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A NOVEL REGULARIZED APPROACH FOR FUNCTIONAL DATA
CLUSTERING: AN APPLICATION TO MILKING KINETICS IN DAIRY

GOATS

C. DENIS, E. LEBARBIER, C. LÉVY-LEDUC, O. MARTIN, AND L. SANSONNET

Abstract. Motivated by an application to the clustering of milking kinetics of dairy
goats, we propose in this paper a novel approach for functional data clustering. This
issue is of growing interest in precision livestock farming that has been largely based on
the development of data acquisition automation and on the development of interpretative
tools to capitalize on high-throughput raw data and to generate benchmarks for phenotypic
traits. The method that we propose in this paper falls in this context. Our methodology
relies on a piecewise linear estimation of curves based on a novel regularized change-
point estimation method and on the k-means algorithm applied to a vector of coefficients
summarizing the curves. The statistical performance of our method is assessed through
numerical experiments and is thoroughly compared with existing ones. Our technique is
finally applied to milk emission kinetics data with the aim of a better characterization of
inter-animal variability and toward a better understanding of the lactation process.

1. Introduction

Precision livestock farming is a blooming field grounded in the development of sen-
sors providing high throughput data and thus potentially increasing access to valuable
information on biological processes. Therefore, developing methods for data analysis and
interpretation has become a challenging issue in animal science. Economic performance of
dairy goat farming systems is primarily based on milk production and a large amount of
farmers working time is spent milking animals, see Marnet et al. (2005). Moreover, with
the increasing size of goat herds and the rapid growth of the dairy goat industry, more
in-depth information on individual milking performance is necessary. In this context, a
better understanding of the variability in milk flow kinetics could for instance help refining
selection criteria for breeding programs, simplifying milking workload or controlling udder
health. Milk emission kinetics recorded during milking of dairy goats are classically de-
scribed and classified through synthetic parameters such as milking time, maximum and
average milk flow rates, time to reach 500 g/min milk flow, see Romero et al. (2017). In this
paper, we explore the possibility of considering milk emission kinetics as a whole function,
opening new perspectives to study inter-animal variability.

From a statistical point of view, this issue belongs to the general field of functional data
analysis, see Ramsay and Silverman (2005) for a survey on this subject. In the specific
functional data clustering framework, several approaches have been proposed by Abraham
et al. (2003), Jacques and Preda (2013) and Bouveyron et al. (2015) among others. For a
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review on this subject, we refer the reader to Jacques and Preda (2014a) and the references
therein. This kind of approaches was extended to deal with multivariate functional data
by Jacques and Preda (2014b) who proposed the first model-based clustering algorithm in
this multivariate context and more recently by Schmutz et al. (2018).

To deal with the functional clustering of the milking kinetics of goats, some specific
features have to be taken into account, see Figure 1 for some examples of such kinetics.
We can see from this figure that these curves are nondecreasing and can be split into
two parts, namely an increasing linear part and an almost constant one. Inspired by
Abraham et al. (2003), we propose in this paper a dimension reduction approach based on
a continuous piecewise linear function fit to each curve which boils down to a change-point
detection issue which will be crucial in our method.

The problem of detecting change-points in the mean of a signal is largely addressed in
the literature. In particular, it is now well known that in (penalized-) maximum likeli-
hood frameworks the Dynamic Programming (DP) algorithm (Bellman (1961); Auger and
Lawrence (1989)) and its recent pruned versions Killick et al. (2012); Rigaill (2015); Maid-
stone et al. (2016) are the only algorithms that retrieve the exact solution very quickly.
However, DP can only be used if the contrast to be optimized is additive with respect
to the segments, see for example Bai and Perron (2003); Picard et al. (2005); Lavielle
(2005). When detecting changes in the slope with a continuity condition, the segments
will unavoidably be linked and therefore the additivity condition is not satisfied. This
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Figure 1. Some examples of milking kinetics of goats.
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partly explained that this change-point detection problem has not been thoroughly inves-
tigated in the literature compared to the simplest detection in the mean problem. Recently,
Fearnhead et al. (2019) proposed to extend the PELT algorithm Killick et al. (2012) to
this problem. Their idea is to include the penalty in the DP algorithm with a pruning
strategy. The penalty they proposed is proportional to the number of change-points up to
a penalty constant. However, this penalty constant needs to be chosen in advance, which
is not easy in practical situations.

In this paper, we first propose a novel change-point estimation in the slope method
combining the trend filtering proposed by Tibshirani (2014) with a (penalized-) maximum
likelihood approach which is useful for removing the spurious change-points that may have
been proposed by trend filtering. These change-points estimators are then used for devising
a new dimension reduction approach: Each curve is summarized by a vector containing the
coefficients of its projection onto an order 2 B-spline basis having for knots the obtained
change-points and also the change-point locations. Including the change-points both in the
features characterizing the curves and in the B-spline knots is the main novelty compared
to classical approaches reviewed in Jacques and Preda (2014a).

The paper is organized as follows. The methodology that we propose is decribed in
Section 2. The performance of our approach is investigated in Section 3 through numerical
experiments. Finally, in Section 4, we apply our method to the data that motivated this
study.

2. Methodology

In this section, we describe our novel functional data clustering approach which consists
of two steps which can be summarized as follows:

• First step: Piecewise linear estimation of the curves using a novel change-point
estimation method based on the trend filtering approach and B-splines.
• Second step: Applying the k-means algorithm to a vector of coefficients summarizing

the curves obtained in the first step.

These two steps are further described hereafter.

2.1. First step: Piecewise linear estimation of the curves based on a change-
point estimation method. In the following, we assume that the observations of a given
curve Y = (Y1, . . . , Yn) correspond to a noisy function evaluated at the input points x =
(x1, . . . , xn). In this step, we aim at estimating each curve by a piecewise linear function
using a two-stage approach described below.

2.1.1. First stage: Trend filtering for change-point estimation. We use the trend filtering
approach proposed by Tibshirani (2014) which consists in fitting to the observations Y the

vector β̂ = (β̂1, . . . , β̂n) using a regularized method. More precisely, we use

β̂(λ) = Argminβ∈Rn

{
‖Y − β‖22 + λ‖D(2)β‖1

}
,
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where ‖y‖22 =
∑n

i=1 y
2
i , ‖y‖1 =

∑n
i=1 |yi|, for y = (y1, . . . , yn), λ is a positive constant which

has to be tuned and D(2) is the discrete difference operator of order 2 defined by

D(2) =

1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . . . . . . . .
...

 .

The final estimator of β is β̂(λ̂) where λ̂ has to be properly chosen. Usually, this param-
eter is chosen using resampling approaches such as cross-validation or stability selection,

see Meinshausen and Bühlmann (2010). From β̂(λ̂), we define a set of potential change-

point indices as the coordinates where the vector D(2)β̂(λ̂) is not equal to zero. However,
in change-point estimation frameworks, the performance of such methods may be altered
since some change-points may be omitted by subsampling. Moreover, it is well known that
such regularization approaches lead to over-segmentation phenomena. Usually, in this case,
a DP algorithm is then used on the set of potential change-points obtained with the latter
strategy in order to remove the irrelevant ones, see for instance Harchaoui and Lévy-Leduc
(2007) and Harchaoui and Lévy-Leduc (2010).

We propose following this strategy: In order to avoid the use of a resampling method, we
choose a small enough λ in order to obtain a large enough set of potential change-points.
More precisely, we set a maximal number of change-points denoted Kmax and choose λ such

that among the λ’s leading to Kmax change-points, λ̂ is the one minimizing ‖Y − β̂(λ)‖22.
Let (n̂1, . . . , n̂Kmax) the resulting change-point indices and the associated change-point

positions (t̂1, . . . , t̂Kmax) = (xn̂1 , . . . , xn̂Kmax
). For each K in {1, . . . , Kmax}, we use the DP

algorithm to retrieve the K most relevant change-point indices among n̂1, . . . , n̂Kmax . DP is
thus applied to Yn̂1 , . . . , Yn̂Kmax

instead of Y1, . . . , Yn. Note that a slight modification of the
algorithm is considered to make the piecewise linear fit to data continuous. The optimal

number of change-points K̂ is then chosen by using the criterion proposed by Lavielle
(2005).

2.1.2. Second stage: Projection onto the B-spline basis having as knots the obtained change-
points. Each curve will then be summarized by a few coefficients corresponding to the
coefficients of its projection onto the B-spline basis (Bi,2)1≤i≤K̂+2 defined as follows, see

(Hastie et al., 2009, p. 206) for a review on the subject. Let t̂0 = x1 and t̂K̂+1 = xn. Let
us also define the augmented knot sequence τ such that:

τ1 = τ2 = t̂0 = x1,

τj+2 = t̂j, j = 1, . . . , K̂,

τK̂+3 = τK̂+4 = t̂K̂+1 = xn,

namely,

(τ1, . . . , τK̂+4) = (x1, x1, t̂1, · · · , t̂K̂ , xn, xn).
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The ith B-spline function Bi,2 having τ for knot sequence satisfies:

Bi,2(u) =
u− τi
τi+1 − τi

Bi,1(u) +
τi+2 − u
τi+2 − τi+1

Bi+1,1(u),

where

Bi,1(u) =

{
1, if τi ≤ u < τi+1

0, otherwise

with i ∈ {1, . . . , K̂ + 2}. Thus, each curve is estimated by f̂ defined by:

(1) f̂(u) =
K̂+2∑
i=1

θ̂iBi,2(u),

where the θ̂i’s are obtained using a least-square criterion. Hence, the coefficients summa-
rizing each curve is:

(2) (θ̂1, . . . , θ̂K̂+2, t̂1, . . . , t̂K̂).

2.2. Second step: Clustering using the k-means algorithm. In order to obtain a
clustering of the curves (milking kinetics), we use the k-means algorithm of Hartigan and
Wong (1979) on the scaled summarized coefficients (2) obtained in the previous step. It

has to be noticed that the number of change-points K̂ may change from one curve to

the other. Thus, we consider summarized coefficients of length K̂M corresponding to the

largest value of K̂. For kinetics having a number of change-points smaller than K̂M , we
replace the missing t̂k and the missing coefficients by 0. Our goal is indeed to propose a
strategy which is able to distinguish the curves both thanks to the change-point positions
and/or the coefficient values.

The number k of clusters is chosen by using the strategy proposed by Charrad et al.
(2014) which consists in using the majority rule that is taking for k the value chosen by
the largest number of criteria among 30 indices such as: CH index, Duda index, Pseudot2
index, C index, Hartigan index, ... Further details on these indices can be found in Charrad
et al. (2014). Here, we focused on the four following indices: KL index, Hartigan index,
SDindex, Ptbiserial index.

3. Numerical experiments

In this section, we investigate the statistical performance of our procedure. The sim-
ulation scheme that we used for this investigation is described in Section 3.1. We also
propose in Section 3.2 to benchmark our procedure with existing approaches and to assess
our change-point estimation approach in Section 3.3.
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3.1. Simulation scheme. In order to be as close as possible to the data coming from
our motivating application, we consider two different models for generating the data that
we will refer to as Model 1 and Model 2 in the following. For each model, the complete
observed data is (Y, Z), where Y is in Rn and corresponds to the observations of an
underlying function, which we will specify hereafter, at the input points x = (xi)1≤i≤n =
(10(i − 1))1≤i≤n with n = 51. Z denotes the label of Y which takes its value in Z =
{1, 2, 3, 4}. Moreover, for each z ∈ Z, the associated cluster Cz is characterized by a
number of change-points Kz, a vector of change-points tz, and a vector of parameters
θz ∈ RKz+1. Hence, each model is defined by a set of parameters {Kz, t

z, θz : z ∈ Z}. The
values of the parameters associated to each model are reported in Tables 1 and 2. Note
that for each model, the clusters are distinguishable by both the change points and the
parameters.

For each model, the vector (Y, Z) is simulated according to the following procedure:

(a) The label Z is drawn from a uniform distribution on Z;
(b) We generate t̃Z = tZ + U , such that U = (U, . . . , U), where U is a uniformly

distributed random variable on {−30,−20, 10, 0, 10, 20, 30};
(c) We generate θ̃Z = θZ + V , such that V = (V, . . . , V ), where V is a uniformly

distributed random variable on [−200, 200];

(d) Then, we consider the sequences (t̃Z0 , . . . , t̃
Z
KZ+1) = (0, t̃Z , 500), (θ̃Z0 , . . . , θ̃

Z
KZ+1) =

(0, θ̃Z), and define for x ∈ [t̃Zj , t̃
Z
j+1], and j ∈ {0, . . . , KZ}

(3) ft̃Z ,θ̃Z (x) = (θ̃Zj+1 − θ̃Zj )
x− t̃Zj
t̃Zj+1 − t̃Zj

+ θ̃Zj ;

Table 1. Set of parameters for Model 1.

Model 1

z Kz tz θz

1 2 (150, 250) (1600, 1900, 2000)
2 2 (150, 300) (1400, 1800, 2200)
3 4 (100, 200, 300, 400) (300, 1500, 1700, 2000, 2200)
4 3 (50, 150, 300) (200, 1300, 1800, 2100)

Table 2. Set of parameters for Model 2.

Model 2

z Kz tz θz

1 2 (150, 250) (1600, 1900, 2000)
2 2 (150, 300) (1400, 1800, 2200)
3 4 (100, 200, 300, 400) (300, 1500, 1700, 2000, 2200)
4 3 (150, 250, 300) (200, 700, 1000, 1600)
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(e) Finally, we define Y such that, for i ∈ {1, . . . , n},
(4) Yi = ft̃Z ,θ̃Z (xi) + εi,

where the εi’s are i.i.d N (0, σ2) random variables with σ ∈ {1, 5}.
Note that the function f defined in (3) can be seen as another way of writing (1).

Figure 2 displays some observations generated using the above simulation scheme for each
model and for each σ. We can see from this figure that the clustering problem associated
to Model 1 seems to be the most difficult. In Model 1, the clusters are indeed completely
mixed whereas in Model 2 Cluster C4 is well separated from the others. Observe also that
the data that is generated has the same behavior as the data coming from our motivating
application: They are nondecreasing and piecewise linear constant with a small additive
noise, see Figure 1.

3.2. Statistical performance. Following the simulation scheme described in Section 3.1,
the performance of our procedure is assessed for each model, each σ and is compared with
two different clustering methods: the k-means algorithm applied to the raw data Y and
the FunFEM procedure described in Bouveyron et al. (2015) and available in the R package
FunFEM. The latter method is dedicated to the clustering of functional data and is based
on a functional mixture model. All the methods are compared thanks to the Adjusted
Rand Index (ARI) defined in Hubert and Arabie (1985) which is often used for clustering
validation. It is indeed a measure of agreement between two partitions. Note that the
number of clusters k in the k-means algorithm is chosen using the same strategy as the one
that we considered in our approach. As far as FunFEM is concerned, we used the default
parameters.

For each model and for each σ in {1, 5}, we repeat independently 100 times the following
steps:

(a) We simulate a sample DN = {(Y1, Z1) . . . (YN , ZN)} of size N = 100 according to
the scheme described in Section 3.1;

(b) We apply each method to DN ;
(c) Based on the obtained clustering, we compute the ARI.

The results are displayed in Figure 3 with Kmax = 10. We can see from this figure that
our method outperforms the other ones in all cases except for Model 2 with σ = 5 where
the performance of our method is on a par with the one of FunFEM. Note that applying
the k-means to a relevant summary measure of Y significantly improves the clustering
performance. Moreover, we observe that when σ increases, the performance of our approach
is slightly altered since the change-points are more difficult to locate accurately, see Section
3.3.

3.3. Assessment of our change-point estimation procedure. We provide the follow-
ing numerical experiments for assessing the change-point estimation stage of our method.
We used the parameters associated to Cluster 3 of Model 1, see Table 1. We repeat 100
times

(a) We simulate Y according to Equation (4) with σ ∈ {1, 5};
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Figure 2. Examples of observations generated from Model 1 (top) and
Model 2 (bottom) for σ = 1 (left) and σ = 5 (right). The curves belonging
to Cluster 1 (resp. 2, 3, 4) are displayed in red (resp. black, blue and green).
The solid lines display the representative curves of each cluster ftz ,θz and the
dashed ones are some examples of the corresponding Y.

(b) We estimate the change-points according to the procedure described in the first
stage of the first step in Section 2.
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Figure 3. Boxplots of the ARI for Model 1 (top) and Model 2 (bottom)
for σ = 1 (left) and σ = 5 (right).

Some examples of Y for the two values of σ are displayed in Figure 4. We can see from
this figure that the change-points located at 300 and 400 are more difficult to detect than
the others. It is all the more true when σ = 5.

Figure 5 displays the frequency of the number of times where each position has been
estimated as a change-point. We can see that the change-points are all retrieved and that
no spurious change-points are provided when σ = 1. In the case where σ = 5, although the
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Figure 4. Examples of Y belonging to Cluster 3 of Model 1 for σ = 1
(left) and σ = 5 (right).

positions of the true change-points are retrieved most of the time, some additional spurious
change-points are also selected with a very low frequency.
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Figure 5. Change-point estimation frequencies for σ = 1 (left) and σ = 5
(right). The true change-point positions are denoted with red plain circles.
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4. Application

In this section, we apply the methodology described in Section 2 to milking kinetics of
dairy goats coming from the experimental herd of the research unit Systemic Modelling
Applied to Ruminants (Paris, France).

4.1. Data description. The data set contains 100470 milking kinetics of goats of two
different breeds: “Alpine” and “Saanen”. All these kinetics are morning milking kinetics
and several kinetics are available for each goat. The kinetics can also be separated according
to parity which corresponds to the lactation rank i.e. to the number of times a goat has
given birth and started a new lactation. In the considered dataset, there are in particular
276 (resp. 191) goats for which we have their milking kinetics for Parity 1 (resp. 2).

4.2. Kinetics clustering. First, note that based on the shapes of the milking kinetics of
this data set, the parameter Kmax defined in the first stage of the first step in Section 2 was
set to 2. We obtained three clusters containing 57498, 36757 and 6215 kinetics, respectively.
Some examples of kinetics belonging to Clusters 1, 2 and 3 are displayed in Figures 6, 7
and 8, respectively. The average of the kinetics estimations obtained within each cluster
is displayed in Figure 9. We can observe that the three clusters can be distinguished in
terms of quantity of milk production: Cluster 1 has the lowest production, Cluster 3 the
highest and Cluster 2 is between them.

Another difference between the three clusters is the number and the positions of changes.
The number of changes in the kinetics of Cluster 1 and 2 is mainly one contrary to Cluster 3
where this number is always equal to two. Figure 10 displays the histogram of the change-
point positions for Clusters 1 and 2. We can observe that the change-point having the
highest frequency is not located at the same position for these two clusters. Interestingly,
our methodology was able to distinguish these two clusters thanks to the change-point
position which illustrates the potential of our methodology to extract synthetic traits from
raw data.

In practice, such a clustering may be very useful in the precision farming context to refine
selection criteria for breeding programs, to simplify milking workload or to control udder
health. Thanks to the clustering results, we should be able to define a milking profile for
each goat. Moreover, we propose in the next section to characterize dairy goats belonging
to a given parity.

4.3. Parity characterization. In order to go further into this analysis, we tried to char-
acterize the parities 1 and 2 in terms of the proportion of kinetics of type 1, 2 or 3 according
to the clustering previously obtained. We thus created for each goat belonging to a given
parity a vector of proportions corresponding to its belonging frequency to each Cluster 1,
2 or 3. For each parity, the goats are clustered using the k-means algorithm applied to the
vectors of proportions. The results are displayed in Figures 11 and 12 for Parities 1 and
2, respectively. The number of groups is selected using the method described in Section
2.2: We found 6 (resp. 5) groups for Parity 1 (resp. 2). We can notice that there is one
goat which produces a large quantity of milk compared to the others for both parities. In



12 C. DENIS, E. LEBARBIER, C. LÉVY-LEDUC, O. MARTIN, AND L. SANSONNET

0 20 60 100

0
50

0
15

00

Goat 250053006212058

1

V
ol

um
e 

of
 m

ilk

Goat 250053006212058

  RMS residual = 20.7

●
●

●
●

●

●
●

●
●

●
●

●
● ●

0 50 100 200

0
50

0
15

00

Goat 250053006212048

1
V

ol
um

e 
of

 m
ilk

Goat 250053006212048

  RMS residual = 28.8

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●
●●●●●●

0 100 200 300 400

0
50

0
15

00

Goat 250053006212064

1

V
ol

um
e 

of
 m

ilk

Goat 250053006212064

  RMS residual = 42.67

●

●

●
●

●

●

●

●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
40

0
80

0

Goat 250053006212083

1

V
ol

um
e 

of
 m

ilk

Goat 250053006212083

  RMS residual = 22.8

●

●

●

●

●

●

●
●

●
● ● ●

0 100 200 300

0
50

0
15

00

Goat 250053006213036

1

V
ol

um
e 

of
 m

ilk

Goat 250053006213036

  RMS residual = 37.04

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 200

0
50

0
15

00

Goat 250053006213031

1
V

ol
um

e 
of

 m
ilk

Goat 250053006213031

  RMS residual = 55.93

●●

●
●

●

●
●

●
●

●
●

●●
●●

●●●●●●●●●●●●

0 50 100 150

0
40

0
80

0
12

00

Goat 250053006213005

1

V
ol

um
e 

of
 m

ilk

Goat 250053006213005

  RMS residual = 23.5

● ●

●

●
●

●

●
●

●
●

●
●

● ●
● ● ● ● ●

0 50 100 150 200

0
50

0
15

00

Goat 250053006213008

1

V
ol

um
e 

of
 m

ilk

Goat 250053006213008

  RMS residual = 31.2

●
●

●
●

●
●

●
●

●

●
●

●
● ● ●

● ●
● ● ● ● ●

0 50 100 150

0
50

0
10

00

Goat 250053006213030

1

V
ol

um
e 

of
 m

ilk

Goat 250053006213030

  RMS residual = 22

●
●

●

●
●

●

●
●

●
●

●
●

● ● ● ● ●

Figure 6. Some examples of milking kinetics belonging to Cluster 1. The
data are displayed with ’o’, the straight lines correspond to the piecewise
linear fit obtained thanks to our method and the vertical line corresponds to
the position of the change-point.



A NOVEL REGULARIZED APPROACH FOR FUNCTIONAL DATA CLUSTERING 13

0 50 100 200

0
50

0
15

00

Goat 250053006213082

2

V
ol

um
e 

of
 m

ilk

Goat 250053006213082

  RMS residual = 42.1

●
●

●

●
●

●
●

●

●
●

●
●

●
●●●●●●●●●●●●●●●

0 50 150 250 350

0
10

00
20

00

Goat 250053006212047

2
V

ol
um

e 
of

 m
ilk

Goat 250053006212047

  RMS residual = 24

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●

0 50 100 200

0
50

0
15

00

Goat 250053006213040

2

V
ol

um
e 

of
 m

ilk

Goat 250053006213040

  RMS residual = 36.39

●

●●
●

●●

●●●
●

●
●●

●●

●
●

●●●●●
●●●●●●●

0 50 150 250

0
10

00
20

00

Goat 250053006212054

2

V
ol

um
e 

of
 m

ilk

Goat 250053006212054

  RMS residual = 26.4

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●

0 50 100 150

0
50

0
15

00

Goat 250053006213039

2

V
ol

um
e 

of
 m

ilk

Goat 250053006213039

  RMS residual = 26.9

●
●

●

●

●

●

●

●

●
●

● ● ● ●
● ● ●

0 50 100 150 200 250

0
10

00
20

00

Goat 250053006212075

2
V

ol
um

e 
of

 m
ilk

Goat 250053006212075

  RMS residual = 38.92

●
●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●●●●●

0 50 150 250

0
50

0
15

00

Goat 250053006212084

2

V
ol

um
e 

of
 m

ilk

Goat 250053006212084

  RMS residual = 39.65

●
●

●●

●
●●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●

0 50 150 250 350

0
50

0
15

00

Goat 250053006212080

2

V
ol

um
e 

of
 m

ilk

Goat 250053006212080

  RMS residual = 34.98

●
●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 150 250

0
50

0
15

00

Goat 250053006212091

2

V
ol

um
e 

of
 m

ilk

Goat 250053006212091

  RMS residual = 31.8

●
●

●
●

●●
●

●●
●

●
●

●
●

●
●

●
●

●●
●

●●●●●●●●●●●●●

Figure 7. Some examples of milking kinetics belonging to Cluster 2. The
data are displayed with ’o’, the straight lines correspond to the piecewise
linear fit obtained thanks to our method and the vertical line corresponds to
the position of the change-point.
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Figure 8. Some examples of milking kinetics belonging to Cluster 3. The
data are displayed with ’o’, the straight lines correspond to the piecewise
linear fit obtained thanks to our method and the vertical line corresponds to
the position of the change-points.
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Figure 9. Kinetics average obtained within each of the three clusters.
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Parity 1, 80% of its milking kinetics belong to Cluster 2 and only 20% to Cluster 1. In
Parity 2, 100% of its milking kinetics belong to Cluster 2.
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We also observe from Figures 11 and 12 that in both parities, the belonging frequency of
the milking kinetics to Cluster 2 is between 50% and 70%. In Parity 2, there is one group
(in red) for which the proportion of milking kinetics belonging to Cluster 2 is very high
(around 65%) and the proportions of milking kinetics belonging to Cluster 1 and Cluster 3
are very low (around 25% and 13%, respectively). For the other groups the proportions of
milking kinetics belonging to Cluster 1 are higher. In Parity 1, the behavior is a little bit
different in the sense that the majority of goats have a high proportion of milking kinetics
belonging to Cluster 2 (around 65%) and a low proportion of milking kinetics belonging
to Cluster 1 (around 25%). Such results may be interesting in the context of precision
breeding since they could help to forecast the production of milk at the different parities.

Further analysis should be perfomed in the future to study how evolve the cluster be-
longing along the lactation course lasting around 150 days in goats. The daily milk yield
of a goat for a given parity follows indeed a typical triphasic shape (respectively increas-
ing, plateau and decreasing phase), each daily milk yield being the sum of the total milk
produced during each milking (respectively morning and afternoon milking). Being able
to link a particular shape at the milking kinetics scale with one at the lactation scale
could open perspectives to better characterize individual goats and thus propose options
for individual milking management.
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Figure 11. Clustering obtained for goats in Parity 1 (6 clusters) displayed
on the plane having for axes the proportion of kinetics belonging to Clusters
1 and 2 (top left), 2 and 3 (top right), 1 and 3 (bottom). The Saanen (resp.
Alpine) goats are displayed with ’•’ (resp. ’+’).
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Figure 12. Clustering obtained for goats in Parity 2 (5 clusters) displayed
on the plane having for axes the proportion of kinetics belonging to Clusters
1 and 2 (top left), 2 and 3 (top right), 1 and 3 (bottom). The Saanen (resp.
Alpine) goats are displayed with ’•’ (resp. ’+’).
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