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Abstract
Capturing both structural and temporal features of interactions is crucial in many real-world sit-
uations like studies of contact between individuals. Using the link stream formalism to model
data, we address here the activity prediction problem: we predict the number of links that will
occur during a given time period between each pair of nodes. To do this, we take benefit from the
temporal and structural information captured by link streams. We design and implement a mod-
ular supervised learning method to make prediction, and we study the key elements influencing
its performances. We then introduce classes of node pairs, which improves prediction quality and
increases diversity.
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I INTRODUCTION
The study of sequences of interactions over time is an important research field with numer-
ous application areas, such as security, mobility or recommendation systems. They have been
studied as graphs for a long time, but the importance of dynamics has become more and more
obvious (Holme and Saramäki, 2012). Therefore, other representations have been developed to
better model the temporal nature of these systems. We use here the link stream representation
because it captures both the structure and the dynamics of interactions (Latapy et al., 2018).

A link stream (see Figure 1) represents a set E of triplets (t, uv) indicating that an interaction
occurred between u and v at time t. Many real-world datasets may be studied using link streams,
such as e-mail exchanges, contacts between individuals, phone calls or IP traffic (Latapy et al.,
2018; Viard and Latapy, 2014; Viard et al., 2018). They are similar to temporal networks
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Figure 1: An example of link stream, where nodes 2 and 3 interact at time 0.5, nodes 1 and 3 at time 1,
and so on.

(Holme and Saramäki, 2012) or time varying graphs (Casteigts et al., 2012), which encode the
same information.

We study here the activity prediction problem: we predict the number of interactions that will
occur between each pair of nodes during a given period of time. This problem is related to
the classical problem of link prediction in graphs, but it aims at predicting not only who will
interact with whom, but also when.

Our goal here is not to obtain the best prediction, with advanced methods and on specific
datasets. Instead, we propose a first framework addressing the activity prediction problem and
opening the way to further investigation. We design and implement our framework in a modular
way: each step of the prediction (considered features, their combination method, the optimiza-
tion scheme, etc) may easily be changed. We illustrate this by making several simple choices for
each building block, by applying our framework to several real-world datasets, and by studying
obtained performances, thus gaining insight on important features for activity prediction. With
this framework, it is easy to study other datasets and other building block choices.

More precisely, we first capture independently some structural and dynamical features of link
streams. We then use a basic supervised learning algorithm to combine these metrics in order
to estimate future activity. We finally compare the obtained prediction to ground truth in order
to assess the relevance of our approach. This shows that combining different types of metrics,
structural and temporal, indeed improves prediction. Going futher, we observe that prediction
is biased towards a specific kind of links. We therefore introduce classes of node pairs with
different behaviors, which improves prediction further and, more interestingly, increases its
diversity. We illustrate the use and performances of our framework on four real-world traces
of interactions between individuals (Mastrandrea et al., 2015; Scott et al., 2009; Eagle and
Pentland, 2005; Bracciale et al., 2014). We also investigate how different metrics can be used
to selectively predict different classes of links and how the introduction of classes allows to
preserve diversity while still improving prediction.

II RELATED WORK
Activity prediction is at the crossroad of two classical problems, namely link prediction in
graphs and time-series prediction, illustrated in Figure 2. We briefly present both topics and
give more details about works related to our approach. Then, we review works using categories
in order to improve prediction, since we use this technique in our work.

2.1 Link prediction in graphs
In the classical link prediction problem, data is represented as a graph (Liben-Nowell and Klein-
berg, 2007; Huang et al., 2005; Wang et al., 2015), and the task consists in predicting links to
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Figure 2: Basic principle of prediction in dynamic graphs (left) and in time series (right)

appear in this graph. One uses the graph structure for prediction; for instance, if two nodes have
many neighbors in common then a link between them is likely to appear (Kossinets, 2006).

When temporal evolution is a key element of data, a usual approach is to slice time into several
windows Ti, and consider a graph sequence Gi = (V,Ei) with Ei = {uv : ∃(t, uv) ∈ E, t ∈
Ti}. It allows to use traditional link prediction methods on these graphs. The information
contained in data is then extracted using graph-based measurements. In this field, many metrics
have been developed to obtain the most relevant information (Al Hasan et al., 2006; Lü and
Zhou, 2011). They often consist in evaluating the similarity between two nodes according to
various criteria, which produces a score or a ranking correlated to the apparition probability of
a link between these nodes. Similarity measures based on the temporal patterns of activities of
nodes and links have also been proposed, e.g. (Tabourier et al., 2016).

Several methods exist to combine the metrics computed for improving prediction. It is possible
to use classification algorithms to determine the predicted links (Al Hasan et al., 2006; Davis
et al., 2013). Another approach is to rank node pairs using the values of different metrics. The
predicted links connect the n first node pairs, with n fixed as a parameter and determined using
the system behavior (Pujari and Kanawati, 2012; Lichtenwalter et al., 2010). However, the use
of time windows commands a time scale and leads to the loss of some temporal information.
For example, the information associated to a link repetition between two nodes within a time
window disappears. One of the stakes of our work is to conserve this information by using the
link stream formalism, better suited to the data.

Another approach to link prediction using time varying graphs is to aggregate the temporal
information in the system by attributing weights to links, based on previous interactions (Murata
and Moriyasu, 2007; Tabourier et al., 2019; Dunlavy et al., 2011). This process allows to gather
structural information as well as indirectly using temporal information in the data.

2.2 Time series to predict repeated interactions
It is also possible to approach link prediction by focusing on the dynamics of interactions be-
tween two nodes rather than on the structural properties (da Silva Soares and Prudêncio, 2012).
The sequence of links between each pair of nodes is then considered as a time series and nu-
merous tools have been developed to predict the future behavior of such series. For example
it is possible to focus on the link apparition frequency in the past to predict future interac-
tions (Tylenda et al., 2009). This approach focuses on predicting future occurrences of links
that have appeared in the past. It is also its main limitation in regards to activity prediction, as it
is not suited to predict new links appearing in the system. As such, it is complementary to link
prediction in graphs.
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2.3 Mixed approaches
Some studies use both link prediction in graphs and a time series approaches (Huang and Lin,
2009). However they mostly rely on time windows, which leads to important information losses
and issues regarding time window choices, as already explained.

2.4 Link categories
To improve prediction quality in a supervised learning problem, it is often efficient to divide
items into categories (Lichtenwalter et al., 2010; Brockwell and Davis, 2013). In the case
of link prediction, node pairs with similar properties can be gathered in order to model their
behavior more accurately.

For example it is possible to group node pairs by communities: pairs inside a community are
more likely to have similar behaviors than pairs between communities (Clauset et al., 2008).
Other works use node or link attributes to build categories of pairs, with the assumption that
items with similar attributes have similar behaviors (Scholz et al., 2012).

III PROBLEM DEFINITION AND PREDICTION FRAMEWORK
In this section, we first present the prediction problem that we address in this paper. We then
propose a modular framework for solving it. We describe each of its building blocks as well as
the assumptions on which they rely. Figure 5 gives a global view of this framework.

3.1 The activity prediction problem
We consider a set of nodes V representing entities in the system. We observe interactions
between these entities for a period of time T = [A,Ω], that we model as a link stream (Latapy
et al., 2018) L = (T, V,E), where E ⊆ T × V ⊗ V , and (t, uv) ∈ E means that an interaction
occurred between u and v at time t. In this work, uv ∈ V ⊗ V denotes the unordered pair of
nodes u ∈ V and v ∈ V : uv = vu and u 6= v. We call L and T the input stream and input
period, respectively. We represent future interactions as a link stream L′ = (T ′, V, E ′) with
E ′ ⊆ T ′× V ⊗ V and T ′ = [A′,Ω′] with Ω ≤ A′ < Ω′. We call L′ and T ′ the prediction stream
and prediction period.

Our goal is to predict the number of interactions between each node pair uv in V ⊗ V , which
we call the activity of uv. We denote by A(uv) = |{(t, uv) ∈ E}| the activity of uv during
the input period, byAp(uv) the predicted activity of uv during the prediction period (computed
by our algorithm below), and by Aa(uv) = |{(t, uv) ∈ E ′}| the actual activity during the
prediction period. Prediction quality is measured by comparing Ap(uv) to Aa(uv), as detailed
in Section 3.5.

3.2 Prediction metrics
Our approach relies on metrics that capture various features, which may a priori be important
for activity prediction and that we describe here. Indeed, information contained in a link stream
is of different kinds, like for instance, the number of past interactions between two nodes or
the density of a node neighborhood. In general, existing methods focus either on structural
features (in the case of link prediction in graphs) or on temporal features (for time-series pre-
diction), while we intend to use metrics adapted to link streams, which combine temporal and
structural information. The metrics presented in this section and their associated acronyms are
summarized in Table 2.
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3.2.1 Structural metrics
As a first step, we adapt structural metrics from link prediction in graphs to the context of ac-
tivity prediction in link streams. Considering that the neighborhood of a node u is defined as
N (u) = {v : ∃(t, uv) ∈ E}, we can define traditional metrics widely employed in link predic-
tion: the Common Neighbors index (CN) (Zhou et al., 2009), the Jaccard index (JI) (Jaccard,
1901), the Sørensen index (SI) (Sorensen, 1948), the Adamic-Adar index (AA) (Adamic and
Adar, 2003) and the Resource Allocation index (RA) (Zhou et al., 2009). We do not recall the
definitions of these classical metrics here. Notice that all these metrics are independent of time.

3.2.2 Temporal metrics
To contrast with graphs, the link stream formalism also captures temporal information. As it is
usually done in the field of time-series prediction, we first use as a benchmark the extrapolation
of past activity, which captures the frequency of an interaction in the input stream. To keep it as
simple as possible, we use the number of interactions between u and v occurring during T . In
the following we refer to this metric as the Pair Activity Extrapolation defined as PAE(uv) =
|{(t, uv) ∈ E}| (which is actually identical to A(uv)).

Then, we define two other metrics that describe more precisely the temporal behavior of the
system. They are adapted versions of the pair activity extrapolation that focus on the most recent
activity during the input period. This choice is made on the ground that recent interactions affect
more the dynamics than the older do (Dunlavy et al., 2011).

First, we only take into account the activity during a recent period of time of duration δ: for
each pair of nodes, we compute the PAEδS(uv) = |{(t, uv) ∈ E : t ∈ [Ω− δ,Ω]}|. Second,
we take into account the activity of each pair of nodes between Ω and the occurrence time of
the kth link between them before Ω. The corresponding index is PAEkL(uv) = k/(Ω − tk)
with tk such that |{(t, uv) ∈ L,Ω ≥ t ≥ tk}| = k.

3.2.3 Hybrid metrics
We also use hybrid metrics, which capture a mixture of structural and aggregated temporal
information. We use weighted variation of link prediction metrics as proposed by Tabourier
et al. (2019).
• The Weighted Common Neighbors (WCN) metric emphasizes the common neighbors

which have often interacted with both nodes:

WCN(uv) =
∑

w∈N (u)∩N (v)

A(uw) · A(vw). (1)

• The Weighted Sørensen index (WSI) is similar to the Sørensen index but takes into account
the activity related to each node:

WSI(uv) =

∑
w∈N (u)∩N (v)

A(uw) +A(vw)∑
k∈N (u)

A(uk) +
∑

k∈N (v)

A(vk)
. (2)
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• The Weighted Adamic-Adar (WAA) decreases the weight of shared neighbors with high
degree and high level of activity:

WAA(uv) =
∑

w∈N (u)∩N (v)

1∑
k∈N (w)

log(A(wk))
. (3)

• The Weighted Resource Allocation (WRA) is similar to the Weighted Adamic-Adar but
gives weights differently:

WRA(uv) =
∑

w∈N (u)∩N (v)

1∑
k∈N (w)

A(wk)
. (4)

3.2.4 Normalization
Each metric is then normalized with the maximum value of the metric index. This allows for
comparable metric index values and better understanding of each metric weight in the predic-
tion. This normalization process is done for each pair of nodes and each metric in order to keep
the absolute values comparable between different metrics. We obtain the normalized index
m̂(uv):

m̂(uv) =
m(uv)

maxuv∈V⊗V {m(uv)}
, (5)

where m(uv) is the index associated to metric m over the pair of nodes uv.

3.3 Prediction index
In order to use the features captured by metrics presented above, we combine the information
contained in the normalized metric indexes into a prediction index. Precisely, we build a predic-
tion index F , such that for all uv ∈ V ⊗V , F(uv) represents how likely a link between u and v
during [A′,Ω′] is. Here, we build it using a linear combination for simplicity reasons, but a user
could define another combination method, based on his or her choice of metrics. Formally,

F(uv) =
∑
m∈M

αm · m̂(uv), (6)

where M is the set of metrics used and m̂ is the normalized metric index associated to the
metric m. The parameters αm control each metric weight in the prediction index. We make the
strong assumption that the metrics m̂ are chosen in such a way that F(uv) is proportional to
the probability for an interaction between u and v to happen. Note that the important informa-
tion does not lie in the absolute value of F(uv), but rather in the relative values of F(uv) in
comparison to other F(u′v′) as we will see in Section 3.4.

Given such a prediction index, a standard method consists in learning on the training period
values of αm which optimize a given evaluation criterion. Then, these weights are used for
actual prediction on the prediction period. Our method to optimize weights is presented in
Section 3.6.
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3.4 Global prediction and link allocation
Now, we describe the core of our approach to activity prediction in link streams. It relies on
the following design choice: first, we predict the overall activity on the stream, then we allocate
a fraction of all predicted links to each pair of nodes depending on its prediction index. The
overall activity can be predicted using methods usually available to predict time series. How to
allocate links to node pairs is a broad question in itself, which we cannot address in details here,
therefore we will make a basic choice to give the reader an idea of how to deal with this issue
in practice.

Precisely, to predict the number of interactions between each pair of nodes during T ′ = [A′,Ω′],
we first estimate the global number of links N between all node pairs during this period. We
make the simplistic assumption that the global activity in L′ is the same as in L, and therefore,
extrapolate linearly the stream activity to determine the global number N of links to predict:

N = |E| · Ω′ − A′

Ω− A
. (7)

Then, for each pair of nodes, the metric indexes m and subsequent normalized metric indexes
m̂ are computed on the link stream L. As the prediction index reflects how likely the occurrence
of a link between two nodes is, we use it to distribute the N links between all pairs in V ⊗ V .
Precisely, supposing that the prediction index F is build in such a way that it is proportional
to the number of links appearing for any pair uv, we allocate the N links estimated previously
according to the following allocation rule:

Ap(uv) = N · F(uv)∑
xy∈V⊗V F(xy)

. (8)

Of course, we have
∑

xy∈V⊗V Ap(xy) = N . As mentioned previously, it is thus the relative
values of F(uv) which are important in the computation of Ap(uv).

This framework allows to predict the future activity of node pairs, that is the number of links
appearing between each pair of nodes during T ′. It is important to note that due to the specifici-
ties of our prediction task and in contrast to what is usually done for link prediction in graphs,
this number is not necessarily an integer.

3.5 Evaluation score and protocol
To evaluate the efficiency of our protocol, we need to define a quality estimator specific to the
activity prediction problem. Practically, we have to compare for all uv ∈ V ⊗ V the number of
predicted links Ap(uv) to the number of links that have actually occurred Aa(uv). Note in par-
ticular that our method of computing Ap(uv) does not guarantee that it is an integer, so that the
estimators should be suited to this. Nevertheless, we would like to make the evaluation method
as close as possible to the tools used in classification tasks, as it would make the framework
closer to the familiar vocabulary of link prediction.

Thus, we adjust the usual definition of true positives, false positives and false negatives to the
context of activity prediction in link streams, as these measurements underly many evaluation
metrics in prediction tasks. Precisely, for each pair uv, we compare Ap(uv) to Aa(uv), see
Figure 3. We then define the number of TP, FP and FN as follows:

TP (uv) = min(Ap(uv),Aa(uv))
FP (uv)= max(Ap(uv)−Aa(uv), 0)
FN(uv)= max(Aa(uv)−Ap(uv), 0)

. (9)
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The sum of each of these indicators over all node pairs yields the number of TP , FP and
FN for all predictions. Note that these definitions allow to get the usual relationships between
indicators. In particular, TP + FP is the number of predictions and TP + FN is the total
number of interactions actually occurring during T ′. Moreover, they convey the same idea as
the usual TP, FP and FN do, as TP and FP reflect respectively the number of good and false
predictions among all, while FN corresponds to actual occurrences of interactions which have
not been predicted.

Consequently, we can compute more sophisticated performance indicators, like the Precision
TP

TP+FP
and the Recall TP

TP+FN
. We also use the F -score to quantify the quality of prediction,

which is the harmonic mean of these two indicators: 2 · Precision·Recall
Precision+Recall

. Other indicators could
be defined in this context, like the ROC curve, but we do not use them in this study.

FP
TP

FN

A
p

A A A
a p a

Figure 3: Examples of evaluation scores for activity prediction in link streams. Left: prediction underes-
timates the actual number of occurring links. Right: prediction overestimates it.

3.6 Learning of parameters
The choice of values for parameters αm is a crucial step to achieve accurate prediction, as
they determine the balance between combined metrics. An automated way to choose these
values is also needed when using multiple metrics simultaneously, as systematically explore the
parameter space would be too costly. For this purpose we use a machine learning algorithm and
define training and testing phases.

We use a hold-out technique, which means that we divide the data into sub-streams in order
to define a training phase during which we optimize parameters and then extrapolate these
parameters for the purpose of the prediction itself. Note that k-fold validation is much used in
prediction tasks, however it is difficult to implement in a context where the time-ordering plays
an essential role, as using randomly chosen periods of time would lead to an important loss of
temporal structure.

Practically, we proceed in the following way, see Figure 4: we divide the input stream L into
two sub-streams: a training sub-stream L1 = (T1, V, E1) with T1 = [A1,Ω1], used to compute
the metrics during the training phase, and a validation sub-stream L2 = (T2, V, E2) with T2 =
[A2,Ω2]. The values of parameters αm are then computed using a learning algorithm to optimize
activity prediction on T2 using the information contained in T1. Prediction metrics are then
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computed on the actual observation sub-stream L2 = (T2, V, E2) with T2 = [A2,Ω2], to predict
the activity during the prediction stream L′ = (T ′, V, E ′) with T ′ = [A′,Ω′] .

In our implementation, the validation and the effective observation sub-streams are identical.
This choice is not mandatory, but we make it because it would probably be the operator choice
in many real-time applications, as it means that the latest observations are used in order to
predict coming events.

Figure 4: Illustration of the different periods used in our protocol: the training and validation periods
(top) used to train the algorithm and the observation and prediction periods (bottom) used to make the
actual prediction.

The initial set of parameters given as input to the learning algorithm is drawn randomly in the
parameter space for each prediction. Then, we use a gradient descent algorithm to explore
the parameter space and find good values for each parameter αm. Note that using a linear
combination of metric indexes allows to avoid repeating a number of heavy computational steps.
This reduces greatly the computational cost of the method.

3.7 Method summary
We represent the different steps of our approach in Figure 5 and we summarize notations in Ta-
ble 1. This framework is able to combine different kinds of information to optimize prediction.
We did our best to make it very modular, in order to make it easy to adapt it to specificities
of a given activity prediction problem, or to specific dataset features. For example one may
adapt the metrics chosen, the combination method, the optimization technique, or the quality
estimator used during the evaluation phase. Our implementation is available online1.

Notation Meaning
Ai Start time of link stream Li

Ωi End time of link stream Li

N Overall number of predicted links
N ′ Overall number of occurring links
Ap(uv) Activity predicted for pair uv
Aa(uv) Actual activity for pair uv
F Prediction index F(uv) =

∑
m∈M αm · m̂(uv)

m̂ is a normalized metric and αm the weight of metric m̂ in F
Table 1: Summary of notations, where Li = (Ti, Vi, Ei) is a link stream with Ei ⊆ Ti × Vi ⊗ Vi,
Ti = [Ai,Ωi] is a time interval, and (t, uv) ∈ Ei means that an interaction occurred between u and v at
time t.

1https://github.com/ThibaudA/linkstreamprediction
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Figure 5: Summary of the prediction protocol. The learning and evaluation phases are described in
agreement with the implementation depicted in Figure 4

.

IV DATASETS AND EXPERIMENTS
In this section, we study the results of our activity prediction method on four different datasets.
First, we briefly describe these datasets. Then, we implement the standard prediction proto-
col aforementioned and investigate more closely how the learning method distributes weights
among combined metrics. Finally, we identify the strengths and weaknesses of the procedure
and important challenges to improve the activity prediction.

4.1 Data description
In order to assess the performances of our framework, we conducted experiments on four
datasets which gather contacts detected with sensors. Each undirected link (t, uv) means that
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the sensor carried by nodes u or v detected the sensor carried by the other nodes at time t, which
means in turn that these two nodes were close enough at time t for the detection to happen. We
call this a contact between nodes u and v. We present the datasets briefly in this section.

The first trace was collected in a French high school in 2012 (Highschool dataset), see (Mas-
trandrea et al., 2015) for full details. It is a link stream of 181 nodes and 45047 links, connecting
2220 distinct pairs of nodes over a period of approximately 8 days.

The second dataset has been collected during IEEE INFOCOM 2006 in Barcelona (Infocom
dataset) – see (Scott et al., 2009). The Bluetooth devices used in this experiment recorded
connections with one another. This dataset contains 98 nodes and 283,100 links. During this
3 days long experiment, 4,338 pairs of nodes have interacted. Note that the Infocom dataset,
which is also a contact sensor trace, involves less nodes but contains more links and more active
node pairs than the Highschool dataset does.

Our third dataset is the Reality Mining dataset, which gather contacts among students of the
Massachusetts Institute of Technology as recorded by their mobile phones – see (Eagle and
Pentland, 2005). The trace contains 1,063,063 links between 96 nodes during 9 months with
2,539 distinct pairs of nodes involved in interactions.

Finally, we study the Taxi dataset. It is based on the GPS locations of 305 taxis in Rome,
recorded during the month of February 2014 – see (Bracciale et al., 2014). We consider that
two taxis have interacted if they are within a 30 meters range from each other. This yields a
link stream of 22,364,061 links. During the experiment 16,799 pairs of nodes have interacted,
which makes this dataset significantly larger than the other datasets under study.

4.2 Experimental implementation
As a reminder of the protocol described in Section 3.6, we divide our input period L in two
substreams, the training stream L1 = (T1, V, E1) with T1 = [A1,Ω1], and the validation/obser-
vation stream L2 = (T2, V, E2) with T2 = [A2,Ω2]. Values of parameters αm are then computed
using a gradient descent algorithm that optimizes activity prediction of the activity on L2 using
the information contained in L1. The prediction metrics are then computed on the observation
sub-stream L2 = (T2, V, E2) with T2 = [A2,Ω2], to predict the activity in prediction stream
L′ = (T ′, V, E ′) with T ′ = [A′,Ω′]. The acronyms corresponding to these metrics are indicated
in Table 2.

In our experimental set-up the durations of training, validation, observation and prediction peri-
ods are chosen equal. In the cases of Highschool and Infocom datasets, we use 1, 2 and 3 hours
long periods starting on a Monday at 8:30 and 9:00 respectively. In the cases of Reality Mining
and Taxi datasets, the timescales are typically longer, so we use 1, 2 and 3 days long periods,
starting on a Tuesday at 1:30 am for the Reality Mining dataset and a Wednesday at 8:00 am for
the Taxi dataset. We report in Table 3 the exact starting and ending times for Highschool and In-
focom experiments. The choice of these periods have important consequences on the prediction
quality, as we shall see in the next section.
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Acronym Metric
CN Number of Common Neighbors
AA Adamic-Adar Index
RA Resource Allocation Index
SI Sørensen Index
JI Jaccard Index
WCN Weighted Number of Common Neighbors
WAA Weighted Adamic-Adar
WRA Weighted Resource Allocation Index
WSI Weighted Sørensen Index
PAE Pair Activity Extrapolation
PAE10L Activity by unit of time during the last 10 links
PAE100S Activity during the last 100 seconds
PAE1000S Activity during the last 1,000 seconds
PAE10000S Activity during the last 10,000 seconds

Table 2: Metric Acronyms

Dataset Duration A1 Ω1 = A2 Ω2 = A′ Ω′

Highschool
1h 8:30 am 9:30 am 10:30 am 11:30 am
2h 8:30 am 10:30 am 12:30 am 2:30 pm
3h 8:30 am 11:30 am 2:30 pm 5:30 pm

Infocom
1h 9:00 am 10:00 am 11:00 am 12:00 am
2h 9:00 am 11:00 am 1:00 pm 3:00 pm
3h 9:00 am 12:00 am 3:00 pm 6:00 pm

Reality Mining
1d Tuesday Wednesday Thursday Friday
2d Tuesday Thursday Saturday Monday
3d Tuesday Friday Monday Thursday

Taxi
1d Wednesday Thursday Friday Saturday
2d Wednesday Friday Sunday Tuesday
3d Wednesday Saturday Tuesday Friday

Table 3: Starting and ending time of each periods for each dataset

4.3 Standard prediction
Results are summarized in Table 4. We report the F -score, the Recall and the Precision for each
experiment, as well as the number of predicted links (N ) and the number of links which actually
occurred during the prediction period (N ′). The values presented are the averages obtained on
10 realizations for each set of parameters. The standard deviation for F -score, Precision and
Recall is in all cases lower than 0.01.

4.3.1 Highschool
We first focus on the Highschool dataset experiments. We can see that during the 1h experi-
ment, the algorithm predicts slightly more links than what actually appear. Still, Recall is 0.69,
meaning that 69% of interactions observed have been correctly predicted, therefore the method
seems to quite precisely account for a large part of the activity in the dataset during this period.

However, a significant drop in the prediction quality can be observed during the 2h experiment,
which is visible on both Precision and Recall (and consequently on the F -score). This is prob-
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Dataset Duration F -score Precision Recall N predicted N ′ occurring

Highschool
1h 0.44 0.33 0.69 1,123 857
2h 0.17 0.18 0.15 1,751 2,178
3h 0.29 0.22 0.41 3,072 1,900

InfoCom
1h 0.59 0.58 0.59 8,167 8,220
2h 0.55 0.50 0.60 16,737 14,051
3h 0.67 0.63 0.70 22,568 20,850

R.Mining
1d 0.47 0.41 0.56 6,105 8,733
2d 0.09 0.05 0.65 18,537 1,591
3d 0.41 0.73 0.29 11,395 29,078

Taxi
1d 0.18 0.19 0.17 872,173 971,204
2d 0.10 0.07 0.16 1,904,076 910,457
3d 0.16 0.20 0.14 1,843,329 2,865,449

Table 4: F -score, Precision, Recall and number of links predicted and occurring.

ably due to the fact that the observation period spreads over lunch break. The overall activity
predicted over the prediction link stream underestimates the number of links that actually ap-
pear. It reflects that the activity from the observation stream is not as high as the actual activity
from the prediction stream. But the main reason for this drop in the prediction quality certainly
stems from the fact that lunch break is an opportunity for interactions which are different from
the ones occurring during class hours, and this seems to have a significant impact. We explore
this question in more details in Section 4.5.

Considering the 3h experiment, we observe a slight increase in Precision and Recall compared
to the 2h experiment. We think that longer observation periods mitigate the effect of behavior
changes, like the one that happens at lunch break. The overall activity predicted is greater that
the activity that actually occurs. While this effect impacts the prediction quality, we see that it
is not as significant as with the 2h experiment.

These experiments show that predictions on longer periods are negatively affected by the strong
variation in the behavior of the system over time, mostly due to the high-school schedule, which
alternates breaks and class hours.

4.3.2 Infocom
For the Infocom dataset, performances are more stable compared to the Highschool case, in
particular when comparing the number of predicted links to the number of occurring links. In-
deed, the divergence between these values remains consistently lower than 20%. This leads to
better performances on each experimentation. We suggest that, as this dataset reports contacts
at a conference, it may be explained by the fact that differences in behaviors are less marked
between talks and breaks. At a much smaller scale than in the Highschool case, we also observe
a loss in prediction quality when using 2h periods compared to 1h periods, but the effect disap-
pears on longer periods: 3h training and prediction periods yield even better results than the 1h
case.
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4.3.3 Reality mining
The Reality Mining dataset performs relatively well on 1 day and 3 days periods, however we
can see a dramatic loss in prediction quality using 2 days periods. In this case, the loss seems
to come from the vast overestimate of predicted links compared to the links which appear. This
poor performance prediction is investigated more thoroughly in Section 4.5.

In the case of the 3 days training and prediction periods experiment, the overall predicted activ-
ity is now lower than the occurring activity, which leads to a low Recall value (0.29) relatively to
the 1 day experiment (0.56), where the underestimation of activity was not as significant. How-
ever, predicted interactions are quite accurate, as the Precision is 0.73. This tends to shows that
in certain instances our protocol is able to achieve suitable prediction despite an underestimated
activity during prediction period.

4.3.4 Taxi
Considering the Taxi dataset, we can see that prediction quality in terms of F -score is lower
than for other datasets. This is due to a greater number of nodes and interactions in the dataset,
leading to a more difficult prediction task, as there are more candidate node pairs which can
be predicted. Notice also that the nature of the dataset is different and geographical proximity
between two taxis may be less meaningful than proximity of students or conference attendees.

The 1 day experiment predicts an overall activity closer to the actual activity, leading to the
best prediction. We can see that for 2 days and 3 days predictions, the extrapolation yields less
accurate results regarding the F -score, and in each case the overall activity prediction has been
largely ill-estimated (respectively over and underestimated).

These experiments show that the choice of the prediction period plays a key role for prediction
quality. It is closely related to the overall activity extrapolation, leading to important variations
in the prediction quality.

4.4 Metric combinations
In this section we observe how the algorithm mixes different metrics in order to optimize pre-
diction. The combination realized for each dataset is shown in Figure 6. The height of each bar
corresponds to the mean of coefficients obtained for the experiments presented above (average
on 10 realizations for each set of parameters). We have represented metric combinations for the
following training/prediction periods and datasets: 1 hour for Highschool; 2 hours for Infocom
and 1 day for Reality Mining and Taxi. The meaning of metric acronyms used can be found in
Table 2.

Considering the Highschool dataset, algorithm mainly uses the Pair Activity Extrapolation
(PAE) metric with a small influence from the activity during the last 100 seconds (PAE100S).
This tells us that the algorithm basically extrapolates the dynamics of each pair of nodes during
the end of the observation period to predict future interactions.

Considering the Infocom dataset, the algorithm also focuses on temporal metrics. It allows
the algorithm to gather information about dynamics related at different time scales. The algo-
rithm also makes use of one of the weighted metric, namely the Weighted number of Common
Neighbors (WCN).

The patterns of used metrics in the case of the Reality Mining is quite similar to the Infocom
case. Indeed, the algorithm gives most weight to temporal metrics, with a marginal use of
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Figure 6: Metric coefficients repartition computed by the learning algorithm for the following datasets
and training periods (from top to bottom): Highschool (1h), InfoCom (2h), Reality Mining (1d) and Taxi
(1d).

Weighted number of Common Neighbors, more precisely the activity during the last 1,000 sec-
onds (PAE1000S) and the activity by unit of time during the 10 last links (PAE10L). The time
granularity being 120 seconds, activity during the last 100 seconds does not appear.

Finally, concerning the Taxi dataset, we can see that our algorithm mainly uses activity during
the last 10,000 seconds (PAE10000S). However, all the other temporal metrics are also used
with relatively lower weights, indicating that all timescales carry a certain amount of informa-
tion in regards to this prediction. Besides that, we also see a notable contribution of structure-
oriented index such as the Weighted number of Common Neighbors as well as a slight use of the
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Weighted Resource Allocation index.

For each dataset the algorithm uses slightly different metric combinations. However, we can
note that temporal metrics are often favored. Purely structural metrics are mostly ignored by our
algorithm, yet hybrid metrics collect structural information, which is used by the algorithm to
improve the prediction in most experimental settings. It is also interesting to note that temporal
metrics corresponding to different time scales are represented, meaning that combining these
metrics allows the algorithm to capture different information.

An important point is that by extrapolating the past activity of a pair of nodes, temporal metrics
are simply not able to predict new interactions, while structural and hybrid ones may. This indi-
cates that it is much harder to predict interactions that appear for the first time than previously
observed interactions. Indeed, our framework combines metrics in order to focus on repeated
links rather than on new links. We explore this intuition thereafter.

4.5 The case of poor predictions
In this section, we investigate in more details two cases seen in Section 4.3 which exhibit par-
ticularly low prediction quality in terms of F -score, compared to other experiments on the same
datasets.

Considering the 2 days experiment on Reality Mining, we have observed an important drop
of the overall activity during the prediction period. We show in Figure 7 the number of links
through time during this experiment with a granularity of 1,000 seconds. The system displays
a large decrease on the number of links appearing during the last two days. The experiment
starting on a Tuesday, this mean that the training period is from Tuesday to Wednesday, the
validation and observation from Thursday to Friday, while the prediction period is Saturday
and Sunday, which leads to a huge decrease of activity.

Concerning the Highschool experiment with 2 hours periods, we have previously noted an un-
derestimation of the activity during the prediction period. Again, we show in Figure 7 the
activity during this experiment with a granularity of 40 seconds. We have also seen in Table 3
that the prediction period [A′,Ω′] spans from 12:30 pm to 2:30 pm. This corresponds to lunch
break, when students leave their classes and have the opportunity to mix with other students.
It is hard to draw any conclusion from Figure 7, as the activity decreases from the training pe-
riod (8:30 am to 10:30 am) to the validation period (10:30 am to 12:30 pm) and again from the
validation period to the prediction period. But the predicted overall activity reported in Table 4
seems not far enough from the actual activity to explain alone the drop in prediction quality.
To investigate further this problem, we achieve a prediction task, which is not realistic but al-
lows us to have a better grasp of the reason for the former observation. We repeat the previous
experiment, but setting predicted activity to actual activity measured in the prediction stream.
This experiment yields a F -score of 0.17, Precision is 0.16 and Recall is 0.17. These values are
close to the quality obtained during the original experiment. This shows that predicted overall
activity alone does not explain the drop in quality. Thus, the prediction is mostly affected by
the change of students contact behavior from classes to lunch time.

Notice that these results enlighten the importance of the choice of the training, validation and
prediction periods in the protocol.
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Figure 7: Number of links appearing over time during Reality Mining 2 days experiment (Granularity:
1000 seconds) and Highschool 2 hours experiment (Granularity: 40 seconds).

V INVESTIGATING COMBINED METRICS
In this section, we use a simplified learning model, identical to the one presented above ex-
cept for the fact that it mixes only two different metrics. This simplification allows to clearly
represent the mixing achieved by the method, depending on the values of learning parameters.
Our purpose is to measure what kind of links are predicted depending on the mixing. To do
so, we focus on the Highschool and Infocom datasets. As discussed later, this will give us ad-
ditional hints about the relatively low contribution of structural metrics in previous series of
experiments.

5.1 Simplified experimental setting
The experimental protocol focuses on the performance gain that can be achieved by combining
two link stream metrics. Here, we focus on the training and validation periods only. Then,
to understand the information brought by each metric, we combine two metrics at a time, the
weight of each metric being related to the parameter α, according to the following equation:

F(uv) = α · ̂PAE1000S(uv) + (1− α) · m̂(uv), (10)

where PAE1000S is the index associated to the activity during the last 1,000 seconds (see
Section 3.2.2). We use it as a reference because we have seen that it is the metric which gets
most weight in the case of the Highschool dataset experiment and the second most weighted
metric in the Infocom dataset experiment. For each experiment we combine the activity during
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the last 1,000 seconds with m̂(uv) the index corresponding to another metric, as indicated in
the legend of each figure.

5.2 Structural and temporal metrics combinations
We study how the use of different metrics with different weights affects predictions on High-
school and Infocom datasets. For this purpose, we combine three of the metrics presented in
Section 3.2.1 with the activity during the last 1,000 seconds. For each dataset we combine it to
the most important metric index used by our learning algorithm, that is to say the activity during
the last 100 seconds for the Highschool dataset and the Pair Activity Extrapolation for the Info-
com dataset. We also combine it with the number of Common Neighbors and the Sørensen Index
to study how the algorithm mixes activity during the last 1,000 seconds to structural metrics.
Plots in Figure 8 represent the F -score for different pairs of metric combinations, as a function
of α for each of the two datasets. Higher values of α represent a greater weight of the activity
during the last 1,000 seconds in the prediction, while lower α indicate a greater weight of the
other metric involved.
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Figure 8: F -score of the predictions with different weight ratios between the activity during the last 1000
seconds and three other metrics for Highschool (1h) (top) and between the Pair activity extrapolation
and three other metrics for Infocom (2h) (bottom). Dashed lines indicate the ratio between the two main
metrics during the experiment in Section 4.4 (in green in both figures).
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In the case of Highschool, we use a 1 hour training period. We combine successively PAE1000S
with PAE100S, the number of Common Neighbors (CN) and the Sørensen Index (SI). The plots
for PAE100S show that F -score increases with α until reaching a maximum for α ' 0.74 and
then decreases until α = 1. With both structural metrics we observe roughly similar behaviors:
a slow increase until α ' 0.8 then a rapid increase until a maximum at α = 1. This shows
that the algorithm simply does not benefit at all from the structural metrics in this experiment.
Indeed, when α = 1, the prediction index comes down exactly to the activity during the last
1000 seconds.

We then apply the same protocol to Infocom, with a 1 hour training period. This time we
combine PAE1000S with the Pair Activity Extrapolation, CN and SI, successively. The mixing
between temporal metrics (PAE1000S and PAE) behaves qualitatively in the same way as the
mixing of temporal metrics in the Highschool case, that is a convex curve with a maximum for
α ' 0.35. The combination with structural metrics behave qualitatively in a different way than
in the Highschool case. Both plots have similar shapes, showing an increase until a maximum
is reached at α ' 0.94 then decreasing until α = 1. These observations indicate that in this
experiment, combining a temporal metric with a structural metric may lead to an improvement
of the F -score.

Observations of this section confirm that the algorithm is able to find a trade-off between metrics
that improve the performance of the prediction. Moreover, we see more clearly that the mixing
tends to heavily favor temporal metrics. We will now turn our attention to the kind of links
which are consequently predicted.

5.3 Nature of predicted links
Using the same prediction protocol, we divide the set of node pairs into two categories, to see
what kind of links are predicted in each case. On the one hand, some pairs have not interacted
during T , so that predicting the occurrence of a link between nodes of this kind is predicting
a new link in the stream. We call new link any (t, uv) in the prediction stream L′ such that
@ x ∈ T, (x, uv) ∈ E. On the other hand, other pairs have interacted during T and predicting
such an interaction is predicting the repetition of a link. We call recurrent link any (t, uv) in
the prediction stream L′ such that there exists a link (x, uv) ∈ E. We apply the evaluation
method on the complete set of pairs and on each of these two subsets. We display in Figure 9
the obtained F -score as a function of α for the two categories of pairs aforementioned on both
datasets as well as for the complete set of pairs.

We can see on the Highschool results that the F -score corresponding to the recurrent link cate-
gory increases to a maximum for α ' 0.98, while for the new link category it remains almost
constant until α ' 0.98, at which point it decreases to zero. The F -score for the complete set
of links is the same that previously, with a maximum at α = 1. Activity during the last 1,000
seconds alone is not able to predict new links by construction and thus yields a null F -score.
The performance of the prediction of recurrent links improves as more weight is given to the
Pair Activity Extrapolation. However, we do not see the same effect of stagnation for a wide
range of α.

The plot corresponding to the Infocom dataset shows a quite different behavior. We can see that
the F -score accounting for new link predictions starts from 0.22 for α = 0 and slowly decreases
until α = 0.8 at which point it sharply decreases to 0. Regarding the recurrent links prediction
the F -score starts from 0.41 and reaches a maximum of 0.62 for α ' 0.92 and then decreases
to 0.56. We observe that new link prediction quality is noticeably lower than the recurrent link
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Figure 9: F -score of the predictions for the mixing between PAE1000S and CN as a function of α for
different categories of node pairs for the Highschool (top) and Infocom (bottom) datasets using respec-
tively 1 hour and 2 hours long observation and predictions periods. Green crosses: All links, Orange
squares: New links, Purple circles: Recurrent links.

prediction quality in both experiments. The difficulty of this task is mainly due to the class
imbalance problem, which is a well-known issue in the field of link prediction Lichtenwalter
et al. (2010). It is related to the fact that the number of links actually occurring is small in
regards to the potential number of links, which is simply the number of node pairs.

We observe that the number of links predicted in each category plays an important role in the
prediction quality. Obviously, different metrics tend to predict preferentially different types of
activity. These experiments show that, by choosing specific metrics combination, the prediction
focuses on different kinds of activity, involving different kinds of links. With that in mind, we
can put forward an explanation for the lower weights of structural metrics in the combinations
computed by the learning algorithm in Section 4.4. Indeed, by only selecting temporal metrics
the algorithm avoids the difficult task of predicting new links to favor the easier task of predict-
ing recurrent ones. While it improves the overall F -score, it is also detrimental to the variety of
links predicted. To counterbalance this unwanted behavior, we explore in the next section how
to integrate the notion of class of node pairs to the protocol.
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VI CLASSES OF PAIRS
As seen in Section 5.3, specific metrics combinations favor different kinds of node pairs. How-
ever, our protocol does not make this distinction. In this section, we propose a way to improve
activity prediction in link streams by differentiating node pairs. For this purpose, we introduce
classes of node pairs based on previous activity. Other choices of class definitions are possible,
but our previous observations indicate that new links and recurrent links behave very differently.
Moreover, previous studies of related prediction problems also agree with this – see for exam-
ple (Scholz et al., 2012) on link prediction. We compute a specific set of values for parameters
αm for each of these classes, allowing to adapt metric weights to each type of node pairs.

6.1 Class definition and metric to optimize
We choose to separate classes by their level of activity. The underlying idea is to create classes
reflecting on the one hand link prediction in graphs and on the other hand time series prediction.
Indeed, predicting node pairs with no or low past activity is a task related to the prediction
of new links, while predicting the future activity of recurrent links resembles a time series
prediction task.

We define three classes of node pairs. Class C1 is populated with node pairs which have not
interacted during the training period. Class C2 gathers the pairs with less than a given number
of links k during the training period. Lastly, the remaining high activity pairs are assigned to
the class C3. Formally:

C1 = {uv ∈ V ⊗ V, |(t, uv) ∈ E1| = 0}, (11)
C2 = {uv ∈ V ⊗ V, 0 < |(t, uv) ∈ E1| ≤ k}, (12)
C3 = {uv ∈ V ⊗ V, |(t, uv) ∈ E1| = 0 > k}. (13)

In the following experiments, in a proof of concept spirit we set the threshold between the class
C2 and C3 to k = 5 links. However determining an adequate value of the threshold in general
is a difficult task, which depends on the dataset under consideration.

We follow the same experimental protocol for each class, using different values of parameters,
which are computed during the learning phase. However, if we aim at optimizing the overall F -
score, this protocol tends to favor high activity classes. Therefore, we have to update adequately
the metrics to optimize with the gradient descent algorithm, in order to ensure we predict a wide
variety of links. We then define the prediction score F as the harmonic mean of the F -scores
for each class, that is

1

F
=

1

3

(
1

F (C1)
+

1

F (C2)
+

1

F (C3)

)
, (14)

where F (C1), F (C2) and F (C3) and the F -scores computed over each subset of node pairs
defined by our classes.

Once the parameters are optimized, we reassign each node pairs in our different classes based on
their activity during the observation stream L2. We then follow our usual protocol, combining
the metrics for each classes using its specific set of parameters.
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6.2 Reduction of the parameter space
In order to achieve computations in a reasonable amount of time, we reduce the set of metrics
compared to the experiments in Section 4.4. In these series of experiments, we use the following
metrics: number of Common Neighbors, the Sørensen Index, the Weighted number of Common
Neighbors and our temporal metrics, Pair Activity Extrapolation (PAE) , PAE10L, the activity
during the last 10 links, PAE1000S and PAE10000S, the activity during the last 1,000 and 10,000
seconds respectively, drawing benefit from the fact that several metrics are highly correlated.

Indeed, we reported in Figure 10 the correlation matrix of the score given by each metric over
every nodes for the training set of the experiment on Infocom for periods of 2h. We can see
that most structural metrics are highly correlated. Particularly, number of Common Neighbors,
Adamic-Adar index and Resource Allocation index seem to bring similar information. We also
see that Sørensen Index and Jaccard Index are very correlated to each other. Therefore, we
choose one metric for each group, the number of Common Neighbors and the Sørensen In-
dex. This will allow some variety in the structural metrics available. Similarly, except for the
Weighed number of Common Neighbors, the weighed variation of structural metrics are close to
the other structural metric. Thus, in the following experiments, we keep the Weighted number
of Common Neighbors. Temporal metrics tend to focus on different time scales of the dataset
and, while correlated, bring different information about the dynamic of the system. Therefore
we keep them all for our following experiment.
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Figure 10: Correlation matrix of the values of each metric over all pair of nodes during the 2 hours
training phase on Infocom.

6.3 Experimental results
We apply the protocol on Infocom using the same training, validation, observation and predic-
tion periods as in the 2h experiments detailed in Section 4.3. Results are summarized in Table 5.
We present the results for each class C1, C2 and C3, as well as the overall results obtained when
combining the prediction for each class, denoted All Class. For comparison purposes, we also
present the results obtained in the same experiments but without using classes of node pairs.
The corresponding results are prefixed C0. Thus, the F -scores associated with C0-1 C0-2 and
C0-3 are the scores obtained when applying the evaluation protocol on the subset of node pairs
relative to each pair classes. Precision, Recall and F -score are reported, as well as overall
activity predicted and occurring. These results correspond to the average over 10 runs of the
experiments, with standard deviation below 0.01 for the F -score, below 0.05 for the Precision
and Recall, and below (up to) 22% for the number of predicted links.
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Class F -score Precision Recall N predicted N ′ occurring
C0 0.55 0.50 0.60 16,737 14,051
C0-1 0.05 0.31 0.02 209 2,668
C0-2 0.37 0.46 0.30 1,400 2,134
C0-3 0.63 0.51 0.84 15,126 9,137
AllClass 0.53 0.49 0.59 16,737 14,051
C1 0.25 0.23 0.29 3,300 2,668
C2 0.41 0.37 0.48 2,800 2,134
C3 0.65 0.60 0.70 10,500 9,137

Table 5: F -score and number of link predicted and appeared by class on Infocom using 2h periods.

First, we observe that the number of predicted links in class C1 is more than 15 times higher
than in class C0-1. The Precision slightly decreases, but the Recall is so much higher that the
new protocol achieves a 0.25 F -score, to be compared to the 0.05 F -score obtained on this
class in the standard series of experiments. We also note that the activity predicted over the
whole class C2 nearly doubles, which also leads to a performance improvement, from 0.37 to
0.41 F -score. It is very interesting to note that the introduction of classes also improves the
prediction in the classes C3, from a 0.63 to a 0.65 F -score. The number of links predicted in
this class largely decreases to balance the fact that the activity predicted in the two other classes
increases, making it closer to the actual activity observed. We investigate this effect in more
details later.

Quite counter-intuitively, while the prediction is improved in each class, the F -score predicted
overall decreases from 0.55 to 0.53. This phenomenon is a sort of amalgamation paradox. Pre-
cisely, the F -score is the harmonic mean of the Precision and the Recall, hence its computation
is related to the proportion of links that should be predicted and that is actually predicted in each
class. This may lead to the fact that the F -score over the union of subsets and the F -scores of
each subset considered separately evolve according to different trends.

We display in Figure 11, the values of parameters αm computed by the learning algorithm to
achieve a prediction over each class (averaged over 10 experiments). As expected, the method
tends to use different combinations to make a prediction over each class. Considering class
C1, the algorithm favors structural and hybrid metrics. These metrics are commonly used for
link prediction in graphs, which makes sense given that predicting new link activity is closely
related to this problem.

Class C2 tends to mix structural metrics to temporal ones. Pairs in this class have intermediary
behavior and the algorithm combines information of different nature to predict these behaviors.
Interestingly, prediction on class C3 also mixes temporal metrics to structural ones, even if
temporal metrics remain predominant. It contrasts with prediction in the experiments without
class, where no or little weight was distributed to purely structural metrics, and little weight to
hybrid ones. Our interpretation is that in the former protocol, the optimization favored temporal
metrics in order to exclude node pairs which had never interacted and then are much more risky
to predict, while in the later protocol, the introduction of classes allows to focus on recurrent
links only, so that giving weight to structural metrics becomes an interesting option again.

Experiments on Highschool and Reality Mining present similar results and are not reported
here. Concerning the Taxi dataset, we think that the different nature of interactions between
nodes necessitate a specific analysis which is left for future works.
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Figure 11: Metric coefficients repartition computed by the learning algorithm during prediction by
classes on Infocom using 2 hours periods.

In the light of these experiments, we can see that introducing classes of pairs in the problem
of activity prediction may be a good option in order to improve the diversity of links to be
predicted, which opens interesting leads for future works on the topic. In particular, finding a
way to compute automatically relevant activity thresholds would be a significant improvement
to the current version of the classes definition.

VII CONCLUSION
In this work, we proposed an activity prediction protocol adapted to the link stream formalism,
making possible to advantageously use the rich information contained in this modeling. It relies
on a flexible way to combine the information from metrics which capture characteristics of the
stream. We also proposed evaluation metrics adapted to our problem. Our experiments show
that our protocol is able to find efficient combinations of structural and temporal metrics that
lead to performance improvements, compared to benchmarks such as the past activity extrap-
olation. We also investigated how this algorithm tends to exclude specific types of node pairs,
leading to less variety in the predicted links. However, we showed that it is possible to mitigate
this issue by introducing classes of node pairs in activity prediction, so that a better balance of
activity can be obtained in each class. Most importantly, our protocol is designed in a modu-
lar way, such that each part is independent from the others and can be replaced or improved,
depending on the application a user is interested in.

Different improvements are considered for future works. The metrics presented in this work are
classical metrics used for link prediction in graphs or basic ways to capture the temporal infor-
mation of the stream. As our protocol is ready to combine new metrics, we intend to design
refined ones that are able to detect more subtle dynamical metrics of the stream, for example im-
plementing pattern mining techniques to identify typical motifs of the short term dynamics. We
also made the assumption that the activity remains constant from the observation period to the
prediction period. However, this hypothesis is not always satisfied and greatly depends on the
data under concern. Models developed in the context of time series prediction, like the ARIMA
model which extrapolates precisely past activity (Huang and Lin, 2009), would certainly allow
to better evaluate the number of predicted links. Finally, we also want to investigate further how
our algorithm behaves with different classes of pairs. Other definitions are possible, for example
structural classes, where node pairs of a same community would belong to a same class.
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