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Abstract—A regression method to estimate a linear bound in
the presence of outliers is discussed. An exponentially-modified
Gaussian (EMG) noise model is proposed, based on a maximum
entropy argument. The resulting “EMG regression” method is
shown to encompass the classical linear regression (with Gaussian
noise) and a minimum regression (with exponential noise) as
special cases. Simulations are performed to assess the consistency
of the regression as well as its resilience to model mismatch.
We conclude with an example taken from a real-world study of
human performance in rapid aiming with application to human-
computer interaction.

I. INTRODUCTION

The aim of this work is to present a general method to esti-
mate linear lower bounds in two-dimensional datasets (scatter
plots) in the presence of outliers. Consider a set of n observed
samples (xi, yi), i = 1, 2, . . . , n, which are independent and
identically distributed (i.i.d.) realizations of an input variable
X and output variable Y . A typical example is represented in
Fig. 1. We assume the following characteristics:

• X is the independent variable and is perfectly known;
• Y is the dependent variable, subject to observation errors;
• minY |(X = x) = a + b x holds when there are no

observation errors at all. In words, a linear lower bound
exists in the dataset.

• Some observations (outliers) go actually below the lower
bound.
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Fig. 1. Example dataset with a lower bound (black straight line) to be
estimated. Standard linear regression gives the orange dashed line.

As a result, the observed conditional probability densities
pY |X=x are positively skewed. The proposed method allows
regression towards a lower bound, while taking into account
both heavily skewed distributions and the presence of outliers.

Existing Regression Techniques: There exist many re-
gression techniques, the best known being the standard linear
regression. The linear regression method assumes that (i) X
is perfectly known; (ii) the relationship between X and Y is
linear in the sense that E[Y |X = x] = a+ b x where a is the
intercept and b is the slope of the linear model; (iii) observation
errors are accounted for by the probabilistic model

Y = a+ b X + Z, (1)

where Z denotes the model noise. It is usually assumed that
errors are centered, uncorrelated, with the same finite variance
(homoscedastic). In this case, the Gauss-Markov theorem
states that the ordinary least squares (OLS) estimator is the
best linear unbiased estimator. This estimator is easily tractable
analytically, and the parameters to be estimated are simple to
compute, making simple linear regression1 a very popular tool
among both novices and experts.

Despite all these attractive features, linear regression is
not a silver bullet. Estimated parameters are oversensitive to
outliers [1] and OLS may be outperformed by the minimum
absolute deviations estimator [2]. Techniques exist to account
for non-Gaussian distributions, by transforming the data prior
to regression [3], by using mixture models [4], or generalized
linear models [5]. Common to all these methods, however, is
that the regression is designed to assess a central tendency. In
contrast, the aim of this paper is to estimate a lower bound.

Extreme value theory (EVT) provides a counterpart to the
central limit theorem for extrema rather than means through
the Fisher-Tippett-Gnedenko theorem [6]. Such a theoretical
result seems at first sight adapted to the present work. How-
ever, EVT essentially describes the behavior of tail events,
and using it in our case would amount to fitting the outliers
below the lower bound. Instead, our present work focuses on
estimating the linear lower bound a+ bx.

1We refer here to linear regression as a method by which a and b are
computed using OLS. If one further assumes that Z is Gaussian, it is well
known that the OLS estimator is equivalent to the maximum likelihood
estimator.



To the best of our knowledge, previous regression tech-
niques do not solve the problem of estimating a linear lower
bound in the presence of outliers (the black straight line of
Fig. 1).

Outline of the Paper: The remainder of this paper is as
follows. Section II describes an exponentially-modified Gaus-
sian (EMG) noise model and shows how it is adapted to our
problem formulation. Section III then describes the parametric
maximum likelihood (ML) estimation leading to the desired
linear lower bound. Two limit cases are discussed. Simulations
to assess the validity and robustness of the methods are
conducted in Section IV. A real-world example is presented in
Section V, upon which EMG regression is applied. Section VI
concludes.

II. EXPONENTIALLY-MODIFIED GAUSSIAN MODEL

The proposed model for the conditional Y |X is a linear
model with two independent additive noise components:

Y = a+ b X + E + Z, (2)

where Z is a centered Gaussian noise with variance σ2 and
density

pZ(z) =
1√

2πσ2
exp

(
− z2

2σ2

)
(3)

and where E ≥ 0 is a nonnegative random variable. Each term
of (2) is interpreted as follows:
• a and b are the two parameters that specify the linear

lower bound,
• E ≥ 0 accounts for the fact that observations can in

principle only be above the lower bound—it captures
most of the observations.

• Z accounts for symmetric deviations from the lower
bound model—in particular, it captures outliers below the
lower bound.

In datasets such as the one illustrated in Fig. 1, it is expected
that the E scales much larger than the deviation σ of Z.
This is in essence due to the fact that the outliers on the
bottom (captured by Z) are much closer to the lower bound
than those at the top (captured by E) where Y is completely
unconstrained.

We now discuss how the distribution of E can be chosen
so as to retain a sense of generality to the regression method,
rather than to reflect an underlying “true” model. We rely on
the maximum entropy (MaxEnt) principle [7] which assigns
probability density functions “in a way that is maximally non-
commital” given the observed data and constraints thereupon.
Jaynes [7] has shown that this statement can be formulated as a
constrained optimization problem where Shannon’s entropy [8]
is maximized given the constraints.

It is reasonable to assume that the mean value of E given
X = x, say β, exists and is given. It is easily seen [9,
Ex. 12.2.5] that the MaxEnt distribution of a positive random
variable with fixed mean β is the exponential distribution of
parameter β:

pE(t) =
1

β
exp

(
− t
β

)
. (4)

The sum of independent Gaussian and exponential random
variables is known to follow the exponentially-modified Gaus-
sian distribution [10]:

p(y|x) =
1

2β
e

1
2β (2µ+σ2

β −2y) erfc
(µ+ σ2

β − y√
2σ

)
(5)

where µ = a + b x and erfc is the complementary er-
ror function. EMG distributions have been used to describe
highly skewed shapes of peaks in chromatography [11] and
of distributions for recall/reaction time in experimental psy-
chology [10]. The EMG distribution is illustrated Fig. 2 for
different values of σ2 with µ = 0 and β = 1. Not surprisingly,
the EMG distribution converges to the exponential one when
σ2 → 0, and to the Gaussian one when β → 0 (see
Section III).
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Fig. 2. EMG distribution (5), with µ = 0, β = 1, and various values of σ2

III. THE EMG REGRESSION METHOD

In our proposed regression method, the parameters
a, b of (2) are determined through maximum likelihood
estimation—which under mild conditions is known to be
asymptotically consistent and efficient. The log-likelihood
function ` = `(a, b, β, σ2) associated with model (5) for n
i.i.d. samples (xi, yi) is

` = −n log 2β +
1

2β

n∑
i=1

(
2(a+ b xi) +

σ2

β
− 2yi

)
+

n∑
i=1

log erfc
(a+ b xi + σ2

β − yi√
2σ2

)
. (6)

Its maximum is found numerically using well-known compu-
tational methods (see Section IV-A below).

Two Extreme Cases of the EMG Regression: By making
the exponential component vanish (letting β → 0 so that
E tends to 0 in distribution), the EMG regression should
normally result in a linear regression with Gaussian noise
only, which amounts to a standard linear regression. Similarly,
making the Gaussian component vanish (by letting σ2 → 0 so
that Z tends to 0 in distribution), the EMG regression results
in a regression with exponential noise only. These two extreme
cases are calculated as follows.



a) β → 0: Write λ = 1
β → +∞. Using the asymptotic

expansion erfc (x) = 1√
π
e−x

2

( 1
x + o( 1

x2 )) for x→ +∞, one

has
∑n
i=1 log erfc

(
µ+λσ2−yi√

2σ

)
=
∑n
i=1−

(µ−yi)2
2σ2 − λ

2 (2µ +

λσ2 − 2yi) +
∑n
i=1 log(

√
2σ√

π(µ+λσ2−yi)
+ o( 1

λ2 )). The second
term in the expansion cancels in (6). Taking the limit we obtain

lim
β→0

argmax
a,b

(`) = argmin
a,b

n∑
i=1

(µ− yi)2 (7)

Therefore, as β → 0, the EMG regression becomes equivalent
to the classical (OLS) linear regression.

b) σ2 → 0: One has

lim
σ2→0

p(y|x) =
1

2β
e

1
β (µ−y) lim

σ2→0
erfc

(
µ− y√

2σ

)
, (8)

where the limit of erfc
(
µ−y√

2σ

)
equals 0 if µ − y > 0 and

equals 2 if µ− y < 0. Therefore,

lim
σ2→0

p(y|x) =
1

β
e−

1
β (y−µ)

1y≥µ (9)

which is an exponential density with log-likelihood

` = −n log β −
n∑
i=1

1

β
(yi − a− b xi) log1yi≥a+b xi (10)

Let x = 1
n

∑n
i=1 xi be the average observed value of X . We

may assume x > 0, otherwise replace b by −b. Then (10) is
increasing in both a and b under the condition y ≥ a + b x.
Hence maximizing likelihood amounts to maximizing a+ bx
for all a’s and b’s such that yi ≥ a+ b xi for all i. In practice
this can be achieved by finding all lines lying below the data
that tangent the convex hull of the dataset, and keeping the one
which maximizes a+ b x. Such a regression is determined by
only two points, and is thus severely affected by outliers.

From the above two limiting cases we see that in essence,
the EMG regression determines the lower bound from a combi-
nation of (symmetric) Gaussian and (asymmetric) exponential
noises, where Gaussian noise implies a central tendency and
where exponential noise implies a strict minimum.

IV. SIMULATIONS

Simulations were conducted to analyse the effect of
the sample size and also to observe the effect of a
model mismatch on the quality of the estimates. For
each simulation, datasets of different sample sizes (n ∈
[10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]) were gen-
erated and fed, 500 times each, to the EMG regression.

A. Estimation Procedure

We used a global basin-hopping [12] optimizing method
with 20 iterations, with a trust-exact method local opti-
mizer [13] (both from the SciPy implementation) to find the
extremum. The basin-hopping algorithm is a stochastic method
that works by determining a new starting point at each iteration
that the deterministic trust-exact method then uses. Although
this gives no guarantee that the global extremum is achieved,
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Fig. 3. Sample mean and sample standard deviation represented for each
parameter a = 1, b = 0.1, β = 1/4, and σ2 = 0.1. For each estimator t,
t represents its sample average and σε is the associated sample standard
deviation. The filled region represents t̂ ∈ [t, t + 2σε] (i.e., one side of the
asymptotic 95% confidence area).

20 iterations seemed to be a good tradeoff between simulation
time and effectiveness of the method to determine the global
extremum. In order to decrease simulation time, the basin-
hopping procedure was stopped before 20 iterations whenever
a current minimum value was reached for the fifth time.
Gradient and Hessian were straightforwardly computed for
usage by the trust-exact method as numerical differentiation
proved unreliable for small values of σ2. We also used the
scaled complementary Gaussian error function erfcx to avoid
underflow. The starting point for the global algorithm was
determined by a method of moments estimator2 heuristic.

B. Consistency

We expect that the EMG regression method, based on ML
estimation, is asymptotically consistent (the estimation bias
vanishes) with a vanishing covariance matrix.

Our first simulation consisted of generating datasets accord-
ing to (5) and observing how the estimates evolved with n.
X was uniformly distributed and Y |X was drawn according
to (5), with parameters a = 1, b = 0.1, β = 0.25, σ2 = 0.13.

2The method of moment estimator is known to be outperformed by the
ML estimator, but its computation is very simple, see e.g. [14]. It is thus
very useful to determine a starting point for the global optimization routine.
The method of moments estimator will sometimes yield values outside of the
admissible parameter space, such as negative values for positive parameters
(e.g. σ2). In that case, we arbitrarily replaced the estimated value by a very
small one (say, 10−4).

3The parameter values correspond approximately to those encountered in
the real-world example of Section V.



We determined the mean and standard deviations σε of the
estimators for each parameter. Fig. 3 summarizes the results
of the simulation. The estimate for b is unbiased for all values
of n, while the estimates for a, β and σ2 appear biased
for small values of n but become unbiased in practice for
a when n ≥ 200, for β when n ≥ 500 and for σ2 when
n ≥ 50. The standard error decreases in n for all parameters;
the coefficients of variation for a, b, β, σ2 are respectively
1.1%, 2.1%, 3.0% and 3.0% for n = 10000. The estimators
thus behave as expected.

C. Model Mismatch

Since the exponential distribution was chosen based on a
generic MaxEnt argument, a natural question is whether or
not the actual distribution for E in (2) affects the performance
behavior of the estimation method. To answer this, we in-
vestigated a model mismatch, assuming a Weibull distribution
for E rather than the exponential:

pW (x) =
s

k

(x
k

)s−1

exp
(
−
(x
k

)s)
(x ≥ 0), (11)

where k is the scale and s is the shape. For s = 1, the Weibull
distribution (11) reduces to the exponential distribution (4)
with k = β, while it is heavy-tailed for s < 1 and light-tailed
for s > 1 4. Also note that the mode of W shifts to the right
for s > 1. Different kinds of mismatch can thus be chosen for
different values of s.
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Fig. 4. Weibull probability density function for k′ = (4Γ(1 + 1/s))−1 and
different values of s. For s = 1 this reduces to the exponential distribution
with β = k = 1/4.

For a fair comparison, the parameters of the generating
model were chosen so as to keep the first two moments of
the scatter plot unchanged. Since the mean and variance of the
Weibull distribution are [14] mean µ0 = kΓ(1+1/s) and vari-
ance V0 = k2

(
Γ(1+2/s)−Γ(1+1/s)2

)
, invariance of the first

two moments is achieved by adjusting k0 = k/Γ(1+1/s) and
replacing σ in (3) by σ2

0 = σ2 + k2
(
1− Γ(1+2/s)−Γ(1+1/s)2

Γ(1+1/s)2

)
.

The Weibull distribution corrected with k′ is illustrated Fig. 4
for values of shape s ∈ [0.75, 1, 1.25].

Two simulations were conducted with s = 0.75 and s =
1.25. The results for s = 0.75 are given Fig. 5, those for s =
1.25 being similar. The baseline for β is 1/4, as β should be
equal to the mean; the baseline for σ2 is the corrected σ2

0 . The

4A random variable X with a heavy-tailed distribution satisfies
limx→∞ exp(tx)Pr[X > x] = ∞ for all t > 0.
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Fig. 5. Sample mean and sample standard deviation represented for each
parameter when E is Weibull distributed. The parameters used to generate
the data were a = 1, b = 0.1, s = 0.75, k′ = (βΓ(1 + 1/0.75))−1 =
0.210, σ2 = 0.048. For each estimator t, t represents its sample average and
σε is the associated sample standard deviation. The filled region represents
t̂ ∈ [t, t+ 2σε] (i.e., one side of the asymptotic 95% confidence area).

simulation shows that b is unbiased, while a, β, σ2 are biased
with respectively −0.1, +0.08, −0.01 of bias. The coefficients
of variation for a, b, β, σ2 are respectively 0.8%, 1.7%, 1.8%,
3.4% for n = 10000. The simulations for s = 1.25 indicated
almost identical results except for sign changes of the biases.
The sample variance being spread over β and σ2, it is expected
that an overestimation of one of these two parameters leads
to an underestimation of the other, which in turn affects the
estimated intercept a. Remarkably, the slope b is very robust
to the model mismatch; the quality of the estimation of b was
almost equivalent across all simulations.

V. A REAL WORLD EXAMPLE

The motivation for this work stems from a real-world
example in a study of human aiming performance. Existing
theoretical work on human movement [15], [16] predicts that
the shortest amount of time, say Y (in seconds), that is
needed to successfully aim towards a target in a so-called
Fitts task [17] is linearly related to a difficulty parameter
X (in bits). Aiming data is usually gathered in a controlled
experimental setting where participants are asked to minimize
task completion time, and the parameters of the model are
estimated through linear regression. Typical values for a and
b in controlled experiments are a ∈ [−0.1, 0.1] and b ∈
[0.1, 0.2]. However, data can also be gathered “in the wild” by
unobstrusively logging mouse cursor trajectories of everyday
computer users [18], see Fig. 6 for an example. Compared
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Fig. 6. Dataset of real-world aiming performance. Y is the time in seconds
needed to select a target with difficulty X in bits.

to controlled data, “in the wild” data displays high variability
and great positive skewness, because users do not routinely
try to maximize their performance. Furthermore, technical
difficulties associated with trajectory segmentation make some
observations of Y appear as outliers. Linear regression yields
parameters outside of the expected intervals (a = 0.4) or on
the edge (b = 0.2), as well as a very low goodness of fit
(coefficient of determination r2 = 0.2029). We thus performed
an EMG regression on the data of Fig. 6, with β = β0 +β1 x
to take into account the fact that usually standard deviation
scales with levels of X in psycho-physical experiments [10].
It was found that a = 0.04, b = 0.16, β0 = 0.33, β1 = 0.05,
σ2 = 0.04, bringing values of a and b inside trusted levels.
The fitted lower bound is displayed Fig. 6 in black full line.
Compared to linear regression, the lower bound estimated
via EMG regression enables more meaningful comparison
between controlled and “in the wild” experimental data.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a regression method to estimate a linear
bound in the presence of outliers, based on an EMG noise
model, which encompasses the classical linear regression and
a minimum regression method as special cases. Simulation
results have shown that the parameters a and b specifying
the linear lower bound were consistently estimated, where
the slope parameter b is unbiased and remarkably robust to
the model mismatch. The EMG regression was illustrated
successfully on a real-world example.

On more complicated examples where the lower bound
appears not linear, it may be observed that the optimizer

cannot find a global log-likelihood maximum. Future work will
generalize the regression to more general models for µ (e.g.,
polynomial in x) and β. An interesting question is also whether
the bias for a can be corrected, and whether the method is
effective for very different parameter sets (e.g. slopes close to
vertical b =∞).
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