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Ricochet Robots game: complexity analysis Technical Report

This paper investigates the Ricochet Robots game problem from a complexity standpoint. The problem consists in moving robots in a grid game board in horizontal or vertical direction only, to reach specific target tiles. Once a robot starts moving in a direction, it cannot be stopped until being blocked by a wall or another robot. We show that the optimization problem corresponding to this game is Poly-APX -hard. We also show that the decision problem is PSPACE-complete when we consider an arbitrary number of robots. In such a context, several lower bounds are introduced, exploring some classic complexity hypothesis (P = N P, ET H, . . .).

Introduction

Ricochet Robots [START_REF] Butko | Ricochet robots-a case study for human complex problem solving[END_REF][START_REF] Engels | Randolphs robot game is np-hard![END_REF][START_REF] Gebser | Ricochet robots: A transverse asp benchmark[END_REF][START_REF] Gebser | Ricochet robots reloaded: A case-study in multi-shot asp solving[END_REF] is a puzzle board game designed by A. Randolph, in which a player must move playing pieces (robots) in an arbitrary grid to a given set of selected locations, with less moves as possible. The game board is a grid containing walls and colored robots. A wall can be placed between two tiles and robots are on the tiles. Robots can move on the grid according to horizontal or vertical directions only. A robot moving in a direction will not stop until it hits a wall or another robot. Each step consists in selecting both a robot and a direction the robot will follow. To solve the puzzle, the player needs to reach a configuration where all target tiles are covered by a robot of the corresponding color. Also, it is often necessary to move robots that serve as guides to stop the movement of another one on an appropriate tile (see Figure 1 for an example). Several robots cannot move at the same time. If a robot has to move, it has to wait for the end of the movement of the previous one. In the original game, the board is a square containing four robots and a specific target tile per robot -four colors being used to distinguish pairs of robots and target tiles -. Hence the player must move each robot to its corresponding target tile.

Ricochet Robots game can be categorized as a sliding game like the PushPush game studied by Demaine [START_REF] Erik D Demaine | Pushpush-k is pspace-complete[END_REF] or the Atomix game studied by Holzer [START_REF] Holzer | Assembling molecules in atomix is hard[END_REF] or Huffner [START_REF] Hüffner | Finding optimal solutions to atomix[END_REF]. Icking [START_REF] Icking | Exploring an unknown cellular environment[END_REF][START_REF] Icking | Exploring simple grid polygons[END_REF] considers the exploration problem of a grid polygon with or without obstacles inside it. Engels [START_REF] Engels | Randolphs robot game is np-hard![END_REF] studies the solvability of Ricochet Robots with n uncolored robots and one target tile, and proves that this problem is N P-hard. Hesterberg [START_REF] Hesterberg | The parameterized complexity of ricochet robots[END_REF] studies the parameterized complexity of Ricochet Robots and Atomix. Gebser [START_REF] Gebser | Ricochet robots: A transverse asp benchmark[END_REF][START_REF] Gebser | Ricochet robots reloaded: A case-study in multi-shot asp solving[END_REF] uses
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In this grid r 1 cannot be placed on the target tile t 1 without the help of r 2 . If the robot r 2 reach the target tile t 2 with the two movements ↑ then ← and stop to move, then r 1 will never reach t 1 . A solution possible of this instance is to execute there following moves: r 2 : ←; r 1 : ↑, ←, ↓, →; r 2 : ↑, →, ↓.

Figure 1: Example of an instance of Ricochet Robots. To solve it, the robot r 1 must be placed on the target tile t 1 and r 2 must be on t 2 at the same time.

Problem

Complexity

Reduction from Proof GR(k, 1, 1, 1) Polynomial -Hesterberg [START_REF] Hesterberg | The parameterized complexity of ricochet robots[END_REF] MR(n, 1, n, 1)

Poly-APX -hard Maximum Independent Set Theorem 3 GR(n, 1, 1, 1) PSPACE-complet Token Sliding (TS) Theorem 4

Table 1: Problem complexity classification, where n is a variable and k a constant.

Ricochet Robots game as a benchmark for answer set programming while Butko [START_REF] Butko | Ricochet robots-a case study for human complex problem solving[END_REF] proposes to study how humans try to solve Ricochet Robots. This article proposes to generalize the problem of Ricochet Robots game in Section 2. In Section 3 we prove that the corresponding optimization problem with n robots and n target tiles is Poly-APX -hard and the Section 4 improves the result of [START_REF] Engels | Randolphs robot game is np-hard![END_REF] and show that the problem with n robots is PSPACE-complete. We present future works and perspectives in Section 5.

Modelization

The original game of Alex Randolph implies four different colored robots and one colored target tile. In this paper, we extract two problems from this original configuration, respectively a decision problem and an optimization problem.

Decision problem

We define the decision problem Generalized Reachability (GR) as a generalization of the Reachability Problem introduced by Engels and Kamphans [START_REF] Engels | Randolphs robot game is np-hard![END_REF].

Generalized Reachability (GR)

Input: Given an arbitrary grid polygon P , a set R of n robots r 1 , . . . , r n with a given starting position on the grid, a set T of m target tiles t 1 , . . . , t m and two functions robotColor(r i ) and tileColor(t i ) which return the color of the robot r i and the color of the target tile t i . Output: Can we reach a configuration such that each target tile t i ∈ T , t i is covered by a robot r j ∈ R and tileColor(t i ) = robotColor(r j ) (i.e. a configuration in which each colored target tile is reached by a robot of the same color)?

We denote by GR(n, c r , m, c t ) the Generalized Reachability (GR) problem composed by n robots of c r different colors and m target tiles of c t different colors.

Optimization problem

The optimization problem Maximum Reachability (MR) corresponding to Generalized Reachability (GR) problem, is defined as follows:

Maximum Reachability (MR) Input: Given an instance I of Generalized Reachability (GR) and K a set of tiles such that ∀t i ∈ T , if t i is covered by a robot r j ∈ R and tileColor(t i ) = robotColor(r j ) then t i ∈ K (i.e. K is the set of tiles reached by a robot of the corresponding color). Output: Maximize |K|.

We denote by MR(n, c r , m, c t ) the Maximum Reachability (MR) problem with n robots of c r different colors and m target tiles of c t different colors.

Problems classification

Currently, the complexity of Generalized Reachability (GR) and Maximum Reachability (MR) is given by Table 1.

Theorem 1. In terms of complexity, ∀n > 1, the problem GR(n, 1, 1, 1) is at least as hard as GR(n-1, 1, 1, 1). Proof. For all instances I of GR(n -1, 1, 1, 1), it is possible to create an instance I in polynomial-time of GR(n, 1, 1, 1) by adding a robot in an isolated area (see example Figure 2). Then it exists a reduction from GR(n -1, 1, 1, 1) to GR(n, 1, 1, 1) (∀n > 1).

It seems that the problems are more difficult when we add target tiles, robot colors or target tile colors but we do not have reductions to prove it. However, adding target tiles, robot colors or target tile colors to a positive instance can return a negative instance whereas remove one of them cannot transform a positive instance to a negative.

Maximum reachability problem with n robots

This section is devoted to showing some new complexity results according several complexity hypothesis.

First, let us recall the definition of strict reduction and S-reduction of Crescenzi [START_REF] Crescenzi | A short guide to approximation preserving reductions[END_REF].

Let us consider two NPO problems Π and Π . Moreover, let Π ∈ {Π, Π }, we denote by OP T Π the value of an optimal solution of Π and by m Π (x , y ) the cost of a solution y of an instance x of Π , m Π (x , y ) is also the metric used to determine which solution is considered optimal.

Given an instance x of a problem Π and a feasible solution y of x, we define the performance ratio of y with respect to x as:

R Π = max m Π (x, y) OP T (x) , OP T (x) m Π (x, y)
Strict reduction consists of polynomial-time computable functions f and g such that, for each instance x of Π, f (x) returns an instance of Π and for each feasible solution y of f (x), g(y ) returns a feasible solution of x. A reduction (f, g) from Π to Π is said to be a strict reduction if, for any instance x of Π and for any y feasible solution of Π , the following holds:

R Π (x, g(y )) ≤ R Π (f (x), y ).
There is a S-reduction from Π to Π if: 1. For any instance x of Π, OP T Π (f (x)) = OP T Π (x). 2. For any instance x of Π and for any y feasible solution of Π , m Π (x, g(y )) = m Π (f (x), y ). S-reduction is a special case of strict reduction, then a S-reduction implies a strict reduction. Note that S-reduction implies AP-reduction, then preserves the membership in Log-APX and Poly-APX classes.

In the following, we present a S-reduction from the classical Maximum Independent Set problem to MR(n, 1, n, 1).

Maximum Independent Set

Input: Graph G = (V, E). Output: Find an independent set of vertices V ⊆ V , for V of the maximal cardinality i.e.

a largest set V ⊆ V such that no two vertices in V are joined by an edge in E.

This problem is proved Poly-APX -complete by Bazgan [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(d) apx-and (d) ptas-completeness[END_REF]. Let us consider the function N (v i ) which returns the set of neighbour vertices of the vertex v i .

We define some polygons with particular properties. The first one, called v i -CHOICE polygon (Figure 3), is a gadget in which robots have their initial location. This gadget admits two outputs and a robot needs to choose one of them (i.e. when a robot reaches an output, it cannot take the other one because it will be stuck in tiles tagged by ×).

r i v i ¬v i × ×
Figure 3: v i -CHOICE polygon, tiles tagged by × corresponding to tiles where robot is stuck if it tries to come from an output to reach another one.

× × × × e vi,¬v1 v i × × × × e vi,¬v2 × × × × e vi,¬v |N (v i )| t i . . . . . . {e vi,¬vj : v j ∈ N (v i )} Figure 4: A v i -VERTEX polygon.
Only the robot which comes from the v i input can reach the target tile t i and it needs the help of robots which come from all e vi,¬vj inputs, otherwise it will be stuck in tiles tagged by ×.

Lemma 1. Each robot r i can reach at most one v i -CHOICE polygon output.

Proof. When r i outputs of its v i -CHOICE polygon, it cannot comeback to choose the other one because it will be stuck in tiles tagged by ×.

The second gadget polygon called v i -VERTEX polygon Figure 4 is created in order to verify the absence of all neighbors of v i in the final solution when we try to add v i to the solution. In this gadget, only the robot coming from v i can reach the target tile t i if and only if |N (v i )| others inputs have been reached by a robot (otherwise it will be stuck on the tiles tagged by ×). Note that a robot which reaches an e vi,¬vj input can help the robot which comes from v i before to go out of the gadget in the same way where it comes from. A robot which inputs a v i -VERTEX polygon cannot reach another input than its to get output. Lemma 2. The robot r i can reach the target tile t i of the v i -VERTEX polygon if and only if ∀v j ∈ N (v i ), the input e vi,¬vj is reached by a robot.

Proof. If ∀v j ∈ N (v i ), the input e vi,¬vj is reached by a robot, then r i can rely on them one after another to reach the target tile t i . Considering an input e vi,¬vj which is not reached by a robot, then r i will be stuck in tiles tagged by × and will not be able to reach the target tile t i .

The next gadget polygon is the ¬v i -ROUTER polygon. In this one, the robot which input in ¬v i can reach any output (while traveling through counterclockwise). Another particularity, when a robot comes from an output, it can reach any others (but it cannot reach the input ¬v i ).

Remark 1. In the following construction, a robot r i can reach the target tile t i if and only if it crosses the v i -VERTEX polygon. To cross v i -VERTEX polygon a robot r i needs to be helped by all of its neighbors (in the corresponding graph G). A robot which helps another one to reach a target tile cannot reach one. • ∀v i ∈ V we consider the robot r i ∈ R and the target tiles t i ∈ T all colored with the same color c.

¬v i e v1,¬vi e v2,¬vi e v3,¬vi e v |N (v i )| ,¬vi . . . . . . {e vj ,¬vi : v j ∈ N (v i )}
• ∀r i ∈ R we construct a v i -CHOICE polygon (Figure 3), a ¬v i -ROUTER polygon (Figure 5) with |N (v i )| outputs and a v i -VERTEX polygon (Figure 4) with |N (v i )| inputs of type e vi,¬vj .

• ∀r i ∈ R, r i starts in its corresponding v i -CHOICE polygon.

• v i output of each v i -CHOICE polygon is connected to the v i input of the corresponding v i -VERTEX polygon and the ¬v i output is connected to the ¬v i input of the ¬v i -ROUTER polygon.

• Each e vi,¬vj output of ¬v j -ROUTER polygon is connected to the input e vi,¬vj of the v i -VERTEX polygon. To give an intuition, for each edge (v i , v j ) ∈ E we connect the output e vi,¬vj of the ¬v j -ROUTER polygon to the input e vi,¬vj of the v i -VERTEX polygon and the output e vj ,¬vi of the ¬v i -ROUTER polygon to the input e vj ,¬vi of the v j -VERTEX polygon.

• Each target tile t i ∈ T is contained by the corresponding v i -VERTEX polygon.

Clearly, the transformation is done in polynomial time. In order to illustrate the Construction 1, the Figure 6 presents an instance I of Maximum Independent Set and the corresponding instance I of MR(n, 1, n, 1) obtained by Construction 1 (see Appendix A for more details on the representation of schemes). In this example the maximum solution of

I is V = {v 1 , v 4 } and the maximum solution of I is K = {t 1 , t 4 }.
Theorem 2. There is a polynomial-time reduction from Maximum Independent Set problem to MR(n, 1, n, 1).

Proof. Considering an instance I of Maximum Independent Set and the corresponding instance I of MR(n, 1, n, 1) obtained by Construction 1, there exists a maximal solution of size |V | = k of I if and only if there exists a maximal solution of I of size |K| = k (i.e. it is possible to reach k target tiles with the corresponding k robots but not with more).

• Suppose that it exists a maximal solution of size |V | = k for I, we construct a maximal solution of size k for I in the following way:

Let V ⊆ V be a maximal solution of I. Assume ∀v i ∈ V , if v i ∈ V then the corresponding robot r i goes to the v i output of the v i -CHOICE polygon and reaches the v i -VERTEX polygon, otherwise it goes to the ¬v i output and reaches the ¬v i -ROUTER polygon. According to Lemma 2, r i can reach the target tile t i if and only if all inputs of the v i -VERTEX are reached by a robot, in other words, if ∀v j ∈ N (v i ), the corresponding robot r j has reached the ¬v j -ROUTER polygon. Thus, r i reaches the target tile t i and according to Lemma 1 its neighbors cannot reach it. If ∃r l a robot which can reach a target tile such that v l / ∈ V . Thus, ∃v l ∈ V such that none of its neighbors are in V and v l / ∈ V then {v l } ∪ V is an admissible solution of size k + 1 then V is not a maximal solution. Thus, if I admits a maximal solution of size k, I admits a maximal solution of size k.
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• Reciprocally, we suppose that I possesses a maximal solution of size |K| = k, then we prove that I admits a maximal solution of size k:

If I admits a maximal solution of size k, then k robots have reached a target tiles. According to Lemma 2, r i can reach the target tile t i of v i -VERTEX polygon if and only if ∀v j ∈ N (v i ), the input e vi,¬vj is reached. According to Construction 1, ∀v j ∈ N (v i ), the input e vi,¬vj can be reached if and only if ¬v j -ROUTER polygon is reached and then if r j has chosen the ¬v j output of the v j -CHOICE polygon. Then the k target tiles reached by a robot correspond to a set V of k vertices such that any of their neighbors are not in the set (i.e. an independent set of size k). If ∃v l ∈ V \V a vertex such that {v l } ∪ V is an independent set, then ∃t l ∈ T \K which can be reached by a robot r l because none of its neighbors are in K and then they can help it to cross the v l -VERTEX polygon and reach the target tile t l . Then K is not a maximal solution (contradiction). Therefore if I admits a maximal solution of size k, I admits a maximal solution of size k.

All maximum solutions are a maximal solutions then I admits a maximum solution of size |V | = k if and only if I admits a maximal solution of size |K| = k. From previous arguments, there is a polynomial-time reduction from Maximum Independent Set to MR(n, 1, n, 1).

Theorem 3. MR(n, 1, n, 1) is Poly-APX -hard.
Proof. To prove this we show that exists a S-reduction from Maximum Independent Set problem to MR(n, 1, n, 1). Let Π the Maximum Independent Set problem, Π the MR(n, 1, n, 1) problem, I an instance of Π, I an instance of Π , V a solution of I and K a solution of I . We have:

• A function f (I) which constructs I in polynomial-time (Construction 1).

• A function g(K) which constructs V in polynomial-time (V = {v i : t i ∈ K}).

And:

1. For any instance I of Π, OP T Π (I) = OP T Π (f (I)) (Theorem 2). 2. For any instance I of Π and for any K feasible solution of Π , m Π (I, g(K)) = m Π (f (I), K) (Theorem 2). The previous reduction being an S-reduction from Maximum Independent Set to MR(n, 1, n, 1) and considering Maximum Independent Set Poly-APX -complete (Bazgan [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(d) apx-and (d) ptas-completeness[END_REF]) this reduction implies that MR(n, 1, n, 1) is Poly-APX -hard.

Let us define k-Ricochet for some corollaries.

k-Ricochet (k-Generalized Reachability (GR))

Input: Given an instance I of Generalized Reachability (GR) and K a set of tiles such that ∀t i ∈ T , if t i is covered by a robot r j ∈ R and tileColor(t i ) = robotColor(r j ) then The previous reduction can also be seen as an FPT-reduction from Independent Set parameterized by the standard parameter to k-Ricochet parameterized by the standard parameter and then implies that k-Ricochet is W [1]-hard.

t i ∈ K (i.e. K
We know that for all > 0, approximating Independent Set to within n1-is NP-hard [START_REF] Håstad | Clique is hard to approximate within n 1-ε[END_REF][START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF]. Independent Set not having a n o(k) -time algorithm [START_REF] Chen | Tight lower bounds for certain parameterized NP-hard problems[END_REF] implies that MR(n, 1, n, 1) does not have a n o(k) -time algorithm (unless

W[1] = FPT ).
Construction 1 also implies subexponential lower bounds for our problems based on the widely believed complexity-theoretic hypothesis known as the "Exponential-Time Hypothesis 1 " (ETH, see [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF][START_REF] Lokshtanov | Lower bounds based on the exponential time hypothesis[END_REF][START_REF] Gerhardj | Exact algorithms for np-hard problems: A survey[END_REF]).

The following results are straightforward since by [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF], we know that Independent Set does not have 

f (k)n o(k) (resp. n o(k) ) time algorithm, unless ET H fails (unless W[1] = FPT , [3]).

General reachability problem with n robots

In this section we show that GR(n, 1, 1, 1) is PSPACE-complete. We consider the problem of Token Sliding (TS) proved PSPACE-complete by [START_REF] Ito | On the complexity of reconfiguration problems[END_REF].

Kamiński et al. [START_REF] Kamiński | Complexity of independent set reconfigurability problems[END_REF] define reconfiguration problems as follows: "Given two feasible solutions x, y of I, the aim is to find a reconfiguration sequences s 1 , . . . , s k such that s 1 = x, s k = y, and for each s i (for 1 < i < k) is a feasible solution of I, and the transition between s i and s i+1 is allowed by the reconfiguration rule".

Token Sliding (TS) (also called independent set reconfigurability problems) can be defined as follows:

Token Sliding (TS) (Token Sliding) Input: A graph G = (V, E) and two independent sets A and B in G. We define some polygons with particular properties. The first, denoted ¬v i -ROUTER polygon (Figure 7, similar to Figure 5 with more inputs), is a gadget in which an incoming robot in ¬v i can reach any output (while traveling through counterclockwise). Another particularity, when a robot comes from an output, it can reach any others (but it cannot reach the input ¬v i ).

¬v i sv n ,¬v i {ev j ,¬v i : v j ∈ V } {mv j ,¬v i : v j ∈ V } {sv j ,¬v i : v j ∈ V } r i ev 1 ,¬v i ev 2 ,¬v i . . . ev n ,¬v i mv 1 ,¬v i . . . mv n,¬vi sv 1 ,¬v i . . .
The second gadget polygon is denoted v i -ROUTER polygon (Figure 8). It has the same properties as the ¬v i -ROUTER polygon (Figure 7) but it has fewer outputs. Lemma 3. A robot in a ¬v i -ROUTER polygon (see Figure 7) (resp. v i -ROUTER polygon Figure 8) can reach any output (no matter where it comes from) but it cannot reach the input ¬v i (resp. v i ).

The next gadget is the v i -DISPATCHER polygon. In this one, the robot which comes in through the input d vi can reach only one output between the n available outputs. Figure 9 illustrates two examples of v i -DISPATCHER polygon (with n = 3 and n = 4 outputs). Note that the number of outputs of the v i -DISPATCHER polygon is totally scalable (∀n ≥ 1). Lemma 4. Each robot r i can reach at most one v i -DISPATCHER polygon output.

Proof. When r i outputs of an v i -DISPATCHER polygon, it cannot comeback to choose another one because it will be stuck in tiles tagged by ×.

The following polygon denoted v i -VERTEX polygon, described by Figure 4 is created in order to verify the absence of all neighbors of v i in the current independent set when we try to slide a token on v i . In this gadget, only the robot coming from v i can reach the output v i if and only if the |N (v i )| others inputs have been reached by a robot (otherwise it will be stuck on the tiles tagged by ×).

The v i -VERTEX polygon is the same as the Figure 10 but with an output v i rather than a target tile. Obviously the Lemma 2 is applicable to this one. Remark 1. A robot which reaches an e vi,¬vj input in the v i -VERTEX polygon can help the robot which comes from v i before to go out of the gadget in the same way where it comes from. A robot which inputs a v i -VERTEX polygon cannot reach another input than its to get output (if it try, it will be stuck on the tiles tagged by ×).

The next gadget polygon is the v i -MOVING polygon Figure 11. This gadget is used to synchronize the position of all other robots before to start the sliding of the vertex v i . Lemma 5. In the v i -MOVING polygon Figure 11, the robot which input in M v i can reach the output d vi if and only if ∀j such that v j ∈ V \{v i }, the input m vi,vj or m ¬vi,vj are reached by a robot.

Proof. The robot coming from the input M v i must reach the bottom of the gadget to reach the output. For that, at each floor, this robot need to lean on another one to reach the floor below (else it is stuck on tiles tagged by ×).

v i Mv i mv 1 ,v i mv i-1 ,v i mv i+1 ,v i mv n,vi Tv i . . . . . . . . . . . . {mv j ,v i : v j ∈ V and v i = v j } r i Figure 8: A v i -ROUTER polygon.
The robot which comes from the v i input can reach any output while traveling through counterclockwise. The robot r i start in the tile tagged by r i if the corresponding vertex 

v i ∈ A. × × × × d vi × × × × s vi,¬v4 s vi,¬v3 × × × × s vi,¬v2 s vi,¬v1 × × × × d vi s vi,¬v3 × × × × s vi,¬v2 s vi,¬v1
× × × × e vi,¬v1 v i × × × × e vi,¬v2 × × × × e vi,¬v |N (v i )| v i . . . . . . {e vi,¬vj : v j ∈ N (v i )} Figure 10: A v i -VERTEX polygon.
Only the robot which comes from the v i input can reach the output v i and it needs the help of robots which come from all e vi,¬vj inputs, otherwise it will be stuck in tiles tagged by ×.

Mv i mv i ,¬v 1 mv i ,v 1 × × × × . . . . . . . . . . . . . . . . . . mv i ,¬v i-1 mv i ,v i-1 mv i ,¬v i+1 mv i ,v i+1 × × × × × × × × . . . . . . mv i ,¬vn mv i ,vn × × × × × × × × {mv i ,v j : vj ∈ V and vi = vj } {mv i ,¬v j : vj ∈ V and vi = vj } dv i Figure 11:
The v i -MOVING polygon. A robot r i which comes in from the input M vi can reach the output d vi if and only if at each floor another robot r j help it from the input m vi,vj or m vi,¬vj . Otherwise it is stuck on tiles tagged by ×. By the future construction, it is impossible to have a robot which come from the input m vi,vj and another from the input m vi,¬vj at the same time.

v i ¬v j ¬v i v j × × × × × × × ×
Figure 12: The (v i , ¬v j )-SLIDING polygon. Considering a robot r i coming from the input v i and another one r j coming from ¬v j , according to Lemma 6, r i can only reach the output ¬v i and r j can only reach the output v j . Remark 2. A robot which reaches an m vi,vj input or an m vi,¬vj in the v i -MOVING polygon can help the robot which comes from M vi before to go out of the gadget in the same way where it comes from. By the future construction it is impossible to have a robot in m vi,vj and in m vi,¬vj at the same time, then the robots cannot go out by another way than they come from (excepted the robot coming from M vi which can reach the output d vi ).

The (v i , ¬v j )-SLIDING polygon Figure 12 is used to simulate the sliding of a token from the vertex v i to the vertex v j . Lemma 6. To reach the outputs of the (v i , ¬v j )-SLIDING polygon (see Figure 12), considering the robot r i coming from the input v i and another robot r j coming from the input ¬v j . The robot r i can only reach the output ¬v i and the robot coming from ¬v j can only reach the v j output.

Proof. If a robot is alone in the gadget, it is stuck on tiles tagged by ×. Considering a robot r i comes in from the input v i and a robot r j comes in from the input ¬v j . They need to make the following movements to reach the output (otherwise they will be stuck on the gadget or one of them will not go out): r i : →, ↓, ←; r j : →, ↓, ←, ↓, →, ↑; r i : →, ↓; r j : ↓, →. With these movements r i reaches the output ¬v i and r j reaches the output v j , they cannot exchange their output.

The last gadget polygon is the TARGET polygon (Figure 13) which contains the target tile.

Remark 3. To reach the target tile, k robots need to reach the TARGET polygon. A robot which reaches the TARGET polygon cannot leave it. Remark 4. In the following construction, ∀v i ∈ V there is a robot r i . At each step, for each robot r i , if v i is in the current independent set then r i is in gadget v i -ROUTER, else it is in the ¬v i -ROUTER polygon. To slide a token from v i to v j , the corresponding robot r i need to reach the v i -MOVING polygon to verify the presence of all other (to prevent more robots from moving at the same time). Then r i reaches the v i -DISPATCHER polygon before to reach the corresponding (v i , ¬v j )-SLIDING polygon and r j joins it. After this one, r i go to the ¬v i -ROUTER polygon and r j reaches the v i -VERTEX polygon to verify if all neighbours of v j are not in the current independent set (i.e. if the new solution is an independent set). If the new set is always an independent set, v j reaches the v j -ROUTER. At each step we have an independent set of size k and when all robots corresponding to all vertices of B are in there v i -ROUTER they can reach the TARGET polygon and reach the target tile. Construction 2. Let I be an instance of Token Sliding (TS) with a graph G = (V, E) with |V | = n and two independent sets of k vertices A and B. In order to construct an instance I of GR(n, 1, 1, 1) we consider the following gadgets:

T v1 k k T v2 k k T v k k k k k k k {T vj : v j ∈ B} t
Figure 13: The TARGET polygon. It contains the unique target tile t which is reachable if and only if there are k robots in the polygon.

• ∀v i ∈ V we consider the robot r i ∈ R.

• All n robots r i ∈ R have the same color.

• ∀r i ∈ R (and then ∀v i ∈ V ) we construct a v i -ROUTER polygon, a ¬v i -ROUTER polygon, a v i -MOVING polygon, a v i -VERTEX polygon with |N (v i )| inputs of type e vi,¬vj and a v i -DISPATCHER polygon with |N (v i )| outputs.

• ∀(v i , v j ) ∈ E we construct a (v i , ¬v j )-SLIDING polygon and a (v j , ¬v i )-SLIDING polygon.

• ∀r i ∈ R, if v i ∈ A, r i starts in the corresponding v i -ROUTER polygon (see Figure 8) else it starts in the ¬v i -ROUTER polygon (see Figure 7).

• The unique target tile t is contained by the TARGET polygon with k = |A| = |B|.

All gadget polygons are connected as follows:

• Outputs connections of the ¬v i -ROUTER polygons: for each edge (v j , v i ) ∈ E, the output e vj ,¬vi (resp. s vj ,¬vi ) is connected to the corresponding input e vj ,¬vi (resp. ¬v i ) of the v j -ROUTER (resp. (v j , ¬v i )-SLIDING) polygon. If (v j , v i ) / ∈ E then the outputs e vj ,¬vi and s vj ,¬vi are closed by a wall. Each m vj ,¬vi output is connected to the input m vj ,¬vi of the corresponding v j -MOVING polygon.

• Outputs connections of the v i -VERTEX polygons: v i output is connected to the v i input of the corresponding v i -ROUTER polygons.

• Outputs connections of the v i -ROUTER polygons: the M vi output is connected to the M vi input of the corresponding v i -MOVING polygon. Each m vj ,vi output is connected to the m vj ,vi input of the corresponding v j -MOVING polygon. If v i ∈ B the output T vi is connected to the T vi input of the TARGET polygon else this output is closed by a wall.

• Outputs connections of the v i -MOVING polygons: the output d vi is connected to the input d vi of the corresponding v i -DISPATCHER.

• Outputs connections of the v i -DISPATCHER polygons: Each output s vi,¬vj is connected to the input v i of the corresponding (v i , ¬v j )-SLIDING.

• Outputs connections of the (v i , ¬v j )-SLIDING polygons: the output ¬v i (respectively v j ) is connected to the input ¬v i (respectively v j ) of the corresponding ¬v i -ROUTER polygon (respectively v j -ROUTER polygon).

The Figure 14 is an general example of the Construction 2. To give an intuition to the reader, we can define level of the construction in the Figure 14 as follows: 

(v i , ¬v i+1 )-SLIDING . . . (v i+1 , ¬v i )-SLIDING . . . TARGET (a) (b) (c) (d) (e) (f ) (g) 
Connection between (a) and (b): ∀vi, vj ∈ V , if (vi, vj )∈ E the ¬vi-ROUTER polygon in connected to the vj -VERTEX polygon and the ¬vj -ROUTER polygon is connected to the vi-VERTEX polygon.

Connection between (a), (c) and (d): ∀vi, vj ∈ V and vi = vj , the ¬vi-ROUTER polygon and the vi-ROUTER polygon are connected to the vj -MOVING polygon. The input Mv i of vi-MOVING polygon is connected to the output Mv i of the vi-ROUTER polygon.

Connection between (a), (b), (e) and (f ): ∀vi, vj ∈ V , if (vi, vj )∈ E, the ¬vi-ROUTER (resp. ¬vj -ROUTER) polygon is connected to the input ¬vi (resp. ¬vj ) of the (vi, ¬vj )-SLIDING (resp. (vj , ¬vi)-SLIDING) polygon. Thevi-DISPATCHER polygons are connected to the input vi of all (vi, ¬vj )-SLIDING polygons. The output vj (resp. ¬vi) of the (vi, ¬vj )-SLIDING polygon is connected to the input vj (resp. ¬vi) of the corresponding vj -VERTEX (resp. ¬vi-ROUTER) polygon.

Connection between (c) and (g): ∀vi ∈ B, the vi-ROUTER is connected to the TARGET polygon. • (a): if a robot is in an ¬v i -ROUTER polygon, then v i is not in the current independent set (i.e.

the level (a) corresponds to the set of vertices which are not in the current independent set).

• (b): is the level to test if the sliding is legal (i.e. if the new set is always an independent set).

• (c): contrary to the level (a), the level (c) corresponds to the current independent set.

• (d): verify that more than one token cannot move at the same time. If a robot cross this level, no other can cross it while the sliding is not ended and legal.

• (e): when a robot r i cross the level (d), the robot can choose where to move the token and take the corresponding polygon (e.g. if the token move from v i to v j , v i cross the v i -MOVING polygon and choose to reach the output corresponding to the (v i , ¬v j )-SLIDING polygon in the v i -DISPATCHER).

• (f ): is used to execute the sliding of the token, after it, v i which was in the current independent set go to the ¬v i -ROUTER polygon and v j which was not in the current independent set go to the level (b) to verify if the new set is always an independent set and if it is, it reaches the v j -ROUTER.

Remark 5. In an instance obtained by Construction 2, to leave a v i -ROUTER polygon and access to a ¬v i -ROUTER polygon, the robot r i need to take the output M vi to access to the v i -MOVING polygon.

According to Lemma 5 and Lemma 8, r i need the help of others robots to reach the output d vi and then the v i -DISPATCHER polygon. After r i reaches an s vi,¬vj output and come in the corresponding (v i , ¬v j )-SLIDING polygon by the input v i . According to Lemma 6, r i need to be helped by another robot r j which comes from the ¬v j input to reach the ¬v i output and then reach the ¬v i -ROUTER polygon.

Remark 6. In an instance obtained by Construction 2, to leave a v j -ROUTER polygon and access to a ¬v j -ROUTER polygon, the robot r j need to take an output s vi,¬vj to access to the (v i , ¬v j )-SLIDING polygon by the input ¬v j . According to Lemma 6, a robot r i need to reach the same gadget to help r j to accesses to the output v j and reach the corresponding input of the v j -VERTEX polygon. According to Lemma 2 and to Construction 2, for each v k ∈ N (v j ), the corresponding robot r k must help r j to cross the v j -VERTEX polygon and reach the v j -ROUTER polygon.

Remark 7.

In Remark 5, the robot r i comes from the v i -ROUTER polygon and go to the ¬v i -ROUTER while r j do the opposite way (from ¬v j -ROUTER to v j -ROUTER). According to Remark 5, in an instance obtained by Construction 2, a robot r i can leave the v i -ROUTER polygon to go to the ¬v i -ROUTER polygon if and only if another robot r j leave the ¬v j -ROUTER polygon to go to the v j -ROUTER polygon.

Lemma 7. In an instance obtained by Construction 2, the v i -ROUTER polygon and the ¬v i -ROUTER polygon can be reachable by the corresponding robot r i but not by others.

Proof. Let us consider the robot r i in the v i -ROUTER polygon. If r i try to reach the ¬v j -ROUTER polygon, it need to reach the output ¬v j of an (v j , ¬v k )-SLIDING polygon According to Remark 1, Remark 2 and Lemma 6 when the robot r i try to move from the v i -ROUTER polygon to the ¬v i -ROUTER polygon or vice versa, the robot r i cannot reach another gadget polygon than those described in the Remark 5 (excepted the TARGET polygon). Lemma 8. In an instance obtained by Construction 2, a robot r i that comes from the input M vi in a v i -MOVING polygon can reach the d vi output if and only if ∀v j ∈ V \{v i }, the robot r j can reach the v j -ROUTER polygon or the ¬v j -ROUTER polygon.

Proof. According to Lemma 5, the output d vi can be reach if and only if there is a robot to help it at each level. By construction, each input m vi,vj is connected with an output of the v j -ROUTER polygon and the opposite input m vi,¬vj is connected with an output of the ¬v j -ROUTER polygon. Then to reach the output d vi , ∀v j ∈ V \{v i }, the robot r j can reach the v j -ROUTER polygon or the ¬v j -ROUTER polygon.

Lemma 9. In an instance obtained by Construction 2, when a robot r i leave the v i -ROUTER polygon and cross the v i -MOVING polygon, no other robot r k can cross a v k -MOVING polygon while r i has not reach the ¬v i -ROUTER polygon and then while another robot r j leave the ¬v j -ROUTER polygon to reach the v j -ROUTER polygon (according to Remark 7).

Proof. If a robot r i goes on the v i -MOVING polygon and another robot r j goes in the v j -MOVING polygon, according to Lemma 5 and to Lemma 8 r i (resp. r j ) cannot reach the output d vi (resp. d vj ) because it need the help of the robot r j (resp. r i ). If r j help r i to reach the output d vi of the v i -MOVING polygon before to try to cross the v j -MOVING polygon it will be stuck in it as long as r i has not reach the ¬v i -ROUTER polygon. Theorem 4. GR(n, 1, 1, 1) is PSPACE-complete.

Proof. The argument to say that the problem is in PSPACE is close to the argument given by Hüffner [START_REF] Hüffner | Finding optimal solutions to atomix[END_REF] for the Atomix problem. Given an instance of GR(n, 1, 1, 1) with an arbitrary grid polygon P consists of |C| tiles, a non-deterministic Turing machine can solve it by repeatedly applying a move up to reach a final configuration (i.e. a configuration where a robot have reached the target tile). The number of configurations is limited to |C| n and then the machine can announce that there is no solution after having applied more moves without finding a solution. Since a configuration of GR(n, 1, 1, 1) is encodable in polynomial space, GR(n, 1, 1, 1) is in NPSPACE and then according to Savitch theorem [START_REF] Walter | Relationships between nondeterministic and deterministic tape complexities[END_REF], GR(n, 1, 1, 1) is in PSPACE. Now, we have to prove that there is a polynomial-time reduction Token Sliding (TS) to GR(n, 1, 1, 1). Considering an instance I of Token Sliding (TS) and the corresponding instance I of GR(n, 1, 1, 1) obtained by Construction 2:

• Assume that there exists a positive solution for the instance I of Token Sliding (TS) then we construct a positive solution for the instance I of GR(n, 1, 1, 1) in the following way:

Let S be a solution of I. Then S is a sequence of independent sets (numbered by s 1 , . . . , s |S| ) such that s l+1 is obtained by an exchange of vertex in s l with one of its neighbors in G and where s 1 = A and s |S| = B. By construction ∀v i ∈ V , if v i ∈ A, the corresponding robot r i starts in the v i -ROUTER polygon else it starts in the ¬v i -ROUTER polygon. This starting position corresponding to the configuration A. Considering two independent sets s l ∈ S and s l+1 ∈ S, where s l+1 is the configuration obtained by the sliding of a token along the edge (v i , v j ) (e.g. from v i to v j ) in the configuration s l . If v i ∈ s l then the corresponding robot r i is in the v i -ROUTER polygon else it is in the ¬v i -ROUTER polygon. To reach the configuration corresponding to s l+1 the robot r i (corresponding to v i ) need to reaches the ¬v i -ROUTER polygon and the robot r j (corresponding to the vertex v j ) need to reaches the v j -ROUTER polygon. In order to do that, r i executes movements described in Remark 5 and r j executes movements described in Remark 6. Since s l+1 is an independent set, ∀v h ∈ N (v j ), the corresponding robot r h can reach the ¬v h -ROUTER polygon then r j can reaches the v j output of the v j -VERTEX polygon and accesses to the v j -ROUTER. By repeating these movements, we can pass from s 1 = A to s |S| = B. Then we have k robots such that ∀v i ∈ B, the corresponding robot r i is in the v i -ROUTER polygon. By Construction 2 these k robots can reach the TARGET polygon and one of them can reach the target tile. Then, if I admits a positive solution, I admits a positive solution too.

• Reciprocally, we suppose that there exists a positive solution for the instance I of GR(n, 1, 1, 1) then we construct a positive solution for the instance I of Token Sliding (TS) in the following way:

The instance I admits a solution then k robots can reach the target polygon (according to Remark 3). Then, according to Lemma 7 and Lemma 9 ∃C a set of configurations such that ∀c l ∈ C, ∀r i ∈ R, r i is in the v i -ROUTER polygon or in the ¬v i -ROUTER polygon. Note that c 1 corresponds to the starting position (∀v i ∈ V , if v i ∈ A, the corresponding robot r i starts in the v i -ROUTER polygon else it starts in the ¬v i -ROUTER polygon) and c |c| is the configuration where ∀v i ∈ V , if v i ∈ B, the corresponding robot r i is in the v i -ROUTER polygon else it is in the ¬v i -ROUTER polygon. According to Lemma 9 two robots cannot cross an v i -MOVING polygon at the same time. From Lemma 2 and to Construction 2, to access to the v j -ROUTER polygon, r j have to cross the v j -VERTEX polygon and then ∀v h ∈ N (j), the corresponding robot r h is in the ¬v h -ROUTER polygon. Then we can consider the set S such that ∀c l ∈ C, we can consider the set s l ∈ S such that ∀r i ∈ R, if r i is in the corresponding v i -VERTEX polygon in the configuration c l , then v i ∈ s l . So ∀c l ∈ C, according to Lemma 2 and to Construction 2, the set s l is an independent set. By construction, a robot r i can move from the v i -ROUTER polygon to the ¬v i -ROUTER polygon and another robot r j from the ¬v j -ROUTER polygon to the v j -ROUTER polygon if the corresponding (v i , ¬v j )-SLIDING polygon exist and then is the edge (v i , v j ) ∈ E. Then ∀c l ∈ C we have an independent set s l ∈ S and to pass from s l to s l+1 by withdraw a vertex and adding one of its neighbour in G (i.e. a single token slide along an edge) and where s 1 = A and s |S| = B.

Then the set of independent set S corresponding to C is a solution for the instance I of Token Sliding (TS).

Since Construction 2 can be done in polynomial time and from previous arguments, GR(n, 1, 1, 1) is PSPACE-complete.

Conclusion

In this article, we proposed some complexity results for the Ricochet Robots game. We have proven the following:

• the optimization problem corresponding to Ricochet Robots is Poly-APX -hard (Section 3),

• determine if an instance of Ricochet Robots is solvable or not is PSPACE-complete (Section 4). The next step is to categorize Maximum Reachability (MR) problem more precisely in the hierarchy of approximation algorithms. We can also investigate on the minimum number of moves to solve the Generalized Reachability (GR) problem.

Figure 2 :

 2 Figure 2: Example of the instance I of GR(2, 1, 1, 1) obtained from the instance I of GR(1, 1, 1, 1) by adding a robot in an isolated area.

Figure 5 :

 5 Figure 5: A ¬v i -ROUTER polygon. The robot which comes from the ¬v i input can reach any output while traveling through counterclockwise.

Figure 6 :

 6 Figure 6: Example of the instance I of MR(n, 1, n, 1) obtained by Construction 1 from the instance I of Maximum Independent Set.

  is the set of tiles reached by a robot of the corresponding color). Question: Can we reach a configuration such that |M | ≥ k (i.e. a configuration in which at least k colored target tiles are reached by a robot of the corresponding color)? Parameter: k

Corollary 1 . 1 .

 11 It is NP-hard to approximate within n 1-for MR(n, 1, n, 1). 2. There exists an FPT-reduction from Independent Set parameterized by the standard parameter to k-ricochet parameter by the standard parameter. 3. Assuming ET H, k-Ricochet cannot be solved in f (k)n o(k) time algorithm, and, 4. Assuming W[1] = FPT , k-Ricochet cannot be solved in n o(k) time algorithm.

  Output: Is it possible to reconfigure A into B via a sequence S of independent sets (numbered by s 1 , . . . , s |S| ) such that each of which results from the previous one by withdraw a vertex and adding one of its neighbours? Let us consider n = |V |, k = |A| = |B| and the function N (v i ) which returns the set of neighbour vertices of the vertex v i .

Figure 7 :

 7 Figure 7: The ¬v i -ROUTER polygon. The robot which comes from the ¬v i input can reach any output while traveling through counterclockwise. The robot r i start in the tile tagged by r i if the corresponding vertex v i / ∈ A.

Figure 9 :

 9 Figure 9: Example of a v i -DISPATCHER polygons with n = 3 outputs on the left and n = 4 on the right. Tiles tagged by × correspond to tiles where robots are stuck if they try to come from an output to reach another one. Obviously the output number of v i -DISPATCHER polygons is totally scalable.
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Figure 14 :

 14 Figure 14: Example of an instance I obtained by Construction 2 from the instance I of Token Sliding (TS). In I, vertices surrounded by circles are vertices in the current independent set (initially A) and vertices surrounded by squares are vertices of the final independent set B.

The ETH states that there is a constant c > 1 such that n-variable 3-SAT cannot be solved in O(c n ) time.

A Representation

In order to simplify our scheme and to simplify the reader's understanding, gadgets are represented by a rectangle and are connected by "wires". A wire corresponds to a line of free spaces surrounded by walls on both sides. A wire can be bent and two wires can cross them by preserving the planarity of the grid (Table 2). Note that two robots which crossing each other cannot exchange their way (in other words, the robot which gets in vertically cannot reach an horizontal output and vice versa).

Representation

Corresponding grid wire cutted wire × bended wire crossed wires