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Abstract—Conventional image aesthetic quality prediction
aims at predicting the average score of a picture or its aes-
thetic class (good/bad quality). However, aesthetic prediction is
intrinsically subjective, and images with similar mean aesthetic
scores/class might display very different levels of consensus by
human raters. Recent work has dealt with aesthetic subjectiv-
ity by predicting the distribution of human scores. However,
predicting the distribution is not directly interpretable in terms
of subjectivity, and might be sub-optimal compared to directly
estimating subjectivity descriptors computed from ground-truth
scores. In this paper, we propose several measures of subjectivity,
ranging from simple statistical measures such as the standard
deviation of the scores, to newly proposed descriptors inspired
by information theory. We evaluate the prediction performance
of these measures when they are computed from predicted score
distributions or when they are directly learned from ground-
truth data. We find that the latter strategy provides in general
better results, though there is still a large space for improvement
in aesthetic subjectivity prediction.

Index Terms—Aesthetic quality, subjectivity, distribution pre-
diction

I. INTRODUCTION

The goal of image aesthetic quality assessment is to deter-
mine how beautiful an image looks to a human observer. The
automatic prediction of image aesthetic quality has received
an increasing attention in the past few years in the multimedia
community. This is due, on one hand, to the potential impact
that aesthetic quality prediction has on applications such as
image enhancement, recommendation or retrieval [1]. On the
other hand, the availability of large-scale datasets with human
annotations [2], [3] has enabled the use of modern machine
learning tools, such as deep learning, to predict aesthetic
scores for images displaying a wide variety of contents and
characteristics.

Most of existing aesthetic quality prediction approaches
assume that aesthetic quality can be represented by a single
value, e.g., the mean aesthetic score or the aesthetic class
(good/bad). However, this assumption does not take into ac-
count the intrinsic subjectivity of aesthetic assessment, which
may be influenced by personal background, interests, mood,
etc. Indeed, experimental psychology studies show that, while
beauty is conveyed by objective visual clues, the resulting
aesthetic appraisal is subjective and depends on how the visual
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Fig. 1. Example of aesthetic subjectivity for two images of the AVA dataset.
The two images, displayed in the top-left panels, have similar mean score but
different distribution of aesthetic judgments given by human raters, shown
in the histograms on the top-right panels. The tables report several measures
that compactly describe subjectivity based on the score distribution, which
are described in Section III.

clues are processed by higher-level cognitive areas in the
brain [4].

As a result, summarizing aesthetic quality with a single
value is not in general sufficient to capture the subjectivity
of aesthetic perception, which we define in this paper as the
degree of consensus about the aesthetic value of a picture
when the latter is judged by a panel of human raters. The
top two rows of Figure 1 illustrate this with an example: two
images from the AVA dataset have a similar average aesthetic
score, but a different degree of subjectivity. In the image in
Figure 1(a), it is evident that humans tend to agree more on the
aesthetic quality of the image, while the judgments are more
dispersed for the image in Figure 1(b). Intuitively, being able to
predict aesthetic subjectivity can provide valuable information
in order to determine to which extent aesthetic predictions can



be trusted. This in turn could be beneficial in applications such
as enhancement or retrieval, in order to obtain more reliable
and accurate results.

Recent work has tackled aesthetic subjectivity by predicting
the distribution of subjective scores of an image [S]-[8].
Specifically, these methods leverage the availability of ground-
truth aesthetic score distributions obtained by a large number
of human annotations, offered by large-scale datasets such
as AVA [2], and employ different loss functions to measure
the distance between probability distributions. However, aes-
thetic subjectivity is described only implicitly by the score
distribution. Instead, we are interested at quantifying and
predicting this subjectivity explicitly through a scalar value
that summarizes the score distribution by describing the raters’
consensus, and which could be used by automatic image
analysis algorithms.

Therefore, in this paper we analyze several measures of
subjectivity based on the distribution of the scores, including
simple statistical descriptors such as standard deviation, as
well as new proposed features inspired by information theory.
We evaluate the prediction accuracy of the proposed subjectiv-
ity measures using state-of-the-art aesthetic score distribution
prediction, and compare these results with directly learning
the subjectivity scores. Our experiments show that directly
learning subjectivity measures leads, in general, to better per-
formance than first predicting the score distribution and then
computing subjectivity based on it. Despite the improvement
obtained by our approach using several performance indica-
tors, our findings show that predicting aesthetic subjectivity is
a much more difficult task than predicting the average aesthetic
score of a picture.

The rest of the paper is organized as follows. In Section II
we review related work on image aesthetics prediction, and
we present several subjectivity descriptors in Section III. We
evaluate different prediction schemes for these measures in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

General aesthetics prediction deals with predicting image
aesthetics for any kind of image content, in contrast to task-
specific aesthetics where the class or object of the picture
is known, e.g., images of faces [9]. In this work we focus
on the general image aesthetics problem. Traditional methods
for predicting image aesthetics have been employing hand-
crafted features to describe well-known photographic rules
and perceptual attributes, such as clarity, depth of field,
colorfulness, dynamic range, etc. [10]-[12]. These methods
have the advantage to provide an interpretable explanation
of image aesthetics, but fail in capturing accurately complex
aesthetic phenomena. As a result, these approaches tend to
perform poorly when tested in real-world conditions with a
wide content variety.

With the advent of deep learning and the availability of
large-scale datasets with thousands or hundreds of thousands
pictures [2], [3], the accuracy of aesthetics prediction has
been constantly improving. In this context, the problem of

aesthetic assessment has been mainly formulated as predicting
the average score or the aesthetic class of an image [1], [3],
[13], [14].

On the other hand, the problem of subjectivity in image
aesthetic quality assessment has been rarely studied. Park et
al. [15] consider personal taste in addition to general aesthetic
score, by adapting a model to match specific user preferences
obtained from user interactions. Differently from that work,
we do not target personalized aesthetic prediction, but rather
aim at assessing the level of consensus of a panel of humans
about the general aesthetic value of a picture.

Recently, a few studies have considered aesthetic subjec-
tivity by predicting the distribution of human scores, rather
than simply the mean score. Bin Jin et al. [5] predict the
distribution of aesthetic scores based on a weighted loss which
accounts for the non-uniform distribution of the scores in
the AVA dataset, using a modified VGG-16 [16] network.
Their loss function uses the chi-square distance to evaluate
the distribution prediction. Later, Murray et al. [6] employ
the Huber loss and spatial pyramid pooling [17] to predict
distributions. In the NIMA system [7], the loss function
consists of the squared Earth Mover’s Distance (EMD), which
is shown to lead to better mean score prediction performance
from the estimated distributions. Jin et al. [8] propose to
use the cumulative Jensen-Shannon Divergence (CJS-CNN)
as loss function. They also present an extended version of
this loss using a function of the kurtosis of ground-truth
score distribution to weigh CJS (RS-CJS). Kurtosis is used
as a proxy to aesthetic “reliability”, and used to penalize
more those images whose distribution is considered unreliable.
In this paper, instead of predicting the score distributions,
we propose (for the first time to our knowledge) to define
explicitly subjectivity measures and directly predict them.

The majority of the above-mentioned works employ the
benchmark AVA dataset [2] to learn distributions or average
scores. It contains over 250,000 images from photography am-
ateurs’ websites, which is much larger comparing to previous
datasets like CUHK-PQ [18], [19]. The images are collected
by approximately 1400 challenges from viewers who voted
integer scores in the range [1, 10]. Compared to other datasets
like AADB [3] which only has around 5 voters for each image,
the number of votes in AVA ranges between 78 and 549,
and the average is around 210, thus enabling a more reliable
estimation of score distributions. In this work, we also employ
the AVA dataset to train and evaluate subjectivity prediction.

III. PREDICTION OF SUBJECTIVITY

We consider a dataset of N images {I,}, n = 1...N,
where each image has been voted by M,, human raters on a
discrete scale with k levels, s = {s1,...,s;}. We model the
M, aesthetic scores x,, for each image [,, as a realization
of a categorical random variable with distribution p,(zy,),
which we approximate with the normalized sample histogram
pr(zy). Given p,(z,), we define p,, and m,, as the mean
and median of x,,, respectively.
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Fig. 2. The two score distributions have the same entropy, but the one on the
right has a higher degree of subjectivity.

In order to describe the level of consensus of human raters
about the aesthetic quality of a given image, we propose using
the following measures:

o Standard Deviation (SD) of the score distribution, which
describes the dispersion of the scores around the average
score, that is:

k
SDy, = an(l) (@ (i) — ,un)Q- (1

A higher value of SD indicates a lower consensus around
the average score, and thus higher subjectivity.

e Mean Absolute Deviation around the median (MAD),
defined as the sample average deviation of the scores
around the median score, that is:

M,
1 & .
MAD, = 7 > fan (i) — mal. 2)
" oi=1

As for SD, higher values of MAD imply higher subjec-
tivity.

« Distance to Uniform Distribution (DUD). The entropy
of a distribution characterizes the degree of uncertainty of
the associated random variable, and could be in principle
used to quantify subjectivity. However, entropy does not
take into account the ordinal nature of aesthetic scores,
as illustrated in Figure 2. Instead of measuring entropy,
we consider the distance of the score distribution p,, ()
from the distribution having the maximum entropy over
s, which is the uniform distribution. We quantify this
distance using the 2-Wasserstein metric' dyy (pn,us),
that is:

i 1/2
DUD, = dW(pna us) = Z(Pn(z) - UQ(Z))2 )

i=1

(3)
where u; is the discrete uniform distribution defined over
the categories s, and P, and U, are the cumulative
distribution functions of p,, and ug, respectively.

INote that the 2-Wasserstein metric is sometimes confused with the Earth
Mover Distance, e.g., in [7]. However, for the sake of precision, the Earth
Mover Distance corresponds to the 1-Wasserstein metric.

A lower value of DUD implies that the score distribution
is more similar to the uniform distribution, and thus the
degree of subjectivity is higher.

o Distance from the Maximum Entropy Distribution
(MED). Since the uniform distribution has always a mean
value equal to the midpoint of the score scale, the DUD
measure tends to penalize more skewed distributions
having mean values close to the extremes of the quality
scale. To overcome this bias, we compare the score
distribution with the maximum entropy distribution over
the quality scale having the same mean. More specifically,
we look for a discrete distribution q, which solves the
following optimization problem:

maximize H(q)
q

subject to  p[q] = i,

where H denotes discrete entropy and p[q] is the mean of
q. It can be shown [20] that the solution of this problem

1S
)\Si
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where A is numerically found so that ), s;qs(s;) = fin.
Then MED for image n is defined as:

k 1/2

S (P () - Qu(0))”

i=1

MEDn = dW(Psz) =

b

®)
where Q, is the cumulative distribution of qs. As for
the DUD measure, the lower MED is, the higher is the
subjectivity of an image.

The table in Figure 1 shows an example of these measures
computed for the two images in the top panel. We can observe
that all of them capture correctly the degree of consensus of
the score distributions. In the following, we will study how
accurately each of these measures can be predicted, either
directly or by means of predicted score distributions.

A. Subjectivity Prediction Framework

In order to predict the subjectivity measures proposed above,
we consider two options: i) we predict the score distribution
indirectly using an existing score prediction method as men-
tioned in Section II; or ii) we compute subjectivity measures
on ground-truth scores, and learn to predict them directly.

Indirect subjectivity prediction: The underlying motivation
of predicting score distributions lies in the possibility to derive
aesthetic subjectivity [5], [6], [8]. Therefore, we first consider
state-of-the-art aesthetic distribution predictors (see Section II)
to estimate the subjectivity measures introduced above, as
illustrated in Figure 3(a). The advantage of this approach
is that, once the distribution is estimated, one can compute
any subjectivity measure from it. However, we will show
experimentally that this approach is generally sub-optimal
compared to directly estimating a subjectivity score.
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Fig. 3. Subjectivity Prediction Framework. In the indirect prediction frame-
work, an aesthetic score distribution is estimated first, and subjectivity
measures are computed over it. We compare this approach with directly
predicting subjectivity computed on ground-truth distributions (b).

Direct subjectivity prediction: A limitation of the indirect
subjectivity prediction is that the estimated distribution scores
are generally noisy, as even the best method to predict the
histogram of aesthetic scores has limited performance [8]. In
principle, assuming a deep neural network predicting aesthetic
distribution approximates the maximum likelihood estima-
tor [21], a subjectivity estimator based on the predicted distri-
butions is asymptotically efficient [22]. However, in practice
the number of samples used for training the network is finite,
and prediction errors on the distribution might lead to worse
prediction performance of subjectivity.

Therefore, we consider the alternative approach consisting
in predicting directly the ground-truth subjectivity measures,
as shown in Figure 3(b). The subjectivity measures are
computed on the ground-truth aesthetic distribution. We use
afterwards a deep convolutional neural network to predict these
subjectivity measures.

IV. EXPERIMENTAL RESULTS
In this section we analyze the prediction performance of the
aesthetic subjectivity measures introduced in Section III.

A. Experimental setup

We choose Resnet-34 as network structure to predict sub-
jectivity. According to our experiments and the test in [9],
Resnet-34 provides similar accuracy result as VGG-16, but

uses less memory. In addition, we also use Resnet-101 to
study the influence of a deeper network structure in the direct
aesthetic subjectivity prediction. The last (fully connected)
layer of Resnet-34 is replaced by 3 fully connected layers: two
512 x 512 fully connected layers plus a 512 x 1 layer to give a
1-dimensional output. For Resnet-101, the two additional fully
connected layers have size 2048 x 2048. The drop out rate is
0.5 for every fully connected layer.

We use Pytorch models pre-trained on ImageNet [23],
and we fine-tune them using training images from the AVA
dataset [2]. We use the standard test set of AVA as in previous
work, which consists of 19,930 images. This leaves 260,264
images for train and validation. We randomly pick 23,553
pictures for validation, corresponding to approximately 10%
of the training set size. All of the input images are resized
to 224 x 224 pixels. Even though previous methods often
augment data with horizontal flip, we decide not to do any
kind of data augmentation, as differently from classification or
recognition tasks, the ground truth in aesthetics is obtained by
human raters and might be influenced by flipping. We employ
Adam optimizer [24] and a batch size of 64. The learning
rate is decreased by 10 times when the loss does not change
over two consecutive epochs. We fix the initial learning rate
to 1075 and the maximum number of iterations to 40,000. We
employ the L1 norm as loss function for the direct prediction
of the subjectivity measures.

For the indirect subjectivity prediction, we consider the
following three methods for predicting aesthetic score distri-
butions: the work of Bin Jin et al. [5] (chi-square distance
loss); NIMA [7] (Earth Mover’s Distance loss); and the
RSCIJS method of Jin et al. [8] (cumulative Jensen-Shannon
divergence loss). Bin Jin et al. provide their trained model
(using VGG-16), but use a different (smaller) test set than
the standard AVA one. Since their test set is not provided,
and for the sake of a fair comparison with other methods,
We run their model on the standard AVA test set instead. For
NIMA and RSCIJS, the original code is not available, and we
reimplemented them following the original papers. For NIMA
and RSCIJS, we use Resnet-34, modified as discussed above.

B. Performance Indicators

We evaluate the prediction of the subjectivity measures
using 4 performance indicators:

e Pearson’s Linear Correlation Coefficient (PLCC), which
measures the linearity of the relationship between the
predicted and the ground-truth subjectivity score. Higher
values indicate better prediction performance.

o Spearman’s  Rank-Order  Correlation  Coefficient
(SROCC), which indicates the degree of monotonicity of
the prediction. Higher values indicate better prediction
performance.

e Mean absolute error (MAE), which indicates the degree
of accuracy. Prediction is more accurate when MAE is
small.
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TABLE I
PEARSON’S LINEAR CORRELATION COEFFICIENT (PLCC)
Methods SD MAD | MED | DUD
Bin Jin’s [5] 0.145 | 0.159 | 0.178 | 0.096
NIMA [7] 0.169 | 0.187 | 0.211 | 0.255
RSCIS [8] 0.187 | 0.199 | 0.227 | 0.281
Direct (Resnet-34) 0.274 | 0.276 | 0.323 | 0.351
Direct (Resnet-101) | 0.307 | 0.304 | 0.333 | 0.360
TABLE 11
SPEARMAN’S RANK-ORDER CORRELATION COEFFICIENT (SROCC)
Methods SD MAD | MED | DUD
Bin Jin’s [5] 0.142 | 0.156 | 0.162 | 0.085
NIMA [7] 0.230 | 0.240 | 0.250 | 0.297
RSCIS [8] 0.169 | 0.152 | 0.228 | 0.283
Direct (Resnet-34) 0.267 | 0.268 | 0.311 | 0.351
Direct (Resnet-101) | 0.295 | 0.295 | 0.316 | 0.355

e Mean relative absolute error (MRAE), which is MAE
normalized by ground-truth values. A smaller MRAE
indicates higher accuracy.

C. Experiment Results

Tables I-IV show direct and indirect subjectivity prediction
performance. We observe that direct subjectivity prediction
always outperforms indirect prediction through distribution
scores, for all the proposed subjectivity measures. In particular,
for the same network complexity (Resnet-34), predicting di-
rectly the subjectivity is clearly better than predicting the score
distribution first and computing subjectivity based on it. A
possible explanation can be obtained by looking at the results
of distribution prediction, as shown in Figure 4, which com-
pares the average predicted aesthetic score distribution vs. the
average ground-truth one. For the three distribution prediction
methods considered here, we notice that, on average, predicted
distributions are different from the original and may even be
shifted. Notice that all of the proposed subjectivity measures
are affected by errors in the prediction of the histogram.

TABLE III
MEAN ABSOLUTE ERROR (MAE)
Methods SD MAD | MED | DUD
Bin Jin’s [5] 0.294 | 0.255 | 0.106 | 0.226
NIMA [7] 0.171 | 0.156 | 0.059 | 0.122
RSCIJS [8] 0.169 | 0.152 | 0.059 | 0.117
Direct (Resnet-34) 0.148 | 0.133 | 0.054 | 0.120
Direct (Resnet-101) | 0.146 | 0.132 | 0.053 | 0.101
TABLE IV
MEAN RELATIVE ABSOLUTE ERROR (MRAE)
Methods SD MAD | MED | DUD
Bin Jin’s [5] 0.226 | 0.270 | 0.210 | 0.053
NIMA [7] 0.129 | 0.162 | 0.128 | 0.029
RSCIJS [8] 0.127 | 0.158 | 0.127 | 0.028
Direct (Resnet-34) 0.107 | 0.130 | 0.126 | 0.025
Direct (Resnet-101) | 0.104 | 0.130 | 0.120 | 0.024

Although direct prediction improves all the considered
performance indicators, we observe that overall the prediction
performance is still not satisfactory, e.g., the SROCC is just
slightly above 0.4. We might wonder whether this is due to a
limited capacity of the Resnet-34 model we employed. There-
fore, in order to study how subjectivity prediction performance
improves with a more complex network, we tested the direct
prediction scheme using Resnet-101, which is much deeper
than Resnet-34. As expected, the results generally improve
over the simpler Resnet-34. However, this improvement is in
most case only marginal, showing that aesthetic subjectivity
prediction is intrinsically a hard problem — at least a harder
one than predicting the average aesthetic score, where SROCC
between predicted and ground-truth values is higher than
0.6 [7].

Comparing the different subjectivity measures, those in-
spired by information theory (DUD and MED) are in general
those with higher prediction performance. Among the statisti-
cal motivated descriptors, the SD is generally predicted more
accurately than MAD. We can assume that, for the same neural



network model complexity, a ground-truth variable which has a
higher dependence on the input is easier to predict, or, in other
terms, target variables which tend to be more “noisy” will be
more difficult to learn. Thus, we can argue that the subjectivity
measures based on information theory are somewhat more
robust than statistical deviation measures. A possible rationale
behind this could be that both DUD and MED are based on
distances between histograms, which take into account the
whole score distribution. On the other hand, SD completely
captures data variability when the underlying score distribution
is Gaussian, which is the case for only 62% of AVA images [8].
MAD is supposed to be more robust to skewed distributions,
but it might be affected by the sample median computation,
which on a 10-dimensional distribution as for aesthetic scores
can only take values over a small set, i.e., {1,1.5,2,...,10}.

Notice that the DUD measure achieves the best correlation
among the four subjectivity measures, despite the fact that it
penalizes more those images with distributions having mean
score far from the midpoint of the quality scale. These are also
the images that which are less frequent in the AVA dataset.
Therefore, DUD might implicitly act as a weighting scheme
during learning, similar to [5]. However, this effect might be
less evident on more balanced datasets, and should be verified
by further experimental evidence. We leave this to future work.

V. CONCLUSION

In this paper we have analyzed the problem of defining and
predicting aesthetic score subjectivity, intended as the degree
of consensus human raters express about the aesthetic value
of a picture. To this end, we have considered several mea-
sures of subjectivity, and two possible subjectivity prediction
frameworks.

Among the analyzed descriptors of subjectivity, we have
found that our newly proposed measures inspired by infor-
mation theoretical principles are, in general, easier to learn,
indicating that they might be more discriminative and robust
compared to simpler statistical deviation measures.

We have shown that predicting subjectivity from predicted
score distributions is, in general, sub-optimal compared to
directly predicting it from ground-truth subjectivity scores.
This indicates that, in practice, aesthetic score distribution
predictors are not sufficiently accurate to enable assessing
correctly the aesthetic subjectivity.

Despite our approach achieves state-of-the-art subjectivity
prediction performance, we recognize that predicting sub-
jectivity is a much harder task than predicting, e.g., the
average aesthetic score — histogram-prediction-based methods
can achieve correlations of 0.6 or higher for that task. We
believe that this is partially due, in addition to the complexity
of the task in itself, to the noisy nature of current aesthetic
datasets. This is evident for the benchmark AVA dataset, where
aesthetic scores are influenced by many factors that go beyond
the pure aesthetic value of a picture. Building cleaner and
more reliable aesthetic datasets is among the future directions
to consider in this field.
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