
branch that is present for all values of q with energy values
between 7 and 13 eV, and a secondary branch that begins to

FIG. 3. Top panel: EEL spectra calculated with the Bethe-
Salpeter equation, including the coupling terms in the excitonic
Hamiltonian (BSE CP), for a transferred momentum q = 0.21 Å−1,
calculated with both stretched and unstretched valence and con-
duction bands. Bottom panel: The corresponding real part of the
macroscopic dielectric function, Re εM. The band stretching causes
the spectra peaks to shift nonrigidly to higher energies.

appear after q = 0.6 Å−1 with energy values between 5 and
8 eV. As mentioned above, not all of these points represent
plasmon excitations; in general, points for values of q >

1.0 Å−1 do not meet the plasmon criterion and are primarily
produced by interband transitions [65]. However, these points
are measured by EELS experiments and are therefore included
in our comparison.

FIG. 4. The π -plasmon dispersion, obtained by plotting the peak
maximum (in eV) as a function of transferred momentum q (along
the � → M1 path). The peak positions calculated using each theo-
retical method are compared with experimental data from Ref. [51].
The uneven spacing between the calculated points is due to the use
of both the 12 × 12 × 2 and 14 × 14 × 2 k-point grids.
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FIG. 5. A more detailed view of the π -plasmon peak dispersion
along the � → M1 path; “BSE CP” is our theoretical result (fea-
tured in Fig. 4), “Zeppenfeld” is experimental data from Ref. [43],
“Kinyanjui” from Ref. [50], and “Liou” from Ref. [51]. Error bars
have been excluded from the “Liou” data for improved legibility. The
red dashed line is a quadratic fit for the theoretical points.

It is evident from the plot that the peak positions vary
widely across all methods, and some general trends can be
seen. Calculations that employ the TDA are generally shifted
towards higher energies over their counterparts; thus, ALDA
TD and RPA TD typically present the least similarity with
the experimental data. ALDA CP and RPA CP are quite
similar, with ALDA CP presenting some improvement over
RPA CP. Both of these methods tend to have a higher energy
value than the experiment, although they fit well for low
values of q. The BSE CP calculation coincides well with the
experimental points throughout the entire q range, but tends
to underestimate the energy for large values of q. Both BSE
calculations begin to coincide as the value of q increases.

In Fig. 5, we focus on the upper branch and compare our
most complete calculation, BSE CP, against three separate
experimental EELS measurements taken from Refs. [43],
[50], and [51]. These experiments are mostly consistent with
each other across the range of transferred momentum. Our
calculation yields, in general, quantitatively similar results
to the measured peak values. All of our calculations follow
the well-documented quadratic dispersion relation [43,65]; in
particular, the BSE CP method follows this relation for values
of q < 1.2 Å−1. The red dashed line in the figure is a quadratic
fit for the theoretical points. Overall, our calculated results can
be directly compared with experiments that span almost five
decades, taken by completely different groups.

These trends are in accordance with the approximations
implied for each method. First, taking into account excitons
(e-h interactions) causes the peak position to shift towards
lower energies [25]; second, the inclusion of the coupling
terms in the Hamiltonian further shifts the peak position to
lower energies [36,37]. This explains why BSE CP has the
lowest peak energies, and why RPA TD and ALDA TD
have the highest. Furthermore, the TDA is known to fail at
describing plasmonic excitations [34–37] due to the neglected
e-h antipairs; thus, for small values of q, BSE TD tends to
overestimate the peak energy. However, as the momentum
transfer increases the plasmon dissipates into interband tran-
sitions (reducing the number of e-h antipairs), and the BSE
CP and BSE TD calculations begin to coincide. In fact, this
behavior holds true for all methods; in other words, the TDA

FIG. 6. Color map representations of the calculated EEL spectra
vs transferred momentum (q) for the π -plasmon region, for q values
along the � → M4 path. Methods including the coupling terms in
the excitonic Hamiltonian are shown in the left column, and methods
neglecting these terms (Tamm-Dancoff approximation) are shown
in the right column. The EEL intensity is represented by the color
palette ranging from blue to red. The exact peak positions from Fig. 4
are superimposed on each color map.

can accurately describe the peak positions when plasmon
behavior is not expected, or there is little to no contribution
from e-h antipairs.

In order to elucidate the general trends beyond the exper-
imental data range (past the M1 point in the first Brillouin
zone), we extend our calculations all the way up to the fourth
Brillouin zone to the M4 point. Figure 6 depicts the complete
plasmon dispersion for each calculation, for q values along
the � → M4 path. The left side of the figure presents the
calculated dispersion including the coupling terms, and the
right side with calculations that neglect them; the EELS inten-
sity scale is located above each column. The peak positions
featured in Fig. 4 are superimposed over each color map.
All methods agree that the upper branch mostly dissipates
for q values beyond M1 (1.48 Å−1), while the lower branch
continues to exist throughout the range. As mentioned above,
the behavior of both ε1 and ε2, which does not conform to
the plasmon criterion for these high q values, indicates that
these peaks are primarily due to interband transitions and are
not plasmons. Our predictions also show that the lower branch
presents negative dispersion after M1, and appears to return to
lower energies rather than continuing upwards. Confirmation

045205-6



PLASMON DISPERSION IN GRAPHITE: A COMPARISON … PHYSICAL REVIEW B 100, 045205 (2019)

FIG. 7. The π -plasmon dispersion, obtained by plotting the peak
maximum (in eV) as a function of transferred momentum q (along
the � → K1 path). The peak positions calculated using each theoret-
ical method are compared with experimental data from Ref. [51].

of this trend will require future experimental measurements
taken at similarly high values of q. While these plots are
very useful to discern trends, they show that the differences
between each method are subtle, and must be analyzed in
closer detail as we have done in Figs. 4 and 5.

Likewise, we conduct a similar analysis for the � → K1

path in Fig. 7. For these values of q, the spectra are dom-
inated by a single peak with energy positions ranging from
7 to 12 eV, where the classical plasmonic behavior is lost
after q ≈ 1.00 Å−1. Once again, our calculations confirm
the strong dispersion of the peak position. ALDA TD and
RPA TD significantly overestimate the peak energy position,
and CP and TD calculations begin to coincide for increasing
momentum transfer. BSE calculations yield good agreement
with experiment throughout the range. We also extend our
calculations for increasing q values into the fourth Brillouin
zone K4 point.

The Supplemental Material [72] features a similar analysis
of the π + σ plasmon that occurs in the 25–45 eV energy
range. We review the trends of each theoretical method, as
there are few experimental data available for this energy
range.

V. CONCLUSIONS

We carried out a systematic study of the macroscopic
dielectric function and EEL spectra for the π plasmon of

graphite, comparing ab initio TDDFT and BSE methods. We
selected graphite as a good benchmark case due to the exten-
sive theoretical and experimental work available. Our results
coincide with previous literature (where available), and offer
quantitative agreement with experiment. Using two nonequiv-
alent momentum paths spanning the first four Brillouin zones,
we demonstrate the importance of including the coupling
terms in the excitonic Hamiltonian for describing plasmon
excitations. The TDA, while numerically efficient, cannot
reproduce some key features in the experimental EEL spectra.
Access to high-resolution EELS measurements around the π

plasmon allow us to compare the detailed behavior and trends
of each method.

Overall, we provide an overview of ab initio methods that
are considered state-of-the-art at describing the optoelectronic
properties of solid-state systems. We have applied these meth-
ods on graphite, which offers an excellent benchmark material
for this type of study. We are confident this study can be
used as a reference for future work. The knowledge of the
inverse dielectric function for the wide range of momentum
transfer (beyond the experimental range available today) that
we provide gives useful insights also for other methods which
are intrinsically based on the concept of Coulomb screening,
like many-body GW (and beyond GW) approaches [57,75],
hybrid functionals in DFT [76], or dynamical mean field
theory [77].

Finally, we present real-world computational benchmarks
in the Supplemental Materials [72]; as these clearly show, the
significant computational cost of BSE CP may not be neces-
sarily warranted for every situation. The very low computa-
tional expense of the TDDFT methods compared to the BSE
makes them an attractive alternative when the coupling terms
are the determining factors for a calculation. In summary,
these methods should always be applied judiciously and their
use evaluated on a case-by-case basis.
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