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Abstract

This paper investigates the Ricochet Robots game problem from a complexity standpoint. The
problem consists in moving robots in a grid game board in horizontal or vertical direction only, to
reach specific target tiles. Once a robot starts moving in a direction, it cannot be stopped until
being blocked by a wall or another robot. We show that the optimization problem corresponding to
this game is Poly-APX -hard. We also show that the decision problem is PSPACE-complete when
we consider an arbitrary number of robots. In such a context, several lower bounds are introduced,
exploring some classic complexity hypothesis (P 6= NP, ET H, . . .).

1 Introduction

Ricochet Robots [2, 7, 8, 9] is a puzzle board game designed by A. Randolph, in which a player must
move playing pieces (robots) in an arbitrary grid to a given set of selected locations, with less moves as
possible. The game board is a grid containing walls and colored robots. A wall can be placed between
two tiles and robots are on the tiles. Robots can move on the grid according to horizontal or vertical
directions only. A robot moving in a direction will not stop until it hits a wall or another robot. Each
step consists in selecting both a robot and a direction the robot will follow. To solve the puzzle, the
player needs to reach a configuration where all target tiles are covered by a robot of the corresponding
color. Also, it is often necessary to move robots that serve as guides to stop the movement of another
one on an appropriate tile (see Figure 1 for an example). Several robots cannot move at the same time.
If a robot has to move, it has to wait for the end of the movement of the previous one. In the original
game, the board is a square containing four robots and a specific target tile per robot - four colors being
used to distinguish pairs of robots and target tiles -. Hence the player must move each robot to its
corresponding target tile.

Ricochet Robots game can be categorized as a sliding game like the PushPush game studied by
Demaine [6] or the Atomix game studied by Holzer [12] or Huffner [13]. Icking [14, 15] considers the
exploration problem of a grid polygon with or without obstacles inside it. Engels [7] studies the solvability
of Ricochet Robots with n uncolored robots and one target tile, and proves that this problem is NP-hard.
Hesterberg [11] studies the parameterized complexity of Ricochet Robots and Atomix. Gebser [8, 9] uses

r1

r2

t1 t2

In this grid r1 cannot be placed on the target tile
t1 without the help of r2. If the robot r2 reach
the target tile t2 with the two movements ↑ then
← and stop to move, then r1 will never reach t1.
A solution possible of this instance is to execute
there following moves: r2: ←; r1: ↑,←, ↓,→; r2:
↑,→, ↓.

Figure 1: Example of an instance of Ricochet Robots. To solve it, the robot r1 must be placed on the
target tile t1 and r2 must be on t2 at the same time.
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Problem Complexity Reduction from Proof
GR(k, 1, 1, 1) Polynomial - Hesterberg [11]
MR(n, 1, n, 1) Poly-APX -hard Maximum Independent Set Theorem 3
GR(n, 1, 1, 1) PSPACE-complet Token Sliding (TS) Theorem 4

Table 1: Problem complexity classification, where n is a variable and k a constant.

Ricochet Robots game as a benchmark for answer set programming while Butko [2] proposes to study
how humans try to solve Ricochet Robots.

This article proposes to generalize the problem of Ricochet Robots game in Section 2. In Section 3 we
prove that the corresponding optimization problem with n robots and n target tiles is Poly-APX -hard
and the Section 4 improves the result of [7] and show that the problem with n robots is PSPACE-complete.
We present future works and perspectives in Section 5.

2 Modelization

The original game of Alex Randolph implies four different colored robots and one colored target tile.
In this paper, we extract two problems from this original configuration, respectively a decision problem
and an optimization problem.

2.1 Decision problem

We define the decision problem Generalized Reachability (GR) as a generalization of the Reach-
ability Problem introduced by Engels and Kamphans [7].

Generalized Reachability (GR)

Input: Given an arbitrary grid polygon P , a set R of n robots r1, . . . , rn with a given starting
position on the grid, a set T of m target tiles t1, . . . , tm and two functions robotColor(ri)
and tileColor(ti) which return the color of the robot ri and the color of the target tile
ti.

Output: Can we reach a configuration such that each target tile ti ∈ T , ti is covered by
a robot rj ∈ R and tileColor(ti) = robotColor(rj) (i.e. a configuration in which each
colored target tile is reached by a robot of the same color)?

We denote by GR(n, cr, m, ct) the Generalized Reachability (GR) problem composed by n
robots of cr different colors and m target tiles of ct different colors.

2.2 Optimization problem

The optimization problem Maximum Reachability (MR) corresponding to Generalized Reach-
ability (GR) problem, is defined as follows:

Maximum Reachability (MR)

Input: Given an instance I of Generalized Reachability (GR) and K a set of tiles such
that ∀ti ∈ T , if ti is covered by a robot rj ∈ R and tileColor(ti) = robotColor(rj) then
ti ∈ K (i.e. K is the set of tiles reached by a robot of the corresponding color).

Output: Maximize |K|.
We denote by MR(n, cr, m, ct) the Maximum Reachability (MR) problem with n robots of cr

different colors and m target tiles of ct different colors.

2.3 Problems classification

Currently, the complexity of Generalized Reachability (GR) and Maximum Reachability
(MR) is given by Table 1.

Theorem 1. In terms of complexity, ∀n > 1, the problem GR(n, 1, 1, 1) is at least as hard as GR(n−1,
1, 1, 1).
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Figure 2: Example of the instance I ′ of GR(2, 1, 1, 1) obtained from the instance I of GR(1, 1, 1, 1)
by adding a robot in an isolated area.

Proof. For all instances I of GR(n−1, 1, 1, 1), it is possible to create an instance I ′ in polynomial-time
of GR(n, 1, 1, 1) by adding a robot in an isolated area (see example Figure 2). Then it exists a reduction
from GR(n− 1, 1, 1, 1) to GR(n, 1, 1, 1) (∀n > 1).

It seems that the problems are more difficult when we add target tiles, robot colors or target tile
colors but we do not have reductions to prove it. However, adding target tiles, robot colors or target tile
colors to a positive instance can return a negative instance whereas remove one of them cannot transform
a positive instance to a negative.

3 Maximum reachability problem with n robots

This section is devoted to showing some new complexity results according several complexity hypoth-
esis.

First, let us recall the definition of strict reduction and S-reduction of Crescenzi [5].
Let us consider two NPO problems Π and Π′. Moreover, let Π′′ ∈ {Π,Π′}, we denote by OPTΠ′′ the

value of an optimal solution of Π′′ and by mΠ′′(x
′′, y′′) the cost of a solution y′′ of an instance x′′ of Π′′,

mΠ′′(x
′′, y′′) is also the metric used to determine which solution is considered optimal.

Given an instance x of a problem Π and a feasible solution y of x, we define the performance ratio of
y with respect to x as:

RΠ = max

{
mΠ(x, y)

OPT (x)
,
OPT (x)

mΠ(x, y)

}
Strict reduction consists of polynomial-time computable functions f and g such that, for each instance

x of Π, f(x) returns an instance of Π′ and for each feasible solution y′ of f(x), g(y′) returns a feasible
solution of x. A reduction (f, g) from Π to Π′ is said to be a strict reduction if, for any instance x of Π
and for any y′ feasible solution of Π′, the following holds:

RΠ(x, g(y′)) ≤ RΠ′(f(x), y′).

There is a S-reduction from Π to Π′ if:
1. For any instance x of Π, OPTΠ′(f(x)) = OPTΠ(x).
2. For any instance x of Π and for any y′ feasible solution of Π′, mΠ(x, g(y′)) = mΠ′(f(x), y′).

S-reduction is a special case of strict reduction, then a S-reduction implies a strict reduction. Note
that S-reduction implies AP-reduction, then preserves the membership in Log-APX and Poly-APX
classes.

In the following, we present a S-reduction from the classical Maximum Independent Set problem
to MR(n, 1, n, 1).

Maximum Independent Set

Input: Graph G = (V,E).
Output: Find an independent set of vertices V ′ ⊆ V , for V ′ of the maximal cardinality i.e.

a largest set V ′ ⊆ V such that no two vertices in V ′ are joined by an edge in E.

This problem is proved Poly-APX -complete by Bazgan [1]. Let us consider the function N(vi) which
returns the set of neighbour vertices of the vertex vi.

We define some polygons with particular properties. The first one, called vi-CHOICE polygon
(Figure 3), is a gadget in which robots have their initial location. This gadget admits two outputs
and a robot needs to choose one of them (i.e. when a robot reaches an output, it cannot take the other
one because it will be stuck in tiles tagged by ×).
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ri

vi ¬vi

× ×

Figure 3: vi-CHOICE polygon, tiles tagged by × corresponding to tiles where robot is stuck if it tries
to come from an output to reach another one.

× × × ×

evi,¬v1vi

× × × ×

evi,¬v2

× × × ×

evi,¬v|N(vi)|

ti

. . .

. . .

{evi,¬vj : vj ∈ N(vi)}

Figure 4: A vi-VERTEX polygon. Only the robot which comes from the vi input can reach the target
tile ti and it needs the help of robots which come from all evi,¬vj inputs, otherwise it will be stuck in
tiles tagged by ×.

Lemma 1. Each robot ri can reach at most one vi-CHOICE polygon output.

Proof. When ri outputs of its vi-CHOICE polygon, it cannot comeback to choose the other one because
it will be stuck in tiles tagged by ×.

The second gadget polygon called vi-VERTEX polygon Figure 4 is created in order to verify the
absence of all neighbors of vi in the final solution when we try to add vi to the solution. In this gadget,
only the robot coming from vi can reach the target tile ti if and only if |N(vi)| others inputs have been
reached by a robot (otherwise it will be stuck on the tiles tagged by ×). Note that a robot which reaches
an evi,¬vj input can help the robot which comes from vi before to go out of the gadget in the same way
where it comes from. A robot which inputs a vi-VERTEX polygon cannot reach another input than its
to get output.

Lemma 2. The robot ri can reach the target tile ti of the vi-VERTEX polygon if and only if ∀vj ∈ N(vi),
the input evi,¬vj is reached by a robot.

Proof. If ∀vj ∈ N(vi), the input evi,¬vj is reached by a robot, then ri can rely on them one after another
to reach the target tile ti. Considering an input evi,¬vj which is not reached by a robot, then ri will be
stuck in tiles tagged by × and will not be able to reach the target tile ti.

The next gadget polygon is the ¬vi-ROUTER polygon. In this one, the robot which input in ¬vi
can reach any output (while traveling through counterclockwise). Another particularity, when a robot
comes from an output, it can reach any others (but it cannot reach the input ¬vi).

Remark 1. In the following construction, a robot ri can reach the target tile ti if and only if it crosses
the vi-VERTEX polygon. To cross vi-VERTEX polygon a robot ri needs to be helped by all of its
neighbors (in the corresponding graph G). A robot which helps another one to reach a target tile cannot
reach one.
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¬vi

ev1,¬vi ev2,¬vi ev3,¬vi ev|N(vi)|,¬vi

. . .

. . .
{evj ,¬vi : vj ∈ N(vi)}

Figure 5: A ¬vi-ROUTER polygon. The robot which comes from the ¬vi input can reach any output
while traveling through counterclockwise.

Construction 1. Let I be an instance of Maximum Independent Set problem, considering a graph
G = (V,E) and the function N(vi) which returns the set of neighbour vertices of the vertex vi. We
construct an instance I ′ of MR(|V |, 1, |V |, 1) in the following way:

• ∀vi ∈ V we consider the robot ri ∈ R and the target tiles ti ∈ T all colored with the same color c.

• ∀ri ∈ R we construct a vi-CHOICE polygon (Figure 3), a ¬vi-ROUTER polygon (Figure 5) with
|N(vi)| outputs and a vi-VERTEX polygon (Figure 4) with |N(vi)| inputs of type evi,¬vj .

• ∀ri ∈ R, ri starts in its corresponding vi-CHOICE polygon.

• vi output of each vi-CHOICE polygon is connected to the vi input of the corresponding vi-VERTEX
polygon and the ¬vi output is connected to the ¬vi input of the ¬vi-ROUTER polygon.

• Each evi,¬vj output of ¬vj-ROUTER polygon is connected to the input evi,¬vj of the vi-VERTEX
polygon. To give an intuition, for each edge (vi, vj) ∈ E we connect the output evi,¬vj of the ¬vj-
ROUTER polygon to the input evi,¬vj of the vi-VERTEX polygon and the output evj ,¬vi of the
¬vi-ROUTER polygon to the input evj ,¬vi of the vj-VERTEX polygon.

• Each target tile ti ∈ T is contained by the corresponding vi-VERTEX polygon.

Clearly, the transformation is done in polynomial time. In order to illustrate the Construction 1, the
Figure 6 presents an instance I of Maximum Independent Set and the corresponding instance I ′ of
MR(n, 1, n, 1) obtained by Construction 1 (see Appendix A for more details on the representation of
schemes). In this example the maximum solution of I is V ′ = {v1, v4} and the maximum solution of I ′

is K = {t1, t4}.

Theorem 2. There is a polynomial-time reduction from Maximum Independent Set problem to
MR(n, 1, n, 1).

Proof. Considering an instance I of Maximum Independent Set and the corresponding instance I ′ of
MR(n, 1, n, 1) obtained by Construction 1, there exists a maximal solution of size |V ′| = k of I if and
only if there exists a maximal solution of I ′ of size |K| = k (i.e. it is possible to reach k target tiles with
the corresponding k robots but not with more).

• Suppose that it exists a maximal solution of size |V ′| = k for I, we construct a maximal solution
of size k for I ′ in the following way:

Let V ′ ⊆ V be a maximal solution of I. Assume ∀vi ∈ V , if vi ∈ V ′ then the corresponding robot ri
goes to the vi output of the vi-CHOICE polygon and reaches the vi-VERTEX polygon, otherwise
it goes to the ¬vi output and reaches the ¬vi-ROUTER polygon. According to Lemma 2, ri can
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v1-CHOICE

¬v1-ROUTER

v1-VERTEX

v2-CHOICE

¬v2-ROUTER

v2-VERTEX

v3-CHOICE

¬v3-ROUTER

v3-VERTEX

v4-CHOICE

¬v4-ROUTER

v4-VERTEX

I′ :

v1 v2

v3 v4

I :

Figure 6: Example of the instance I ′ of MR(n, 1, n, 1) obtained by Construction 1 from the instance
I of Maximum Independent Set.

reach the target tile ti if and only if all inputs of the vi-VERTEX are reached by a robot, in other
words, if ∀vj ∈ N(vi), the corresponding robot rj has reached the ¬vj-ROUTER polygon. Thus,
ri reaches the target tile ti and according to Lemma 1 its neighbors cannot reach it. If ∃rl a robot
which can reach a target tile such that vl /∈ V ′. Thus, ∃vl ∈ V such that none of its neighbors are
in V ′ and vl /∈ V ′ then {vl} ∪ V ′ is an admissible solution of size k + 1 then V ′ is not a maximal
solution. Thus, if I admits a maximal solution of size k, I ′ admits a maximal solution of size k.

• Reciprocally, we suppose that I ′ possesses a maximal solution of size |K| = k, then we prove that
I admits a maximal solution of size k:

If I ′ admits a maximal solution of size k, then k robots have reached a target tiles. According
to Lemma 2, ri can reach the target tile ti of vi-VERTEX polygon if and only if ∀vj ∈ N(vi),
the input evi,¬vj is reached. According to Construction 1, ∀vj ∈ N(vi), the input evi,¬vj can be
reached if and only if ¬vj-ROUTER polygon is reached and then if rj has chosen the ¬vj output
of the vj-CHOICE polygon. Then the k target tiles reached by a robot correspond to a set V ′

of k vertices such that any of their neighbors are not in the set (i.e. an independent set of size
k). If ∃vl ∈ V \V ′ a vertex such that {vl} ∪ V ′ is an independent set, then ∃tl ∈ T\K which
can be reached by a robot rl because none of its neighbors are in K and then they can help it
to cross the vl-VERTEX polygon and reach the target tile tl. Then K is not a maximal solution
(contradiction). Therefore if I ′ admits a maximal solution of size k, I admits a maximal solution
of size k.

All maximum solutions are a maximal solutions then I admits a maximum solution of size |V ′| = k
if and only if I ′ admits a maximal solution of size |K| = k. From previous arguments, there is a
polynomial-time reduction from Maximum Independent Set to MR(n, 1, n, 1).

Theorem 3. MR(n, 1, n, 1) is Poly-APX -hard.

Proof. To prove this we show that exists a S-reduction from Maximum Independent Set problem to
MR(n, 1, n, 1). Let Π the Maximum Independent Set problem, Π′ the MR(n, 1, n, 1) problem, I
an instance of Π, I ′ an instance of Π′, V ′ a solution of I and K a solution of I ′. We have:

• A function f(I) which constructs I ′ in polynomial-time (Construction 1).

• A function g(K) which constructs V ′ in polynomial-time (V ′ = {vi : ti ∈ K}).
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And:
1. For any instance I of Π, OPTΠ(I) = OPTΠ′(f(I)) (Theorem 2).
2. For any instance I of Π and for any K feasible solution of Π′, mΠ(I, g(K)) = mΠ′(f(I),K)

(Theorem 2).
The previous reduction being an S-reduction from Maximum Independent Set to MR(n, 1, n, 1)

and considering Maximum Independent Set Poly-APX -complete (Bazgan [1]) this reduction implies
that MR(n, 1, n, 1) is Poly-APX -hard.

Let us define k-Ricochet for some corollaries.

k-Ricochet (k-Generalized Reachability (GR))

Input: Given an instance I of Generalized Reachability (GR) and K a set of tiles such
that ∀ti ∈ T , if ti is covered by a robot rj ∈ R and tileColor(ti) = robotColor(rj) then
ti ∈ K (i.e. K is the set of tiles reached by a robot of the corresponding color).

Question: Can we reach a configuration such that |M | ≥ k (i.e. a configuration in which at
least k colored target tiles are reached by a robot of the corresponding color)?

Parameter: k

The previous reduction can also be seen as an FPT-reduction from Independent Set parameterized
by the standard parameter to k-Ricochet parameterized by the standard parameter and then implies
that k-Ricochet is W [1]−hard.

We know that for all ε > 0, approximating Independent Set to within n1−ε is NP-hard [10, 22].
Independent Set not having a no(k)-time algorithm [3] implies that MR(n, 1, n, 1) does not have

a no(k)-time algorithm (unless W[1] = FPT ).
Construction 1 also implies subexponential lower bounds for our problems based on the widely be-

lieved complexity-theoretic hypothesis known as the “Exponential-Time Hypothesis1” (ETH, see [16, 19,
21]).

The following results are straightforward since by [4], we know that Independent Set does not have
f(k)no(k) (resp. no(k)) time algorithm, unless ET H fails (unless W[1] = FPT , [3]).

Corollary 1.
1. It is NP-hard to approximate within n1−ε for MR(n, 1, n, 1).
2. There exists an FPT-reduction from Independent Set parameterized by the standard parameter to

k-ricochet parameter by the standard parameter.
3. Assuming ET H, k-Ricochet cannot be solved in f(k)no(k) time algorithm, and,
4. Assuming W[1] 6= FPT , k-Ricochet cannot be solved in no(k) time algorithm.

4 General reachability problem with n robots

In this section we show that GR(n, 1, 1, 1) is PSPACE-complete. We consider the problem of
Token Sliding (TS) proved PSPACE-complete by [17].

Kamiński et al. [18] define reconfiguration problems as follows: “Given two feasible solutions x, y
of I, the aim is to find a reconfiguration sequences s1, . . . , sk such that s1 = x, sk = y, and for each
si (for 1 < i < k) is a feasible solution of I, and the transition between si and si+1 is allowed by the
reconfiguration rule”.

Token Sliding (TS) (also called independent set reconfigurability problems) can be defined as
follows:

Token Sliding (TS) (Token Sliding)

Input: A graph G = (V,E) and two independent sets A and B in G.
Output: Is it possible to reconfigure A into B via a sequence S of independent sets (numbered

by s1, . . . , s|S|) such that each of which results from the previous one by withdraw a
vertex and adding one of its neighbours?

Let us consider n = |V |, k = |A| = |B| and the function N(vi) which returns the set of neighbour
vertices of the vertex vi.

We define some polygons with particular properties. The first, denoted ¬vi-ROUTER polygon (Fig-
ure 7, similar to Figure 5 with more inputs), is a gadget in which an incoming robot in ¬vi can reach

1The ETH states that there is a constant c > 1 such that n-variable 3-SAT cannot be solved in O(cn) time.
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¬vi

svn,¬vi

{evj ,¬vi : vj ∈ V } {mvj ,¬vi : vj ∈ V } {svj ,¬vi : vj ∈ V }

ri

ev1,¬vi ev2,¬vi

. . .

evn,¬vi mv1,¬vi

. . .

mvn,¬vi sv1,¬vi

. . .

Figure 7: The ¬vi-ROUTER polygon. The robot which comes from the ¬vi input can reach any output
while traveling through counterclockwise. The robot ri start in the tile tagged by ri if the corresponding
vertex vi /∈ A.

any output (while traveling through counterclockwise). Another particularity, when a robot comes from
an output, it can reach any others (but it cannot reach the input ¬vi).

The second gadget polygon is denoted vi-ROUTER polygon (Figure 8). It has the same properties
as the ¬vi-ROUTER polygon (Figure 7) but it has fewer outputs.

Lemma 3. A robot in a ¬vi-ROUTER polygon (see Figure 7) (resp. vi-ROUTER polygon Figure 8)
can reach any output (no matter where it comes from) but it cannot reach the input ¬vi (resp. v′i).

The next gadget is the vi-DISPATCHER polygon. In this one, the robot which comes in through the
input dvi can reach only one output between the n available outputs. Figure 9 illustrates two examples
of vi-DISPATCHER polygon (with n = 3 and n = 4 outputs). Note that the number of outputs of the
vi-DISPATCHER polygon is totally scalable (∀n ≥ 1).

Lemma 4. Each robot ri can reach at most one vi-DISPATCHER polygon output.

Proof. When ri outputs of an vi-DISPATCHER polygon, it cannot comeback to choose another one
because it will be stuck in tiles tagged by ×.

The following polygon denoted vi-VERTEX polygon, described by Figure 4 is created in order to
verify the absence of all neighbors of vi in the current independent set when we try to slide a token on
vi. In this gadget, only the robot coming from vi can reach the output v′i if and only if the |N(vi)| others
inputs have been reached by a robot (otherwise it will be stuck on the tiles tagged by ×).

The vi-VERTEX polygon is the same as the Figure 10 but with an output v′i rather than a target
tile. Obviously the Lemma 2 is applicable to this one.

Remark 1. A robot which reaches an evi,¬vj input in the vi-VERTEX polygon can help the robot
which comes from vi before to go out of the gadget in the same way where it comes from. A robot which
inputs a vi-VERTEX polygon cannot reach another input than its to get output (if it try, it will be
stuck on the tiles tagged by ×).

The next gadget polygon is the vi-MOVING polygon Figure 11. This gadget is used to synchronize
the position of all other robots before to start the sliding of the vertex vi.

Lemma 5. In the vi-MOVING polygon Figure 11, the robot which input in Mvi can reach the output
dvi if and only if ∀j such that vj ∈ V \{vi}, the input mvi,vj or m¬vi,vj are reached by a robot.

Proof. The robot coming from the input Mvi must reach the bottom of the gadget to reach the output.
For that, at each floor, this robot need to lean on another one to reach the floor below (else it is stuck
on tiles tagged by ×).
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v′i

Mvi
mv1,vi mvi−1,vi mvi+1,vi mvn,vi Tvi

. . .

. . .

. . . . . .

{mvj ,vi : vj ∈ V and vi 6= vj}

ri

Figure 8: A vi-ROUTER polygon. The robot which comes from the v′i input can reach any output while
traveling through counterclockwise. The robot ri start in the tile tagged by ri if the corresponding vertex
vi ∈ A.

×
×

×
×

dvi

×
×

×
×

svi,¬v4svi,¬v3

×
×

×
×

svi,¬v2svi,¬v1

×
×

×
×

dvi

svi,¬v3

×
×

×
×

svi,¬v2svi,¬v1

Figure 9: Example of a vi-DISPATCHER polygons with n = 3 outputs on the left and n = 4 on the
right. Tiles tagged by × correspond to tiles where robots are stuck if they try to come from an output
to reach another one. Obviously the output number of vi-DISPATCHER polygons is totally scalable.
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× × × ×

evi,¬v1vi

× × × ×

evi,¬v2

× × × ×

evi,¬v|N(vi)|

v′i

. . .

. . .

{evi,¬vj : vj ∈ N(vi)}

Figure 10: A vi-VERTEX polygon. Only the robot which comes from the vi input can reach the output
v′i and it needs the help of robots which come from all evi,¬vj inputs, otherwise it will be stuck in tiles
tagged by ×.

Mvi
mvi,¬v1mvi,v1

×× × ×

. . .. .
.

. . . . . .. . . . . .mvi,¬vi−1
mvi,vi−1

mvi,¬vi+1
mvi,vi+1

×× × ×

×× × ×

. . .. .
.

mvi,¬vnmvi,vn

×× × ×

××
× ×

{mvi,vj
: vj ∈ V and vi 6= vj}{mvi,¬vj : vj ∈ V and vi 6= vj}

dvi

Figure 11: The vi-MOVING polygon. A robot ri which comes in from the input Mvi can reach the output
dvi if and only if at each floor another robot rj help it from the input mvi,vj or mvi,¬vj . Otherwise it
is stuck on tiles tagged by ×. By the future construction, it is impossible to have a robot which come
from the input mvi,vj and another from the input mvi,¬vj at the same time.
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vi
¬vj

¬vi

vj

×
×

×
×

× ×× ×

Figure 12: The (vi,¬vj)-SLIDING polygon. Considering a robot ri coming from the input vi and another
one rj coming from ¬vj , according to Lemma 6, ri can only reach the output ¬vi and rj can only reach
the output vj .

Remark 2. A robot which reaches an mvi,vj input or an mvi,¬vj in the vi-MOVING polygon can help
the robot which comes from Mvi before to go out of the gadget in the same way where it comes from.
By the future construction it is impossible to have a robot in mvi,vj and in mvi,¬vj at the same time,
then the robots cannot go out by another way than they come from (excepted the robot coming from
Mvi which can reach the output dvi).

The (vi,¬vj)-SLIDING polygon Figure 12 is used to simulate the sliding of a token from the vertex
vi to the vertex vj .

Lemma 6. To reach the outputs of the (vi,¬vj)-SLIDING polygon (see Figure 12), considering the robot
ri coming from the input vi and another robot rj coming from the input ¬vj. The robot ri can only reach
the output ¬vi and the robot coming from ¬vj can only reach the vj output.

Proof. If a robot is alone in the gadget, it is stuck on tiles tagged by ×. Considering a robot ri comes
in from the input vi and a robot rj comes in from the input ¬vj . They need to make the following
movements to reach the output (otherwise they will be stuck on the gadget or one of them will not go
out): ri : →, ↓,←; rj : →, ↓,←, ↓,→, ↑; ri : →, ↓; rj : ↓,→. With these movements ri reaches the
output ¬vi and rj reaches the output vj , they cannot exchange their output.

The last gadget polygon is the TARGET polygon (Figure 13) which contains the target tile.

Remark 3. To reach the target tile, k robots need to reach the TARGET polygon. A robot which
reaches the TARGET polygon cannot leave it.

Remark 4. In the following construction, ∀vi ∈ V there is a robot ri. At each step, for each robot ri,
if vi is in the current independent set then ri is in gadget vi-ROUTER, else it is in the ¬vi-ROUTER
polygon. To slide a token from vi to vj , the corresponding robot ri need to reach the vi-MOVING
polygon to verify the presence of all other (to prevent more robots from moving at the same time). Then
ri reaches the vi-DISPATCHER polygon before to reach the corresponding (vi,¬vj)-SLIDING polygon
and rj joins it. After this one, ri go to the ¬vi-ROUTER polygon and rj reaches the vi-VERTEX
polygon to verify if all neighbours of vj are not in the current independent set (i.e. if the new solution
is an independent set). If the new set is always an independent set, vj reaches the vj-ROUTER. At each
step we have an independent set of size k and when all robots corresponding to all vertices of B are in
there vi-ROUTER they can reach the TARGET polygon and reach the target tile.

Construction 2. Let I be an instance of Token Sliding (TS) with a graph G = (V,E) with |V | = n
and two independent sets of k vertices A and B. In order to construct an instance I ′ of GR(n, 1, 1, 1)
we consider the following gadgets:

11



Tv1
k

k

Tv2
k

k

Tvk
k

k

k k k

k

{Tvj : vj ∈ B}

t

Figure 13: The TARGET polygon. It contains the unique target tile t which is reachable if and only if
there are k robots in the polygon.

• ∀vi ∈ V we consider the robot ri ∈ R.

• All n robots ri ∈ R have the same color.

• ∀ri ∈ R (and then ∀vi ∈ V ) we construct a vi-ROUTER polygon, a ¬vi-ROUTER polygon, a vi-
MOVING polygon, a vi-VERTEX polygon with |N(vi)| inputs of type evi,¬vj and a vi-DISPATCHER
polygon with |N(vi)| outputs.

• ∀(vi, vj) ∈ E we construct a (vi,¬vj)-SLIDING polygon and a (vj ,¬vi)-SLIDING polygon.

• ∀ri ∈ R, if vi ∈ A, ri starts in the corresponding vi-ROUTER polygon (see Figure 8) else it starts
in the ¬vi-ROUTER polygon (see Figure 7).

• The unique target tile t is contained by the TARGET polygon with k = |A| = |B|.

All gadget polygons are connected as follows:

• Outputs connections of the ¬vi-ROUTER polygons: for each edge (vj , vi) ∈ E, the output
evj ,¬vi (resp. svj ,¬vi) is connected to the corresponding input evj ,¬vi (resp. ¬vi) of the vj-ROUTER
(resp. (vj ,¬vi)-SLIDING) polygon. If (vj , vi) /∈ E then the outputs evj ,¬vi and svj ,¬vi are closed
by a wall. Each mvj ,¬vi output is connected to the input mvj ,¬vi of the corresponding vj-MOVING
polygon.

• Outputs connections of the vi-VERTEX polygons: v′i output is connected to the v′i input of
the corresponding vi-ROUTER polygons.

• Outputs connections of the vi-ROUTER polygons: the Mvi output is connected to the Mvi

input of the corresponding vi-MOVING polygon. Each mvj ,vi output is connected to the mvj ,vi

input of the corresponding vj-MOVING polygon. If vi ∈ B the output Tvi is connected to the Tvi
input of the TARGET polygon else this output is closed by a wall.

• Outputs connections of the vi-MOVING polygons: the output dvi is connected to the input
dvi of the corresponding vi-DISPATCHER.

• Outputs connections of the vi-DISPATCHER polygons: Each output svi,¬vj is connected
to the input vi of the corresponding (vi,¬vj)-SLIDING.

• Outputs connections of the (vi,¬vj)-SLIDING polygons: the output ¬vi (respectively vj) is
connected to the input ¬vi (respectively vj) of the corresponding ¬vi-ROUTER polygon (respectively
vj-ROUTER polygon).

The Figure 14 is an general example of the Construction 2. To give an intuition to the reader, we
can define level of the construction in the Figure 14 as follows:
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vi vi+1 vj

I:
G

I′:

¬v1-ROUTER . . . ¬vi-ROUTER ¬vi+1-ROUTER . . . ¬vj-ROUTER . . . ¬vn-ROUTER

v1-VERTEX . . . vi-VERTEX vi+1-VERTEX . . . vj-VERTEX . . . vn-VERTEX

v1-ROUTER . . . vi-ROUTER vi+1-ROUTER . . . vj-ROUTER . . . vn-ROUTER

v1-MOVING . . . vi-MOVING vi+1-MOVING . . . vj-MOVING . . . vn-MOVING

v1-DISPATCHER . . . vi-DISPATCHER vi+1-DISPATCHER . . . vj -DISPATCHER . . . vn-DISPATCHER

. . . (vi,¬vi+1)-SLIDING . . . (vi+1,¬vi)-SLIDING . . .

TARGET

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Connection between (a) and (b): ∀vi, vj ∈ V , if (vi, vj)∈ E the ¬vi-ROUTER polygon in connected

to the vj-VERTEX polygon and the ¬vj-ROUTER polygon is connected to the vi-VERTEX polygon.

Connection between (a), (c) and (d): ∀vi, vj ∈ V and vi 6= vj , the ¬vi-ROUTER

polygon and the vi-ROUTER polygon are connected to the vj-MOVING polygon.

The input Mvi
of vi-MOVING polygon is connected to the output Mvi

of the vi-ROUTER polygon.

Connection between (a), (b), (e) and (f): ∀vi, vj ∈ V , if (vi, vj)∈ E, the ¬vi-ROUTER

(resp. ¬vj-ROUTER) polygon is connected to the input ¬vi (resp. ¬vj) of the (vi,¬vj)-SLIDING

(resp. (vj ,¬vi)-SLIDING) polygon. Thevi-DISPATCHER polygons are connected to the input vi of all

(vi,¬vj)-SLIDING polygons. The output vj (resp. ¬vi) of the (vi,¬vj)-SLIDING polygon

is connected to the input vj (resp. ¬vi) of the corresponding vj-VERTEX (resp. ¬vi-ROUTER) polygon.

Connection between (c) and (g): ∀vi ∈ B, the vi-ROUTER is connected to the TARGET polygon.

Figure 14: Example of an instance I ′ obtained by Construction 2 from the instance I of Token Sliding
(TS). In I, vertices surrounded by circles are vertices in the current independent set (initially A) and
vertices surrounded by squares are vertices of the final independent set B.
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• (a): if a robot is in an ¬vi-ROUTER polygon, then vi is not in the current independent set (i.e.
the level (a) corresponds to the set of vertices which are not in the current independent set).

• (b): is the level to test if the sliding is legal (i.e. if the new set is always an independent set).

• (c): contrary to the level (a), the level (c) corresponds to the current independent set.

• (d): verify that more than one token cannot move at the same time. If a robot cross this level, no
other can cross it while the sliding is not ended and legal.

• (e): when a robot ri cross the level (d), the robot can choose where to move the token and
take the corresponding polygon (e.g. if the token move from vi to vj , vi cross the vi-MOVING
polygon and choose to reach the output corresponding to the (vi,¬vj)-SLIDING polygon in the
vi-DISPATCHER).

• (f): is used to execute the sliding of the token, after it, vi which was in the current independent
set go to the ¬vi-ROUTER polygon and vj which was not in the current independent set go to the
level (b) to verify if the new set is always an independent set and if it is, it reaches the vj-ROUTER.

Remark 5. In an instance obtained by Construction 2, to leave a vi-ROUTER polygon and access to a
¬vi-ROUTER polygon, the robot ri need to take the output Mvi to access to the vi-MOVING polygon.
According to Lemma 5 and Lemma 8, ri need the help of others robots to reach the output dvi and
then the vi-DISPATCHER polygon. After ri reaches an svi,¬vj output and come in the corresponding
(vi,¬vj)-SLIDING polygon by the input vi. According to Lemma 6, ri need to be helped by another
robot rj which comes from the ¬vj input to reach the ¬vi output and then reach the ¬vi-ROUTER
polygon.

Remark 6. In an instance obtained by Construction 2, to leave a vj-ROUTER polygon and access to
a ¬vj-ROUTER polygon, the robot rj need to take an output svi,¬vj to access to the (vi,¬vj)-SLIDING
polygon by the input ¬vj . According to Lemma 6, a robot ri need to reach the same gadget to help rj
to accesses to the output vj and reach the corresponding input of the vj-VERTEX polygon. According
to Lemma 2 and to Construction 2, for each vk ∈ N(vj), the corresponding robot rk must help rj to
cross the vj-VERTEX polygon and reach the vj-ROUTER polygon.

Remark 7. In Remark 5, the robot ri comes from the vi-ROUTER polygon and go to the ¬vi-
ROUTER while rj do the opposite way (from ¬vj-ROUTER to vj-ROUTER). According to Remark 5,
in an instance obtained by Construction 2, a robot ri can leave the vi-ROUTER polygon to go to the
¬vi-ROUTER polygon if and only if another robot rj leave the ¬vj-ROUTER polygon to go to the
vj-ROUTER polygon.

Lemma 7. In an instance obtained by Construction 2, the vi-ROUTER polygon and the ¬vi-ROUTER
polygon can be reachable by the corresponding robot ri but not by others.

Proof. Let us consider the robot ri in the vi-ROUTER polygon. If ri try to reach the ¬vj-ROUTER
polygon, it need to reach the output ¬vj of an (vj ,¬vk)-SLIDING polygon According to Remark 1,
Remark 2 and Lemma 6 when the robot ri try to move from the vi-ROUTER polygon to the ¬vi-
ROUTER polygon or vice versa, the robot ri cannot reach another gadget polygon than those described
in the Remark 5 (excepted the TARGET polygon).

Lemma 8. In an instance obtained by Construction 2, a robot ri that comes from the input Mvi in a
vi-MOVING polygon can reach the dvi output if and only if ∀vj ∈ V \{vi}, the robot rj can reach the
vj-ROUTER polygon or the ¬vj-ROUTER polygon.

Proof. According to Lemma 5, the output dvi can be reach if and only if there is a robot to help it at
each level. By construction, each input mvi,vj is connected with an output of the vj-ROUTER polygon
and the opposite input mvi,¬vj is connected with an output of the ¬vj-ROUTER polygon. Then to reach
the output dvi , ∀vj ∈ V \{vi}, the robot rj can reach the vj-ROUTER polygon or the ¬vj-ROUTER
polygon.

Lemma 9. In an instance obtained by Construction 2, when a robot ri leave the vi-ROUTER polygon
and cross the vi-MOVING polygon, no other robot rk can cross a vk-MOVING polygon while ri has not
reach the ¬vi-ROUTER polygon and then while another robot rj leave the ¬vj-ROUTER polygon to reach
the vj-ROUTER polygon (according to Remark 7).
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Proof. If a robot ri goes on the vi-MOVING polygon and another robot rj goes in the vj-MOVING
polygon, according to Lemma 5 and to Lemma 8 ri (resp. rj) cannot reach the output dvi (resp. dvj )
because it need the help of the robot rj (resp. ri). If rj help ri to reach the output dvi of the vi-MOVING
polygon before to try to cross the vj-MOVING polygon it will be stuck in it as long as ri has not reach
the ¬vi-ROUTER polygon.

Theorem 4. GR(n, 1, 1, 1) is PSPACE-complete.

Proof. The argument to say that the problem is in PSPACE is close to the argument given by Hüffner
[13] for the Atomix problem. Given an instance of GR(n, 1, 1, 1) with an arbitrary grid polygon
P consists of |C| tiles, a non-deterministic Turing machine can solve it by repeatedly applying a move
up to reach a final configuration (i.e. a configuration where a robot have reached the target tile). The

number of configurations is limited to

(
|C|
n

)
and then the machine can announce that there is no solution

after having applied more moves without finding a solution. Since a configuration of GR(n, 1, 1, 1) is
encodable in polynomial space, GR(n, 1, 1, 1) is in NPSPACE and then according to Savitch theorem
[20], GR(n, 1, 1, 1) is in PSPACE.

Now, we have to prove that there is a polynomial-time reduction Token Sliding (TS) to GR(n, 1,
1, 1). Considering an instance I of Token Sliding (TS) and the corresponding instance I ′ of GR(n,
1, 1, 1) obtained by Construction 2:

• Assume that there exists a positive solution for the instance I of Token Sliding (TS) then we
construct a positive solution for the instance I ′ of GR(n, 1, 1, 1) in the following way:

Let S be a solution of I. Then S is a sequence of independent sets (numbered by s1, . . . , s|S|)
such that sl+1 is obtained by an exchange of vertex in sl with one of its neighbors in G and where
s1 = A and s|S| = B. By construction ∀vi ∈ V , if vi ∈ A, the corresponding robot ri starts
in the vi-ROUTER polygon else it starts in the ¬vi-ROUTER polygon. This starting position
corresponding to the configuration A. Considering two independent sets sl ∈ S and sl+1 ∈ S,
where sl+1 is the configuration obtained by the sliding of a token along the edge (vi, vj) (e.g. from
vi to vj) in the configuration sl. If vi ∈ sl then the corresponding robot ri is in the vi-ROUTER
polygon else it is in the ¬vi-ROUTER polygon. To reach the configuration corresponding to sl+1

the robot ri (corresponding to vi) need to reaches the ¬vi-ROUTER polygon and the robot rj
(corresponding to the vertex vj) need to reaches the vj-ROUTER polygon. In order to do that,
ri executes movements described in Remark 5 and rj executes movements described in Remark 6.
Since sl+1 is an independent set, ∀vh ∈ N(vj), the corresponding robot rh can reach the ¬vh-
ROUTER polygon then rj can reaches the v′j output of the vj-VERTEX polygon and accesses to
the vj-ROUTER. By repeating these movements, we can pass from s1 = A to s|S| = B. Then
we have k robots such that ∀vi ∈ B, the corresponding robot ri is in the vi-ROUTER polygon.
By Construction 2 these k robots can reach the TARGET polygon and one of them can reach the
target tile. Then, if I admits a positive solution, I ′ admits a positive solution too.

• Reciprocally, we suppose that there exists a positive solution for the instance I ′ of GR(n, 1, 1, 1)
then we construct a positive solution for the instance I of Token Sliding (TS) in the following
way:

The instance I ′ admits a solution then k robots can reach the target polygon (according to Re-
mark 3). Then, according to Lemma 7 and Lemma 9 ∃C a set of configurations such that ∀cl ∈ C,
∀ri ∈ R, ri is in the vi-ROUTER polygon or in the ¬vi-ROUTER polygon. Note that c1 cor-
responds to the starting position (∀vi ∈ V , if vi ∈ A, the corresponding robot ri starts in the
vi-ROUTER polygon else it starts in the ¬vi-ROUTER polygon) and c|c| is the configuration
where ∀vi ∈ V , if vi ∈ B, the corresponding robot ri is in the vi-ROUTER polygon else it is in the
¬vi-ROUTER polygon. According to Lemma 9 two robots cannot cross an vi-MOVING polygon
at the same time. From Lemma 2 and to Construction 2, to access to the vj-ROUTER polygon, rj
have to cross the vj-VERTEX polygon and then ∀vh ∈ N(j), the corresponding robot rh is in the
¬vh-ROUTER polygon. Then we can consider the set S such that ∀cl ∈ C, we can consider the set
sl ∈ S such that ∀ri ∈ R, if ri is in the corresponding vi-VERTEX polygon in the configuration cl,
then vi ∈ sl. So ∀cl ∈ C, according to Lemma 2 and to Construction 2, the set sl is an independent
set. By construction, a robot ri can move from the vi-ROUTER polygon to the ¬vi-ROUTER
polygon and another robot rj from the ¬vj-ROUTER polygon to the vj-ROUTER polygon if the
corresponding (vi,¬vj)-SLIDING polygon exist and then is the edge (vi, vj) ∈ E. Then ∀cl ∈ C

15



we have an independent set sl ∈ S and to pass from sl to sl+1 by withdraw a vertex and adding
one of its neighbour in G (i.e. a single token slide along an edge) and where s1 = A and s|S| = B.
Then the set of independent set S corresponding to C is a solution for the instance I of Token
Sliding (TS).

Since Construction 2 can be done in polynomial time and from previous arguments, GR(n, 1, 1, 1)
is PSPACE-complete.

5 Conclusion

In this article, we proposed some complexity results for the Ricochet Robots game. We have proven
the following:

• the optimization problem corresponding to Ricochet Robots is Poly-APX -hard (Section 3),

• determine if an instance of Ricochet Robots is solvable or not is PSPACE-complete (Section 4).

The next step is to categorize Maximum Reachability (MR) problem more precisely in the hierarchy
of approximation algorithms. We can also investigate on the minimum number of moves to solve the
Generalized Reachability (GR) problem.
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A Representation

In order to simplify our scheme and to simplify the reader’s understanding, gadgets are represented
by a rectangle and are connected by ”wires”. A wire corresponds to a line of free spaces surrounded by
walls on both sides. A wire can be bent and two wires can cross them by preserving the planarity of
the grid (Table 2). Note that two robots which crossing each other cannot exchange their way (in other
words, the robot which gets in vertically cannot reach an horizontal output and vice versa).

Representation Corresponding grid

wire

cutted wire ×

bended wire

crossed wires

Table 2: Wires representations.
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