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Karine Beauchard∗, Armand Koenig†, Kévin Le Balc’h‡

July 23, 2019

Abstract
Over the past two decades, the controllability of several examples of parabolic-hyperbolic

systems has been investigated. The present article is the beginning of an attempt to find a
unified framework that encompasses and generalizes the previous results.

We consider constant coefficients heat-transport systems with coupling of order zero and
one, with a locally distributed control in the source term, posed on the one dimensional torus.

We prove the null-controllability, in optimal time (the one expected because of the transport
component) when there is as much controls as equations. When the control acts only on the
transport (resp. parabolic) component, we prove an algebraic necessary and sufficient condition,
on the coupling term, for the null controllability.

The whole study relies on a careful spectral analysis, based on perturbation theory. The
proof of the negative result in small time uses holomorphic functions technics. The proof of
the positive result in large time relies on a spectral decomposition into low, and asymptotically
parabolic or hyperbolic frequencies.
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1 Introduction
1.1 Parabolic-transport systems
We consider the linear control system{

∂tf −B∂2
xf +A∂xf +Kf = Mu1ω in (0, T )× T,

f(0, ·) = f0 in T, (Sys)
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where
• T > 0, T = R/(2πZ), ω is a nonempty open subset of T, d ∈ N∗, m ∈ {1, . . . , d}, A,B,K ∈
Rd×d, M ∈ Rd×m,

• the state is f : [0, T ]× T→ Rd,

• the control is u : [0, T ]× T→ Rm.
We assume

d = d1 + d2 with 1 ≤ d1 < d, 1 ≤ d2 < d, (H.1)

B =
(

0 0
0 D

)
, with D ∈ Rd2×d2 , (H.2)

<(Sp(D)) ⊂ (0,∞). (H.3)

Introducing the analogue block decomposition for the d× d matrices A and K, the d×m matrix
M and the function f ,

A =
(
A′ A12
A21 A22

)
, K =

(
K11 K12
K21 K22

)
, M =

(
M1
M2

)
, f(t, x) =

(
f1(t, x)
f2(t, x)

)
,

we see that the system (Sys) couples a transport equation on f1 with a parabolic equation on f2 (∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = M1u1ω in (0, T )× T,(
∂t −D∂2

x +A22∂x +K22
)
f2 + (A21∂x +K21)f1 = M2u1ω in (0, T )× T,

(f1, f2)(0, ·) = (f01, f02) in T.
(1)

We make the following hypothesis on the matrix A′

A′ is diagonalizable with Sp(A′) ⊂ R. (H.4)

We will prove later, with vector valued Fourier series and a careful spectral analysis, that for every
f0 ∈ L2(T,Cd) and u ∈ L2((0, T )× T,Cm), there exists a unique solution f ∈ C0([0, T ], L2(T)d) of
(Sys) (see Section 2.2.3). In this article, we are interested in the null controllability of (Sys).
Definition 1. The system (Sys) is null-controllable on ω in time T if for every f0 ∈ L2(T;Cd),
there exists a control u ∈ L2((0, T )× T,Cm) supported on [0, T ]× ω such that the solution f of
(Sys) satisfies f(T, ·) = 0.

We aim at
• identifying the minimal time for null controllability,

• controlling the system with a small number of controls m < d,

• understanding the influence of the algebraic structure (A,B,K,M) on the above properties.

1.2 Statement of the results
1.2.1 Control on any component, minimal time

Our first result identifies the minimal time, when the control acts on each of the d equations.
Theorem 2. We assume that ω is a strict open subset of T. We also assume (H.1)–(H.4) and that
the control matrix is M = Id (and so m = d). We define1

`(ω) := sup{|I|; I connected component of T \ ω}, (2)

µ∗ = min{|µ|; µ ∈ Sp(A′)},
and

T ∗ =
{

`(ω)
µ∗

if µ∗ > 0,
+∞ if µ∗ = 0.

(3)

Then
1If I ⊂ R is measurable, we note |I| its Lebesgue measure.
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i) the system (Sys) is not null-controllable on ω in time T < T ∗,

ii) the system (Sys) is null-controllable on ω in any time T > T ∗.

In particular, when ω is an interval of T and µ∗ > 0, then the minimal time for null controllability
is T ∗ = 2π−|ω|

µ∗
.

Actually, the controls may be more regular than in Definition 1: we construct controls of the
form u = (u1, u2) where u1 ∈ L2((0, T )× ω)d1 and u2 ∈ C∞c ((0, T )× ω)d2 .

The proof of Theorem 2 relies on a spectral decomposition: for high frequencies, the spectrum
splits into a parabolic part and a hyperbolic part.

The negative result in time T < T ∗ is expected, because of the transport component of the
system, but its proof is not obvious. Indeed, because of the coupling with a parabolic component,
in general, there does not exist pure transport solutions to the system (Sys), concentrated outside
(0, T ) × ω (see Section 3.1 for more precision). Our proof consists in disproving the equivalent
observability inequality on solutions of the adjoint system, built on non trivial finite sums of
hyperbolic eigenfunctions. Their existence is proved by holomorphic functions technics developed
by the second author [17].

The proof of the positive result, in time T > T ∗ relies on an adaptation, to systems with
arbitrary size, of the strategy introduced by Lebeau and Zuazua [20] to control the system of linear
thermoelasticity, that couples a scalar heat equation and a scalar wave equation. By projecting the
dynamics onto appropriate eigenspaces, the system is decomposed into 3 weakly coupled systems.
The first one behaves like a transport system, its controllability is handled by hyperbolic methods
from [1]. The second one behaves like a parabolic system, its controllability is handled by the
Lebeau-Robbiano method. The third one, associated to low frequencies, has finite dimension; its
controllability is handled by a compactness/uniqueness argument.

The null controllability of the system (Sys) in time T = T ∗ is an open problem.

1.2.2 Control on the hyperbolic component

Our second result concerns controls acting on the whole transport component, M1 = Id1 , but
not on the parabolic component, M2 = 0. To get an aesthetic necessary and sufficient algebraic
condition for null controllability, we also assume that the diffusion is given by D = Id2 , the coupling
is realized exclusively by the transport term A21∂xf1, i.e. K21 = 0 and there is no zero order term
in the parabolic dynamics, i.e. K22 = 0, which corresponds to the system{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +A22∂x
)
f2 +A21∂xf1 = 0 in (0, T )× T. (4)

By integrating with respect to the space variable the second equation of (4), we see that, for being
steered to zero, an initial condition f0 = (f01, f02) ∈ L2(T)d1 × L2(T)d2 has to satisfy∫

T
f02(x) dx = 0. (5)

For any vector subspace E of L1(T) we denote by Em the vector subspace made of functions f ∈ E
with zero mean value, i.e.

∫
T f(x)dx = 0.

Theorem 3. We assume (H.1)–(H.4), D = Id2 m = d1, M1 = Id1 , M2 = 0, K21 = 0 and K22 = 0.
Let T ∗ be defined by (3). The following statements are equivalent:

• For every T > T ∗ and f0 = (f01, f02) ∈ L2(T)d1 ×L2
m(T)d2 , there exists u1 ∈ L2((0, T )×ω)d1

such that the solution of (4) satisfies f(T ) = 0.

• The couple of matrices (A22, A21) satisfies the Kalman rank condition:

Span{Aj22A21X1;X1 ∈ Cd1 , 0 ≤ j ≤ d2 − 1} = Cd2 . (6)
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With the same proof, similar statements can be proved for the following systems:{
(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22
)
f2 +K21f1 = 0 in (0, T )× T, (7)

with arbitrary initial conditions f0 ∈ L2(T)d and Kalman rank condition on (K22,K21) (see Section
5), {

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +A22∂x
)
f2 +K21f1 = 0 in (0, T )× T, (8)

with arbitrary initial conditions f0 ∈ L2(T)d and Kalman rank condition on (A22,K21),{
(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22
)
f2 +A21∂xf1 = 0 in (0, T )× T, (9)

with initial conditions f0 ∈ L2(T)d satisfying (5) and Kalman rank condition on (K22, A21).
The proof of the controllability of (4) uses 2 ingredients. The first ingredient is a strengthened

version of Theorem 2 with smoother controls, more precisely, the associated observability inequality
with observation of negative Sobolev norms of the parabolic component. The second ingredient is
a cascade structure (or Brunovski form) of the system (4) ensured by the Kalman condition, to
eliminate the observation of the parabolic component.

Proving an algebraic necessary and sufficient condition for null controllability of (Sys), involving
both matrices D, A and K is an open problem. In the context of parabolic systems, this difficulty
already appeared, see [3] and [11].

1.2.3 Control on the parabolic component

Our third result concerns controls acting on the whole parabolic component, M2 = Id2 , but not
on the hyperbolic component of the system, M1 = 0. To get an aesthetic necessary and sufficient
condition for null controllability, we also assume that the coupling is realized exclusively by the
transport term A12∂xf2, i.e. K12 = 0, and there is no zero order term in the hyperbolic dynamics,
i.e. K11 = 0. This corresponds to the system (∂t +A′∂x)f1 +A12∂xf2 = 0 in (0, T )× T,(

∂t −D∂2
x +A22∂x +K22

)
f2 + (A21∂x +K21)f1 = u21ω in (0, T )× T,

(f1, f2)(0, ·) = (f01, f02) in T.
(10)

By integrating with respect to the space variable the first equation of (10), we see that, for being
steered to zero, an initial condition f0 = (f01, f02) ∈ L2(T)d1 × L2(T)d2 has to satisfy∫

T
f01(x) dx = 0 (11)

i.e. f0 = (f01, f02) ∈ L2
m(T)d1 × L2(T)d2 .

We need to adapt the notion of null controllability, because null controllable initial conditions
necessarily have a regular hyperbolic component. Indeed, in (10), the source term A12∂xf2 entering
the hyperbolic equation on f1 — that has to serve as an indirect control for f1 — is smooth, because
of the parabolic smoothing on f2. Such a smooth source term cannot steer to zero non-smooth
initial conditions.

Theorem 4. Let ω be an open interval of T. We assume (H.1)–(H.4), m = d2, M1 = 0, M2 = Id2 ,
K11 = 0 and K12 = 0. Let T ∗ be defined by (3). The following statements are equivalent.

• For every T > T ∗ and f0 = (f01, f02) ∈ Hd1+1
m (T)d1×Hd1+1(T)d2 there exists u2 ∈ L2((0, T )×

ω)d2 such that the solution of (10) satisfies f(T ) = 0.

• The couple of matrices (A′, A12) satisfies the Kalman rank condition:

Span{(A′)jA12X2;X2 ∈ Cd2 , 0 ≤ j ≤ d2 − 1} = Cd2 . (12)
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In Theorem 4, we assume that the open set of control ω is an interval because the proof uses [1,
Lemma 2.6] (see Lemma 55 below). The generalisation of this result to a general open set ω of T is
not known.

A similar statement can be obtained with the same proof, when K11 = 0, A12 = 0 under Kalman
rank condition on (A′,K12).

The proof of Theorem 4 follows essentially the same strategy as the one of Theorem 3: a
strengthend version of Theorem 2 and a cascade structure ensured by Kalman condition. The
regularity assumption on the hyerbolic component allows the elimination of the observation of the
hyperbolic component.

After Theorem 4, two problems are still open:

• the characterization of null controllable initial conditions: it may be a larger space than
Hd1+1

m (T)d1 ×Hd1+1(T)d2 , see Section 7,

• the algebraic necessary and sufficient condition for null controllability, involving both matrices
A and K. In the context of parabolic systems, this difficulty already appeared, see [3] and [11].

1.3 Organization of the article
Section 2 is dedicated to preliminary results conerning the spectral analysis of −B∂2

x +A∂x +K on
T, the well posedness of (Sys) and the Hilbert uniqueness method.

In Section 3, we prove the negative null controllability result in time T < T ∗ of Theorem 2.
In Section 4, we prove the positive null controllability result in time T > T ∗ of Theorem 2.
In Section 5, we explain how to adapt this proof to get the null controllability in time T > T ∗

of system (7). The interest of this section is to introduce the proof strategy of Theorem 3 and
Theorem 4, in a less technical framework.

Then, in Section 6, we prove Theorem 3 and in Section 7, we prove Theorem 4.
In Appendix A, we prove a technical result about operators on holomorphic functions, used in

Section 3.

1.4 Bibliographical comments
1.4.1 Wave equation with structural damping

We consider the 1D wave equation with structural damping and control h

∂2
t y − ∂2

xy − ∂t∂2
xy + b∂ty = h(t, x), (13)

where b ∈ R. This equation can be splitted in a system of the form (Sys) by considering z :=
∂ty − ∂2

xy + (b− 1)y, {
∂tz + z + (1− b)y = h(t, x),
∂ty − ∂2

xy − z + (b− 1)y = 0, (14)

i.e. (Sys) with d = 2, d1 = d2 = 1, m = 1,

f =
(
z
y

)
, B =

(
0 0
0 1

)
, A =

(
0 0
0 0

)
, K =

(
1 1− b
−1 b− 1

)
, M =

(
1
0

)
. (15)

Rosier and Rouchon [25] studied the equation (13) on a 1D-interval, x ∈ (0, 1), with a boundary
control at x = 1 and h = 0. This is essentially equivalent to take (13) with x ∈ (0, 1), Dirichlet
boundary conditions at x = 0 and x = 1, and a source term of the form h(t, x) = u(t)p(x), where p
is a fixed profile and u is a scalar control. The authors prove that this equation is not controllable.

By Theorem 2, we extend this negative result to general controls h (i.e. without separate
variables) for periodic boundary conditions. Here, A′ = 0, µ∗ = 0, T ∗ = +∞, the system (14) is
not controllable even with an additional control in the second equation.

In [25], the authors prove that this system is not even spectrally controllable, because of an
accumulation point in the spectrum. Indeed, by the moment method, a control that would steer
the system from an eigenstate to another one would have a Fourier transform vanishing on a set
with an accumulation point, which is not possible for an holomorphic function.

5



Martin, Rosier and Rouchon [22], studied the null-controllability of the equation (13) on the
1D torus, x ∈ T, with moving controls, i.e. h(t, x) = u(t, x)1ω+ct with c ∈ R∗. By the change of
variable x← (x− ct), this is equivalent to study the null controllability of the system{

∂tz − c∂xz + z + (1− b)y = u(t, x)1ω(x),
∂ty − c∂xy − ∂2

xy − z + (b− 1)y = 0 (16)

which has the form (Sys) with the same matrices f , B, K as in (15) and

A =
(
−c 0
0 −c

)
.

In [22, Theorem 1.2], for c = 1, the authors prove that any initial data (y0, y1) ∈ Hs+2 ×Hs(T)
with s > 15/2 can be steered to 0 in time T > 2π by mean of a control u ∈ L2((0, T )× ω).

By Theorem 3, we recover this positive null controllability result with a smaller minimal
time T > `(ω)/|c| and a weaker regularity assumption on the initial data (y, ∂ty)(0) = (y0, y1) ∈
H2 × L2(T) for (13). This corresponds to an initial data (y, z)(0) ∈ L2(T)2 for (16) because
z(0) = y1 − ∂2

xy0 + (b − 1)y0. Actually, Theorem 3 can be applied for b = 1 in (16) but an easy
adaptation of Theorem 3 gives the same result for every b ∈ R. We also prove the negative result in
time T < `(ω)/|c|. Here, µ∗ = |c|, A21 = 0 and K21 = −1.

The limitations in [22, Theorem 1.2] (regularity and time) are due to the use of controls with
separate variables u(t, x) = u1(t)u2(x). The proof relies on the moment method and the construction
of a biorthogonal family. A key point in both [22] and the present article is a splitting of the
spectrum in one parabolic-type part, and one hyperbolic-type part.

Finally, Chaves-Silva, Rosier and Zuazua [9] study the multi-dimensional case of equation (13),
x ∈ Ω, with Dirichlet boundary conditions and locally distributed moving controls h(t, x) =
u(t, x)1ω(t)(x). The control region ω(t) is assumed to be driven by the flow of an ODE that covers
all the domain Ω within the alloted time T . Then, the authors prove the null controllability of any
initial data (y0, y1) ∈ H2 ∩H1

0 (Ω)× L2(Ω) with a L2-control.
In the particular case Ω = T with a motion with constant velocity, Theorem 3 gives the same

minimal time for the null controllability and also the negative result in smaller time.
The proof strategy in [9] consists in proving Carleman estimates for the parabolic equation and

the ODE in (14) with the same singular weight, adapted to the geometry of the moving support of
the control.

As explained in [9, Section 5.2], the same construction cannot be used with periodic boundary
conditions.

In the very recent preprint [14], the authors propose another construction of a weight, to get
Carleman estimates for parabolic and transport equations in the torus T2 (with the same weight).
In the present article, we develop another strategy.

1.4.2 Wave-parabolic systems

Albano and Tataru [2] consider 2× 2 parabolic-wave systems with boundary control, where

• the coupling term in the wave equation is given by a second order operator with respect to x,

• the coupling term in the parabolic equation is given by a first order operator with respect to
(t, x).

This large class contains the linear system of thermoelasticity
∂2
tw −∆w + α∆θ = 0, (t, x) ∈ (0, T )× Ω,
∂tθ − ν∆θ + β∂tw = 0, (t, x) ∈ (0, T )× Ω,
w(t, x) = u1(t, x), (t, x) ∈ (0, T )× ∂Ω,
θ(t, x) = u2(t, x), (t, x) ∈ (0, T )× ∂Ω,

(17)

where α, β, ν > 0.
The authors of [2] prove the null controllability in large time of these systems, precisely in any

time T > 2 sup{|x|;x ∈ Ω} for the system (17). The proof relies on Carleman estimates for the
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heat and the wave equation with the same singular weight. This strategy inspired Chaves-Silva,
Rosier and Zuazua [9].

Lebeau and Zuazua [20] prove the null-controllability of the linear system of thermoelasticity (17)
with a locally distributed control in the source term of the wave equation, under the geometric control
condition on (Ω, ω, T ). The method is based on a spectral decomposition. For high frequencies,
the spectrum splits into a parabolic part and a hyperbolic part. Projecting the dynamics onto
the parabolic/hyperbolic subspaces, the system is decomposed into 2 weakly coupled systems, the
first one behaving like a wave equation, the second one like a heat equation. The wave equation is
handled by using the microlocal techniques developped for the wave equation [5]. The parabolic
equation is treated by using Lebeau and Robbiano’s method [19]. The low frequency part is treated
by a compactness argument relying on a unique continuation property.

The proof of the positive controllability results in the present article is an adaptation, to coupled
transport-parabolic systems of any size, of this approach, introduced for a 2× 2 wave-parabolic
system. The transport equation is handled by using the results from Alabau-Boussouira, Coron
and Olive [1].

The framework of systems (Sys) does not cover the system (17) because the order of the coupling
terms is too high.

1.4.3 Heat equation with memory

Ivanov and Pandolfi [15] and after them Guerrero and Imanuvilov [13] consider the heat equation
with memory {

∂ty −∆y −
∫ t

0 ∆y(τ) dτ = u1ω, (t, x) ∈ (0, T )× Ω,
y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω. (18)

In 1D, this equation can be splitted into a system of the form (Sys) by considering v(t, x) =
−
∫ t

0 yx(τ) dτ :  ∂tv + ∂xy = 0,
∂ty − ∂2

xy + vx = h1ω,
y(t, 0) = y(t, 1) = v(t, 0) = 0,

(19)

i.e.
f =

(
v
y

)
, B =

(
0 0
0 1

)
, A =

(
0 1
1 0

)
, K =

(
0 0
0 0

)
.

In [15], the authors prove that the heat equation with memory term is not “null-controllable to
the rest”. In [13], the authors prove that the scalar equation (18) is not null controllable (whatever
T > 0). Thus the system (19) is not null controllable.

Theorem 2 proves that, when Dirichlet boundary conditions are replaced by periodic boundary
conditions, then system (19) is not null controllable, even with an additional control in the first
equation.

2 Preliminary results
We want to understand the operator

L := −B∂2
x +A∂x +K (20)

with domain
D(L) =

{
f ∈ L2(T)d;−B∂2

xf +A∂xf +Kf ∈ L2(T)d
}

(21)
where the derivatives are considered in the distributional sense D′(T). Throughout the article, we
will note en the function x 7→ einx. We remark that applying L to Xen, where X ∈ Cd, we get

L(Xen) = n2
(
B + i

n
A+ 1

n2K

)
Xen. (22)

Thus, if we define E(z) the following perturbation of B

∀z ∈ C, E(z) = B + zA− z2K, (23)
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then L acts on the Fourier side as a multiplication by n2E(i/n).
In Section 2.1, we apply the perturbation theory to the matrices E(z) near z = 0: the spectrum

of E(z) splits into 2 parts: one close to zero that defines the hyperbolic component, one close to
the spectrum of D that defines the parabolic component. In Section 2.2, we deduce the dissipation
of the parabolic component and the boundedness of the hyperbolic component. Thanks to these
estimates, we prove the well-posedness of System (Sys). Finally, in Section 2.3, we recall the Hilbert
Uniqueness Method.

2.1 Perturbation theory
If we want to understand the semigroup etL, we need to know the spectrum and the eigenvectors of
E(z). Here, we relate the spectral properties of E(z) to those of A and B, in the limit z → 0. This
is instrumental in all the article. Our proofs are essentially self-contained, but the reader unfamiliar
with the analytic perturbation theory in finite dimension may read [16, Ch. II §1 and §2].

For r > 0 and m ∈ N∗, we define Om×mr as the set of holomorphic functions in the complex
disk D(0, r) with values in Cm×m. Our first result is the following one.

Proposition 5. There exist r > 0 and a matrix-valued holomorphic function P h ∈ Om×mr such
that

i) P h(0) =
(
Id1 0
0 0

)
,

ii) for all |z| < r, P h(z) is a projection that commutes with E(z),

iii) in the limit z → 0, E(z)P h(z) = O(z).

Proof. The spectrum of E(z) is continuous in z (see [16, Ch. II §1.1]). Let us consider the “0-group”
of eigenvalues, i.e. the set of eigenvalues that tend to 0 as z → 0. Then we note P h(z) the sum
of the projections onto the eigenspace2 of E(z) associated with eigenvalues in the 0-group along
the other eigenspaces. Another way to define P h(z) is to choose R = 1

2 minλ∈Sp(D) |λ| and r small
enough so that for |z| < r, there is no eigenvalues of E(z) on the circle ∂D(0, R). Then, we define
(see [16, Ch. II, Eq. (1.16)])

P h(z) = − 1
2iπ

∫
∂D(0,R)

(E(z)− ζId)−1 dζ. (24)

In the terminology of Kato, P h(z) is the “total projection for the 0-group”. Then, according
to [16, Ch. II §1.4], P h(z) is the projection onto the sum of eigenspaces associated to eigenvalues of
E(z) lying inside D(0, R) along the other eigenspaces. It is holomorphic in |z| < r. For z = 0, the
formula (24) that defines P h(0) becomes

P h(0) = − 1
2iπ

∫
∂D(0,R)

(B − ζId)−1 dζ.

Then, P h(0) is the projection onto the eigenspace of B associated to the eigenvalue 0 along the
other eigenspaces (see [16, Ch. II §1.4]). So, according to the hypotheses (H.2–H.3) on the blocks
of B, P h(0) =

(
Id1 0
0 0

)
. This proves i).

According to the definition (24), P h(z) commutes with E(z). This proves ii). Then we have

P h(0)E(0) = E(0)P h(0) = BP h(0) = 0,

which, along with the holomorphy of P h, proves iii).

We say that P h is the “projection on the hyperbolic branches”. We note P p(z) = Id − P h(z),
which we call the “projection on the parabolic branches”, and satisfies properties analog to P h:

Proposition 6. The matrix-valued function P p is in Om×mr and
2We stress that when we talk about “eigenspace”, we mean “generalized eigenspace” (or, in the terminology of

Kato, algebraic eigenspace), i.e. the space of generalized eigenvectors.
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i) P p(0) =
( 0 0

0 Id2

)
,

ii) for all |z| < r, P p(z) is a projection that commutes with E(z),

iii) in the limit z → 0, E(z)P p(z) = B +O(z).

We will need to split the hyperbolic branches further.

Proposition 7. There exist r > 0 and a family of matrix-valued holomorphic functions (P h
µ )µ∈Sp(A′) ∈

(Od×dr )Sp(A′) satisfying

i) for all µ ∈ Sp(A′) and |z| < r, P h
µ (z) is a non-zero projection that commutes with E(z),

ii) for all |z| < r, P h(z) =
∑

µ∈Sp(A′)
P h
µ (z) and for all µ 6= µ′, P h

µ (z)P h
µ′(z) = 0,

iii) for every µ ∈ Sp(A′), there exists Rh
µ ∈ Od×dr such that

∀|z| < r, E(z)P h
µ (z) = µzP h

µ (z) + z2Rh
µ(z).

Remark 8. For µ ∈ Sp(A′), the projection P h
µ is holomorphic and thus continuous in D(0, r).

Therefore, the rank of P h
µ (z), which is its trace, does not depend on |z| < r (the P h

µ (z) even are
similar, see [16, Ch. I, §4.6, Lem. 4.10]). In the same vein, the ranks of P h(z) and P p(z) do not
depend on z.

Proof. The proof is essentially the “reduction process” of Kato [16, Ch. II §2.3]. According to
Prop. 5, P h is holomorphic and P h(z)E(z) = O(z). Then we define

E(1)(z) = z−1E(z)P h(z) = z−1P h(z)E(z),

which is holomorphic in |z| < r. Note that we have according to Kato [16, Ch. II Eq. (2.38)]

E(1)(0) = P h(0)E(0)P h(0) =
(
A′ 0
0 0

)
.

Let us assume for the moment that 0 is not an eigenvalue of A′. Then, for µ ∈ Sp(A′), we define
P h
µ (z) the total projection on the µ-group of eigenvalues of E(1)(z). Said otherwise, and according

to the definition of E(1)(z), P h
µ (z) is the total projection on the µz-group of eigenvalues of E(z).

The projection P h
µ (z) is defined and holomorphic for z small enough according to [16, Ch. II, §1.4].

Since for z small enough, P h
µ (z) is the projection on some eigenspaces of E(1)(z) associated with

non-zero eigenvalues,
Im(P h

µ (z)) ⊂ Im(E(1)(z)) ⊂ Im(P h(z)),

with the last inclusion coming from the definition of E(1)(z). Thus P h
µ (z) is a subprojection of

P h(z). Moreover, P h
µ (z) commutes with E(1)(z), so it commutes with E(z). This proves Item i) in

the case 0 /∈ Sp(A′).
For µ 6= ν, P h

µ (z) and P h
ν (z) are the projections on some sums of eigenspaces associated with

different eigenvalues, so P h
µ (z)P h

ν (z) = 0. Let us note for convenience Qh(z) =
∑
µ∈Sp(A′) P

h
µ (z).

Then, for z small, Qh(z) is the projection on all the eigenspaces of E(1)(z) associated with non-zero
eigenvalues. According to the definition of E(1)(z), this proves that Qh(z) is a subprojection of
P h(z). Let us check that Qh(z) and P h(z) have the same rank. This will prove that for all z small
enough, Qh(z) = P h(z). The rank of Qh(z), which is its trace, does not depend on z. The same is
true for P h(z). For z = 0, we have E(1)(0) = (A′ 0

0 0 ), so by using the fact that 0 /∈ Sp(A′),

Qh(0) =
(
Id1 0
0 0

)
= P h(0).

This proves that for all z small enough, Qh(z) = P h(z), and in turn finishes the proof of Item ii) in
the case where 0 /∈ Sp(A′).
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If 0 ∈ Sp(A′), then we add αzI to E(z) for some α ∈ C. This amounts to adding αP h(z) to
E(1)(z). This only shifts the eigenvalues of the restriction of E(1)(z) to Im(P h(z)) (but not of its
restriction to Im(Id − P h(z))) by α, while leaving the eigenprojections unchanged. Thus, choosing
α so that 0 /∈ α+ Sp(A′), we get the Items i) and ii) in the case 0 ∈ Sp(A′).

We still need to prove the asymptotics of Item iii). Since A′ is diagonalizable, so is E(1)(0) =
(A′ 0

0 0 ). So, there is no nilpotent part in the spectral decomposition of E(1)(0). That is to say, for
all µ ∈ Sp(A′),

E(1)(0)P h
µ (0) = µP h

µ (0).
Since z 7→ E(1)(z)P h

µ (z) is holomorphic, we have

E(1)(z)P h
µ (z) = µP h

µ (z) +O(z).

Finally, we multiply by z to come back to E(z), which gives us

E(z)P h
µ (z) = µzP h

µ (z) +O(z2).

2.2 Estimates on Fourier components and well-posedness
2.2.1 Dissipation of the parabolic component

The goal of this section is the proof of the following result.
Proposition 9. There exist r,Kp, cp > 0 such that for every |z| < r, τ > 0 and X ∈ Im(P p(z)),

|e−E(z)τX| ≤ Kpe−cpτ |X|.

Proof. By using Proposition 6, for |z| ≤ r, we denote by Ep(z) the restriction of E(z) to the vector
subspace Im[P p(z)], which is an endomorphism of Im[P p(z)].

By assumption (H.3), there exists c > 0 such that <(Sp(D)) ⊂ (c,∞). There exists an open
disk Ω in the complex plane such that Sp(D) ⊂ Ω and min{<(z); z ∈ Ω} > c. Then, by continuity
of the spectrum, for r small enough, we have, for every |z| ≤ r, Sp(Ep(z)) ⊂ Ω.
Step 1: Cauchy formula. We prove the following equality between endomorphisms of Im[P p(z)]

∀|z| ≤ r, τ ∈ R, e−E
p(z)τ = 1

2πi

∫
∂Ω

e−τξ(ξI − Ep(z))−1 dξ, (25)

where I is the identity on Im[P p(z)]. The right hand side is well defined because ∂Ω∩Sp(Ep(z)) = ∅.
Let us denote it by φ(τ). Then

φ′(τ) = −1
2πi

∫
∂Ω

e−τξξ(ξI − Ep(z))−1 dξ

= −1
2πi

∫
∂Ω

e−τξ((ξI − Ep(z)) + Ep(z))(ξI − Ep(z))−1 dξ.

By the Cauchy formula,
∫
∂Ω e−τξ dξ = 0 thus φ′(τ) = −Ep(z)φ(τ). Moreover φ(0) = I because all

the eigenvalues of Ep(z) are inside Ω (see [16, Ch. I, Problem 5.9]). Thus φ(τ) = e−τEp(z).
Step 2: Estimate. We deduce from (25) the following equality between endomorphisms of Cd

∀|z| ≤ r, τ ∈ R, e−E(z)τP p(z) = 1
2πi

∫
∂Ω

e−τξ(ξId − E(z))−1
P p(z) dξ. (26)

Note that, if r is small enough, then the eigenvalues of E(z) are either inside Ω (parabolic branch)
or close to 0 (hyperbolic branch), for instance in {<(ξ) < c/2}. Thus (ξId − E(z)) is invertible on
Cd for every ξ ∈ ∂Ω and the above right hand side is well defined.

We deduce from (26) that∣∣∣e−E(z)τP p(z)
∣∣∣ ≤ 1

2π

∫
∂Ω

e−τ<(ξ)
∣∣∣(ξId − E(z))−1

P p(z)
∣∣∣dξ.

The map (ξ, z) ∈ ∂Ω × D(0, r) 7→
∣∣∣(ξId − E(z))−1

P p(z)
∣∣∣ is continuous on a compact set thus

bounded. Thus there exists a positive constant K such that, for every |z| < r and τ > 0,∣∣e−E(z)τP p(z)
∣∣ ≤ Ke−cτ .

10



2.2.2 Boundedness of the transport component

The goal of this section is to prove the following result.

Proposition 10. There exists r,Kh, ch > 0 such that for every x ∈ [−r, r] \ {0}, t ∈ R and
X ∈ Im(P h(ix)), ∣∣∣∣exp

(
t

x2E(ix)
)
X

∣∣∣∣ ≤ Khech|t||X|.

Proof. Let r be as in Proposition 7, x ∈ [−r, r] \ {0}, t ∈ R, µ ∈ Sp(A′) and Y ∈ Im[P h
µ (ix)].

Taking into account that Im[P h
µ (ix)] is stable by E(ix), we get

exp
(
t

x2E(ix)
)
Y = exp

(
t

x2E(ix)P h
µ (ix)

)
Y = exp

(
t

x2

(
iµxP h

µ (ix)− x2Rh
µ(ix)

))
Y.

Note that P h
µ (ix) and Rh

µ(ix) commute because P h
µ (ix) and E(ix) commute and E(ix)P h

µ (ix) =
µixP h

µ (ix)− x2Rh
µ(ix). Thus, by using that iµ/x ∈ iR, we obtain∣∣∣∣exp

(
t

x2E(ix)
)
Y

∣∣∣∣ =
∣∣∣eiµt/x exp

(
−tRh

µ(ix)
)
Y
∣∣∣ ≤ ecµ|t||Y |,

where cµ = max{|Rh
µ(z)|; z ∈ D(0, r)}. We conclude for X ∈ Im[P h(ix)] that∣∣∣∣exp

(
t

x2E(ix)
)
X

∣∣∣∣ ≤ ∑
µ∈Sp(A′)

∣∣∣∣exp
(
t

x2E(ix)
)
P h
µ (ix)X

∣∣∣∣
≤

∑
µ∈Sp(A′)

ecµ|t||P h
µ (ix)X| ≤ Kec|t||X|

with c = max{cµ; µ ∈ Sp(A′)} and K = max
{∑

µ∈Sp(A′)|P h
µ (z)|; z ∈ D(0, r)

}
.

2.2.3 Well-posedness

By gathering the results of the previous two subsubsections, we can prove that the heat-transport
system (Sys) is well-posed. We define the Fourier coefficients of f ∈ L2(T)d by

∀n ∈ Z, f̂(n) = 1
2π

∫
T
f(t)e−int dt ∈ Cd.

We consider the operator L defined by (20) and (21). By Bessel-Parseval identity and the fact that
L(Xen) = n2E(i/n)Xen,

D(L) =
{
f ∈ L2(T)d;

∑
n∈Z

∣∣∣∣n2E

(
i
n

)
f̂(n)

∣∣∣∣2 <∞}. (27)

The goal of this section is to prove the following result.

Proposition 11. −L generates a C0 semi-group of bounded operators on L2(Td).

This result will ensure well posedness of (Sys) in the following sense.

Definition 12. Let T > 0, f0 ∈ L2(T)d and u ∈ L2(QT )d. The solution of (Sys) is the function
f ∈ C0([0, T ];L2(T)d) defined for t ∈ [0, T ] by

f(t) = e−tLf0 +
∫ t

0
e−(t−τ)Lu(τ) dτ.

Moreover, f(t) satisfies the estimate

∀0 ≤ t ≤ T, ‖f(t)‖L2(T) ≤ C
(
‖f0‖L2(T) + ‖u‖L2([0,T ]×ω)

)
, (28)

where C depends on T but not on f0 and u. We will also note S(t, f0, u) := f(t) this solution.
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Proof. We deduce from Proposition 9 and Proposition 10 that for every x ∈ [−r, r] \ {0}, t > 0 and
X ∈ Cd,∣∣∣∣exp

(
− t

x2E(ix)
)
X

∣∣∣∣ ≤ ∣∣∣∣exp
(
−E(ix) t

x2

)
P p(ix)X

∣∣∣∣+
∣∣∣∣exp

(
− t

x2E(ix)
)
P h(ix)X

∣∣∣∣
≤ Kpe−cptx

−2
|P p(ix)X|+Khecht

∣∣P h(ix)X
∣∣

≤ Kecht|X|

(29)

where K = max
{
Kp|P p(ix)|+Kh

∣∣P h(ix)
∣∣;x ∈ [−r, r]

}
.

For f ∈ L2(T)d and t ∈ [0,∞) we define

S(t) =
∑
n∈Z

e−tn
2E( i

n )f̂(n)en.

By Bessel Parseval equality and (29) with x = 1/n, S(t) is a bounded operator on L2(T)d, because
the number of n ∈ Z such that 1

n /∈ [−r, r] is finite. The semi-group properties S(0) = I and
S(t+ s) = S(t)S(s) are clearly satisfied. For f ∈ D(L), we have, by Bessel Parseval equality∥∥∥∥(S(t)− I

t
+ L

)
f

∥∥∥∥2

L2(T)d
=
∑
n∈Z

∣∣∣∣∣
(

e−tn
2E( i

n ) − Id
t

− n2E

(
i
n

))
f̂(n)

∣∣∣∣∣
2

.

In the right hand side, each term of the series converges to zero when [t→ 0] and, thanks to (29),
is dominated for every t ∈ [0, 1] and n > 1/r by∣∣∣∣(∫ 1

0
e−tθn

2E( i
n ) dθ − Id

)
n2E

(
i
n

)
f̂(n)

∣∣∣∣2 ≤ (Kech + 1)2
∣∣∣∣n2E

(
i
n

)
f̂(n)

∣∣∣∣2,
which can be summed over n ∈ Z because f ∈ D(L), see (27). By the dominated convergence
theorem, the sum of the series converges to zero.

Remark 13. We can see from this proof that the semi-group e−tL is strongly continuous on any
Hs(T)d for any s ≥ 0, i.e. we have

‖e−tLf0‖Hs(T)d ≤ Kecht‖f0‖Hs(T)d .

2.3 Adjoint system and observability
The null-controllability of a linear system is equivalent to a dual notion called “observability”. We
have the following general, abstract result (see [10, Lemma 2.48]).

Lemma 14. Let H1, H2 and H3 be three Hilbert spaces. Let Φ2 : H2 → H1 and Φ3 : H3 → H1 be
continuous linear maps. Then

Im(Φ2) ⊂ Im(Φ3)

if and only if there exists C > 0 such that

∀h1 ∈ H1, ‖Φ∗2h1‖H2
≤ C‖Φ∗3h1‖H3

.

From Lemma 14, see [10, Theorem 2.44], we deduce the following result.

Proposition 15. Given T > 0, the system (Sys) is null-controllable on ω in time T if and only if
there exists C > 0 such that for every g0 ∈ L2(T;Cd), the solution g to the equation{

∂tg −Btr∂2
xg −Atr∂xg +Ktrg = 0 in (0, T )× T,

g(0, ·) = g0 in T. (30)

satisfies

‖g(T, ·)‖2L2(T;Cd) ≤ C
∫ T

0

∫
ω

|M∗g(t, x)|2 dtdx. (31)
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Note that the solutions of the adjoint system (30) are of the form3

g(t, x) =
∑
n∈Z

e−tn
2E( i

n )∗ ĝ0(n)einx. (32)

Moreover, we have a spectral theory for the adjoint system that is similar to Prop. 5–7. We just
have to take the adjoint of each formulas of these Propositions.
Remark 16. As for the semi-group e−tL (see Remark 13), the dual semi-group e−tL∗ is strongly
continuous on any Hs(T)d for any s ≥ 0, i.e. we have

‖e−tL
∗
g0‖Hs(T)d ≤ K ′ec

′t‖g0‖Hs(T)d .

3 Obstruction to the null-controllability in small time
3.1 Motivation and strategy
The goal of this section is to prove the first point of Theorem 2, by disproving the observability
inequality (31) on an appropriate solution of (30)

The first idea is to build a solution of (30) on an eigenfunction g0 of the operator L∗, but these
eigenfunctions are of the form Xen, with X ∈ Cd and do not concentrate, thus they do not disprove
the observability inequality.

The second idea is to use the same kind of solution as for disproving the observability of the
transport equation (∂t +A′∂x)f1(t, x) = 0 in time T < T ∗ = `(ω)

µ∗
. Namely functions of the form

f1(t, x) = Xρ(x−µ∗t) where X ∈ Cd1 satisfies A′X = µX and ρ is a compactly supported fonction
such that ∪t∈[0,T ](supp(ρ) + µ∗t) does not intersect ω. But unless there exists an eigenvector
of A∗ in the kernel of B∗, such concentrated pure transport solutions of (30) do not exist (see
Proposition 17 below).

Yet another possible approach would be to show some propagation of singularities. But we
expect the coupling between the parabolic equation and the transport equation to significantly
complicate the matter, compared to the strategy used for the wave equation by Burq and Gérard [8].

Because of this, we adopt another strategy: we adapt the method used by the second author for
the Grushin equation [17]. It provides a proof which is elementary to anyone knowing the basics of
holomorphic functions (Cauchy integral formula and its consequences) and Runge’s theorem (that we
recall). It provides the existence of solutions of the (full) adjoint system (30) that are perturbations,
in some sense, of the solutions of the uncoupled transport equation (∂t +A′∂x)f1(t, x) = 0.

Proposition 17. Let us assume that the d× d2 matrix(
B AB · · · Ad−1B

)
has rank = d, or, equivalently, that there is no eigenvector of A∗ in the kernel of B∗ (see for
instance [6, Lemma 1]). Let µ ∈ R and T > 0. There exists C = C(µ, T ) > 04 such that every
solution of the adjoint system (30) of the form g(t, x) = g0(x − µt) satisfies ‖g(T, ·)‖L2(T)d ≤
C‖g‖L2([0,T ]×ω)d .

This statement shows that, for a dense set of matrices (A,B) pure transport solutions of the
adjoint system (30) cannot be used to disprove the observability inequality (31), and thus the null
controllability of (Sys).

Proof. Let us note Solµ the set of solutions of the adjoint system (30) of the form g0(x − µt).
Remark that according to the expression (32) of the solutions of the adjoint system, the relation
g0 ∈ Solµ is equivalent to

∀n 6= 0, nE
(

i
n

)∗
ĝ0(n) = iµĝ0(n). (33)

3When we write E(z)∗, it is to be understood as (E(z))∗. We will use the same notation for Ph
µ (z)∗ etc.

4With the help of Proposition 7, we could even prove that C(µ, T ) can be chosen indepentantly of µ.

13



ω

ωT

U

ζ0

Figure 1 – In yellow, an example of the domain U .
The black circle arc is ωT (once we identify T with
the complex unit circle). The null-controllability of
the parabolic-transport system implies that we can
estimate the L2(D(0, 1)) norm of complex polynomi-
als by their L∞(U) norm.
But if T < T ∗, then ωT is not the whole unit circle,
and we can choose U such that D(0, 1) 6⊂ U . Then,
we can find a sequence of polynomials that converges
to ζ 7→ (ζ − ζ0)−1 away from the blue line.

We claim that Solµ is finite dimensional. Indeed, if it is infinite dimensional, then, according to
the relation (33), there is infinitely many n such that iµ is an eigenvalue of nE(i/n). Let (Xnk)k≥0
be an associated sequence of eigenvectors, chosen such that |Xnk | = 1. Since the unit sphere of Cd
is compact, we may assume that (Xnk) converges to some X with |X| = 1. Then we have

nkB
∗Xnk − iA∗Xnk + 1

nk
K∗Xnk = nkE

(
i
nk

)∗
Xnk = iµXnk −−−−−→

k→+∞
iµX.

And since −iA∗Xnk + (nk)−1K∗Xnk −−−−−→
k→+∞

−iA∗X, we must have B∗X = 0 and A∗X = −µX.
But this is in contradiction with the hypothesis of the Proposition. Therefore Solµ is finite
dimensional.

So, according to the description (33) of Solµ, there exists N > 0 such that every solution of the
adjoint system (30) of the form g0(x−µt) has no frequencies higher than N : Solµ ⊂ Span{en, |n| <
N}. But finite linear combination of exponentials have the unique continuation property.5 So the
expressions ‖g0(· −µT )‖L2(T)d and ‖g0(x−µt)‖L2([0,T ]×ω)d both define a norm on Solµ. Since Solµ
is finite dimensional, these two norms are equivalent. This proves the claimed inequality.

3.2 Construction of a counterexample to the observability inequality
First, note that it is sufficient to work with an open interval ω. Indeed, otherwise, ω is contained in
an open interval ω̃ of T such that `(ω) = `(ω̃) and the negative result for the large control support
ω̃ implies the negative result for the small control support ω. Thus, in the whole section, ω is an
open interval of T and T ∈ (0, T ∗) is fixed.

Let µ ∈ Sp(A′) with minimum absolute value. First, we prove the following estimate.

Proposition 18. Let U be a open domain, star-shaped with respect to 0, that contains ωT :=⋃
0≤t≤T (ω − µt) (where ω − µt is to be understood as the rotation of ω by an angle of −µt, see

figure 1).
There exist an integer N and a constant C > 0 such that if the system (Sys) is null-controllable

on ω in time T , then for all polynomials p(z) =
∑
n>N anz

n with a zero of order at least N at 0,
we have

‖p‖L2(D(0,1)) ≤ C‖p‖L∞(U). (34)

Proof. According to Proposition 7, there exist r > 0, a projection-valued function P h
µ and a

matrix-valued function Rh
µ that are holomorphic on D(0, r) such that for every |z| < r,

P h
µ (z)E(z) = E(z)P h

µ (z) = µzP h
µ (z) + z2Rh

µ(z). (35)
5For instance because they are entire functions, and entire functions have the unique continuation property.
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Let ϕ0 6= 0 in the range of P h
µ (0)∗. To disprove the observability inequality (31), we look at solu-

tions g(t, x) of the system (30) with initial conditions of the form g(0, x) =
∑
n>r−1 aneinxP h

µ (i/n)∗ϕ0.
To avoid irrelevant summability issues, we will assume that all sums are finite. Since on the range
of P h

µ (z), E(z) acts as µz + z2Rh
µ(z) (see Eq. (35)), we have

g(t, x) =
∑
n>r−1

aneinxe−tn
2E( i

n )∗P h
µ

( i
n

)∗
ϕ0

=
∑
n>r−1

anein(x+µt)etR
h
µ( i

n )∗P h
µ

( i
n

)∗
ϕ0.

So, if we define for 0 ≤ t ≤ T and n > r−1,

γt(n) = etR
h
µ( i

n )∗P h
µ

( i
n

)∗
, (36)

we rewrite g(t, x) as
g(t, x) =

∑
n>r−1

anein(x+µt)γt(n)ϕ0.

If the term γt(n) was equal to one, then g(t, x) would just be the solution to an uncoupled
transport equation, therefore it would be easy to disprove (31). To treat this term, we will use the
following lemma, that we prove in Section 3.3.

Lemma 19. Let U be as in Proposition 18. There exist an integer N > 0 and a constant C > 0
such that for every polynomial function ζ ∈ C 7→

∑
n>N anζ

n ∈ C with a zero of order N at 0, for
every 0 ≤ τ ≤ T , ∥∥∥ ∑

n>N

anζ
nγτ (n)

∥∥∥
L∞(ωT )

≤ C
∥∥∥ ∑
n>N

anζ
n
∥∥∥
L∞(U)

. (37)

From now on, we assume that an = 0 for n ≤ N . For (t, x) ∈ [0, T ]×ω, we note ζ(t, x) = ei(x+µt)

which belongs to ωT . Then
g(t, x) =

∑
n>N

anζ(t, x)nγt(n)ϕ0.

Let (t, x) ∈ [0, T ]× ω. By applying Lemma 19 with τ = t, we have

|g(t, x)| ≤ C
∥∥∥ ∑
n>N

anζ
n
∥∥∥
L∞(U)

.

So the right-hand side of the observability inequality (31) satisfies

‖g‖2L2([0,T ]×ω) ≤ 2πT‖g‖2L∞([0,T ]×ω) ≤ 2πTC2
∥∥∥ ∑
n>N

anζ
n
∥∥∥2

L∞(U)
. (38)

We now lower bound the left hand-side of the observability inequality (31). Thanks to Parseval’s
identity, we have

‖g(T, ·)‖2L2(T) =
∥∥∥ ∑
n>N

anein(x+µT )γT (n)ϕ0

∥∥∥2

L2(T)
= 2π

∑
n>N

|an|2|γT (n)ϕ0|2. (39)

The map z 7→ Rh
µ(z)∗ is holomorphic in D(0, r). In particular, C1 := sup|z|≤r/2 |Rh

µ(z)∗| is finite.
So, we have for n ≥ 2r−1, ∣∣(e−TRh

µ( i
n )∗)−1∣∣ =

∣∣eTRh
µ( i

n )∗ ∣∣ ≤ eC1T . (40)

Moreover, ϕ0 is in the range of P h
µ (0)∗ and P h

µ is holomorphic in D(0, r), so there exists r′ > 0
sufficiently small such that for |z| < r′,

|P h
µ (z)∗ϕ0| ≥ |ϕ0|/2 =: c. (41)
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By gathering (40) and (41), we have for n ≥ N ′ :=
⌊
max(2r−1, r′−1)

⌋
+ 1,

|γT (n)ϕ0| =
∣∣∣∣e−TRh

µ( i
n )∗P h

µ

( i
n

)∗
ϕ0

∣∣∣∣ ≥ e−C1T c =: c′.

So, assuming an = 0 for n ≤ N ′, we have by plugging the previous lower bound into Parseval’s
identity (39)∥∥∥ ∑

n>N

anζ
n
∥∥∥2

L2(D(0,1))
= π

∑
n>N

|an|2

n+ 1 ≤
π

c′

∑
n>N

|an|2

n+ 1 |γT (n)ϕ0|2 ≤
1

2c′ ‖g(T, ·)‖2L2(T). (42)

Thus, thanks to the lower bound (42) and the upper bound (38), the observability inequality (31)
implies ∥∥∥ ∑

n>N

anζ
n
∥∥∥2

L2(D(0,1))
≤ C‖g(T, ·)‖2L2(T) ≤ C

′‖g‖2L2([0,T ]×ω) ≤ C
′′
∥∥∥ ∑
n>N

anζ
n
∥∥∥2

L∞(U)
,

which concludes the proof of Proposition 18.

Let us check that the inequality of Proposition 18 does not hold. We will use Runge’s theorem
(see for instance Rudin’s textbook [26, Thm. 13.9]) to construct a counterexample.

Proposition 20 (Runge’s theorem). Let U be a connected, simply connected open subset of C
and f be a holomorphic function on U. Then, there exists a sequence (pk)k≥0 of polynomials that
converges uniformly on every compact subset of U to f .

Proof of Theorem 2.i). Let ω be an open interval of T and T ∈ (0, T ∗). Let ωT be as in Proposi-
tion 18. By definition of T ∗, ωT is not the whole unit circle, thus we can find an open bounded
domain U that is star-shaped with respect to 0 and that does not contain D(0, 1) (see Fig. 1).

With such a choice of U , there exists a complex number ζ0 ∈ D(0, 1) which is non-adherent
to U . Then, according to Runge’s theorem, there exists a sequence of polynomials (p̃k) that
converges uniformly on every compact subset of C \ (ζ0[1,+∞)) to ζ 7→ (ζ − ζ0)−1. Let us define
pk(ζ) = ζN+1p̃k(ζ). Then, the sequence (pk) is a counterexample to the inequality on complex
polynomials (34). Indeed, since ζN+1(ζ − ζ0)−1 is bounded on U , (pk) is uniformly bounded
on U , thus, the right-hand side of the inequality (34) is bounded. But since ζ0 is in D(0, 1),
ζN+1(ζ − ζ0)−1 has infinite L2-norm in D(0, 1), and thanks to Fatou’s Lemma, |pk|L2(D(0,1)) tends
to +∞ as k → +∞.

3.3 Estimate on some operators on polynomial functions
Here, we prove Lemma 19. In essence, we have to estimate quantities of the form

∑
γnanζ

n in
function of

∑
anζ

n, in some appropriate norm. This is stated in Theorem 23, which is a variant of
a theorem that the second author proved when studying Grushin’s equation (see [17, Thm. 18]).

Definition 21. Let E be a Banach space. Let R > 0 and ∆R := {z ∈ C,<(z) > R}. We define
SR(E) as the set of functions γ from ∆R to E that are holomorphic with subexponential growth,
i.e. such that for all ε > 0,

pε(γ) = sup
z∈∆R

|γ(z)|e−ε|z| < +∞. (43)

We endow SR(E) with the topology of the seminorms pε for ε > 0.
If E is the space Cd×d of linear maps of Cd, we will note Sd×dR := SR(L(Cd)). We will sometimes

call elements of Sd×dR symbols.

Remark 22. If n ≤ R, i.e. if n is not in the domain of definition of γ ∈ SR(E), we will set for
convenience γ(n) = 0.

We introduce O(C) the space of entire functions f : C→ C, endowed with its usual topology,
i.e. the topology of the uniform convergence on compact subsets.
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Theorem 23. Let R > 0 and γ ∈ Sd×dR . Let Hγ be the operator on vector-valued entire functions
defined by

Hγ :
∑
n>R

anζ
n ∈ O(C)d 7−→

∑
n>R

γ(n)anζn ∈ O(C)d. (44)

Then, the operator Hγ is continuous on O(C)d. Moreover, the map γ ∈ Sd×dR 7→ Hγ ∈ L(O(C)d)
satisfies the following continuity-like estimate: for each compact subset K of C and each neighborhood
V of K that is star-shaped with respect to 0, there exist a constant C > 0 and a seminorm pε of
Sd×dR such that for every entire function f :

‖Hγ(f)‖L∞(K) ≤ Cpε(γ)‖f‖L∞(V ). (45)

A variant of this Theorem was proved in the case d = 1 by the second author [17, Thm. 18].
The proof follows the same lines in the general case. We provide it in Appendix A.

Now, we turn to the proof of Lemma 19 which is basically an application of Theorem 23.

Proof of Lemma 19. Let us define γ̃τ (z) = etR
h
µ(i/z̄)∗P h

µ (i/z̄)∗, so that γτ (n) = γ̃τ (n) (see the
definition of γt Eq. (36)), and thus for every (an) ∈ CN,∑

n>N

γτ (n)anϕ0ζ
n = Hγ̃τ

( ∑
n>N

anζ
nϕ0

)
. (46)

Let us check that (γ̃τ )0≤τ≤T is a bounded family of Sd×dR for some R > 0. Since Rh
µ and P h

µ are
holomorphic on D(0, r), γ̃τ is holomorphic on {|z| > r−1}, and in particular in {<(z) > r−1}. So,
for |z| > 2r−1 and 0 ≤ τ ≤ T , we have

|γ̃τ (z)| ≤ eT sup|z|<r/2 |R
h
µ(z)| sup

|z|<r/2
|P h
µ (z)| < +∞.

Thus, with R = 2r−1, γτ is in Sd×dR , and since the previous bound is uniform in 0 ≤ τ ≤ T , the
family (γτ )0≤τ≤T is bounded in Sd×dR .

Let us also remind that U is star-shaped with respect to 0, and that ωT ⊂ U . All the conditions
of Theorem 23 are satisfied, so we can apply the estimate (45) with K = ωT and V = U :∥∥Hγ̃τ

( ∑
n>N

anϕ0ζ
n
)∥∥
L∞(ωT ) ≤ C

∥∥ ∑
n>N

anϕ0ζ
n
∥∥
L∞(U) = C

∥∥ ∑
n>N

anζ
n
∥∥
L∞(U), (47)

where C that depends neither on the polynomial
∑
anζ

n, neither on 0 ≤ τ ≤ T because the family
(γ̃τ )0≤τ≤T is bounded. This, combined with (46), proves the inequality (37) and concludes the
proof of Lemma 19.

4 Large time null-controllability
The goal of this section is to prove the point (ii) of Theorem 2. An adapted decomposition of
L2(T)d is introduced in Section 4.1. The control strategy is presented in Section 4.2. Projecting the
dynamics onto the parabolic/hyperbolic subspaces, the system is decomposed into 2 weakly coupled
systems, the first one behaving like a transport equation, the second one like a heat equation.
The transport equation is handled in Section 4.3 by using the methods developped in [1]. The
parabolic equation is treated in Section 4.4 by adapting the Lebeau-Robbiano method [19] to
systems with arbitrary size. The low frequency part is treated by a compactness argument and a
unique continuation property in Section 4.5.

In the whole Section 4, the parameter r > 0 is assumed to be small enough so that Propositions
5, 6, 7, 9 and 10 hold.
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4.1 An adapted decomposition of L2(T)d

Proposition 24. Let n0 ∈ N be such that 1
n0
< r. We have the following decomposition

L2(T)d = F 0 ⊕ F p ⊕ F h, (48)

where

F 0 :=
⊕
|n|≤n0

Cden, (49)

F p :=
⊕
|n|>n0

Im
(
P p
( i
n

))
en, (50)

F h :=
⊕
|n|>n0

Im
(
P h
( i
n

))
en. (51)

Moreover the projections Π0, Πp, Πh and Π defined by

L2(T)d = F 0 ⊕ F p ⊕ F h

Π0 = IF 0 + 0 + 0
Πp = 0 + IFp + 0
Πh = 0 + 0 + IFh

Π = 0 + IFp + IFh = Πp + Πh

are bounded operators on L2(T)d.

Proof. The function z ∈ D(0, r) 7→ P p(z) is continuous thus there exists C > 0 such that, for every
z ∈ D(0, 1/n0), |P p(z)| ≤ C. Let f ∈ L2(T)d. We deduce from

∑
|n|>n0

∣∣∣∣P p
(

i
n

)
f̂(n)

∣∣∣∣2 ≤ C2
∑
|n|>n0

|f̂(n)|2 ≤ C2‖f‖2L2(T)d (52)

and Bessel-Parseval identity that the series
∑
P p( i

n

)
f̂(n)en converges in L2(T)d. Using Id =

P p(z) + P h(z), we get the decomposition

f =
∑
n∈Z

f̂(n)en =
∑
|n|≤n0

f̂(n)en +
∑
|n|>n0

P p
(

i
n

)
f̂(n)en +

∑
|n|>n0

P h
(

i
n

)
f̂(n)en

with convergent series in L2(T)d. This proves L2(T)d = F 0 + F p + F h. The sum is direct because
(en)n∈Z is orthogonal and Im(P p(z))∩ Im(P h(z)) = {0} when |z| < r. The linear mappings Π0 and
Π are orthogonal projections, thus bounded operators on L2(T)d. We deduce from Bessel-Parseval
identity and (52) that Πp is a bounded operator on L2(T)d and so is Πh = Π−Πp.

The operator L defined in (20) maps D(L) ∩ F 0 = F 0 into F 0 thus we can define an operator
L0 on F 0 by D(L0) = D(L) ∩ F 0 and L0 = L|F 0 . Moreover, −L0 generates a C0-semi-group of
bounded operators on F 0 and e−tL0 = e−tL|F 0 . For the same reasons, we can define an operator Lp

on F p by D(Lp) = D(L)∩F p and Lp = L|Fp , that generates a C0-semi-group of bounded operators
on F p: e−tLp = e−tL|Fp . Finally, we can define an operator Lh on F h by D(Lh) = D(L) ∩ F h and
Lh = L|Fh , that generates a C0-semi-group of bounded operators on F h: e−tLh = e−tL|Fh .

Proposition 25. The operator −L0 generates a C0 group (e−tL0)t∈R of bounded operators on F 0.
The operator −Lh generates a C0 group (e−tLh)t∈R of bounded operators on F h

Proof. We just need to check that e−tL defines a bounded operator of F 0 and F h when t < 0.
It is clear for F 0 because it has finite dimension. For F h, one may proceed as in the proof of
Proposition 11, noticing that the estimate of Proposition 10 is valid for any t ∈ R.
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For the duality method, we will need the dual decomposition of (48), i.e.

L2(T)d = F 0 ⊕ F̃ p ⊕ F̃ h,

where F̃ p := Im
(
(Πp)∗

)
, F̃ h := Im

(
(Πh)∗

)
.

(53)

By using the definitions of F p and F h in (50) and (51) and the fact that (en)n∈Z is an Hilbert basis
of L2(T), we get

F̃ p =
⊕
|n|>n0

Im
(
P p
( i
n

)∗)
en, (54)

F̃ h =
⊕
|n|>n0

Im
(
P h
( i
n

)∗)
en. (55)

Moreover,
(e−tL)∗f = e−tL

∗
f =

∑
n∈Z

e−tn
2E( i

n )∗ f̂(n)en (56)

and the spaces F 0, F̃ p and F̃ h are stable by etL∗ .

4.2 Control strategy
Let T ∗ be as in (3) and T, T ′ be such that

T ∗ < T ′ < T. (57)

In this section, we consider controls u of the form

u := (uh, up)tr ∈ Cd1 × Cd2 , (58)

where
supp(uh) ⊂ [0, T ′]× ω, supp(up) ⊂ [T ′, T ]× ω, (59)

uh ∈ L2((0, T ′)× T)d1 , up ∈ L2((T ′, T )× T)d2 .

The control uh is intended to control the hyperbolic component of the system and the control up
the parabolic component.

The control strategy for system (Sys) consists in

• first proving the null controllability in time T in a subspace of L2(T)d with finite codimension,

• then using a unique continuation argument, to get the full null controllability.

The first step of this strategy is given by the following statement.

Proposition 26. There exists a closed subspace G of L2(T)d with finite codimension and a
continuous operator

U : G→ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2

f0 7→ (uh, up),

that associates with each f0 ∈ G a pair of controls Uf0 = (uh, up) such that

∀f0 ∈ G, ΠS(T ; f0,Uf0) = 0. (60)

By “continuous operator”, we mean that, for every s ∈ N, the map U : G 7→ L2((0, T ′)× ω)d1 ×
Hs

0((T ′, T )× ω)d2 is continuous: there exists Cs > 0 such that

∀f0 ∈ G, ‖uh‖L2((0,T ′)×ω)d1 + ‖up‖Hs0 ((T ′,T )×ω)d2 ≤ Cs‖f0‖L2(T)d .

The proof strategy of Proposition 26 consists in splitting the problem in two parts:
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• for any initial data f0 and parabolic control up, steer the hyperbolic high frequences to zero
at time T (Proposition 27),

• for any initial data f0 and hyperbolic control uh, steer the parabolic high frequences to zero
at time T (Proposition 28).

Proposition 27. If n0 (in Eq. (49–50)) is large enough, there exists a continuous operator

Uh : L2(T)d × L2((T ′, T )× ω)d2→ L2((0, T ′)× ω)d1

(f0, up) 7→ uh,

such that for every (f0, up) ∈ L2(T)d × L2((T ′, T )× ω)d2 ,

ΠhS(T ; f0, (Uh(f0, up), up)) = 0.

Proposition 28. If n0 is large enough, there exists a continuous operator

Up : L2(T)d × L2((0, T ′)× ω)d1→ C∞c ((T ′, T )× ω)d2

(f0, uh) 7→ up,

such that for every (f0, uh) ∈ L2(T)d × L2((0, T ′)× ω)d1 ,

ΠpS(T ; f0, (uh,Up(f0, uh)) = 0.

Admitting that Proposition 27 and Proposition 28 hold, we can now prove Proposition 26.

Proof. We observe that the relation ΠS(T ; f0, (uh, up)) = 0 holds if the two following equations are
simultaneously satisfied

uh = Uh(f0, up) = Uh
1 (f0) + Uh

2 (up),
up = Up(f0, uh) = Up

1 (f0) + Up
2 (uh).

(61)

If we set
C := Up

1 + Up
2 Uh

1 : L2(T)d → C∞c ((T ′, T )× T)d2 ,

then solving system (61) is equivalent to

find up ∈ C∞c ((T ′, T )× T)d2 , such that Cf0 = (I − Up
2 Uh

2 )up. (62)

The operator Up
2 Uh

2 is compact on L2((T ′, T )× T)d2 because it takes values in C∞c ((T ′, T )× T)d2 .
Thus, by Fredhlom’s alternative (see [7, Thm. 6.6]), there exist N ∈ N and l1, . . . , lN continuous
linear forms on L2((T ′, T )×T)d2 such that the equation (62) has a solution up ∈ L2((T ′, T )×T)d2

if and only if
∀j ∈ {1, . . . , N}, lj(C(f0)) = 0. (63)

Under these conditions (63), the equation (62) has a solution up = L(f0) given by a continuous
map L : G → L2((T ′, T )× T)d2 defined on the closed vector subspace of L2(T)d defined by

G := {f0 ∈ L2(T)d ; lj(Cf0) = 0, 1 ≤ j ≤ N}. (64)

Then L(f0) = up = Up
2 Uh

2 up + Cf0 belongs to C∞c ((T ′, T )× ω). We get the conclusion with

∀f0 ∈ G, U(f0) := (Uh(f0, L(f0)), L(f0)).

Proposition 27 is proved in Section 4.3. Proposition 28 is proved in Section 4.4. The unique
continuation argument to control the low frequencies is presented in Section 4.5.

4.3 Control of the hyperbolic high frequencies
The goal of this subsection is to prove Proposition 27. We remind that T > T ′ > T ∗ and that the
control u = (uh, up) satisfies (59).
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4.3.1 Reduction to an exact controllability problem

The goal of this paragraph is to transform the null-controllability problem of Proposition 27 into
an exact controllability problem associated with an hyperbolic system. Precisely, we will get
Proposition 27 as a corollary of the following result.

Proposition 29. If n0 (in Eq. (49–50)) is large enough, then, for every T ′ > T ∗, there exists a
continuous operator

Uh
T ′ : F h→ L2((0, T ′)× ω)d1

fT ′ 7→ uh,

such that for every fT ′ ∈ F h,

ΠhS
(
T ′; 0, (Uh

T ′(fT ′), 0)
)

= fT ′ .

Proposition 29 will be proved in Section 4.3.2. Now, we prove Proposition 27 thanks to
Proposition 29.

Proof of Proposition 27. Let (f0, up) ∈ L2(T)d×L2((T ′, T )×ω)d2 . We have to find uh ∈ L2((0, T ′)×
ω)d1 such that

ΠhS(T ; f0, (uh, up)) = 0,

or, equivalently,
ΠhS(T ; 0, (uh, 0)) = −ΠhS(T ; f0, (0, up)). (65)

According to the well-posedness of the system (Sys) and the continuity of the projection Πh

(Definition 12 and Proposition 24), the linear map

(f0, up) 7→ −ΠhS(T ; f0, (0, up)), (66)

is continuous from L2(T)d × L2((T ′, T )× ω)d2 into F h, equipped with the L2(T)d-norm. Since uh
is supported in (0, T ′)× ω by (59), we have

ΠhS(T ; 0, (uh, 0)) = e−(T−T ′)Lh
ΠhS(T ′; 0, (uh, 0)). (67)

As pointed out in Proposition 25, etLh is well-defined for all t ∈ R. Therefore, by using (66) and
(67), (65) is equivalent to

ΠhS(T ′; 0, (uh, 0)) = −e(T−T ′)LhΠhS(T ; f0, (0, up)) ∈ F h. (68)

We get the conclusion with

Uh(f0, up) = Uh
T ′

(
−e(T−T ′)LhΠhS(T ; f0, (0, up))

)
.

4.3.2 Exact controllability of the hyperbolic part

The goal of this section is to prove Proposition 29. By the Hilbert Uniqueness Method, Proposition 29
is equivalent to the following observability inequality (it is an adaptation of [10, Thm. 2.42]).

Proposition 30. If n0 is large enough, there exists a constant C > 0 such that for every g0 ∈ F̃ h,
the solution g of (30) satisfies

‖g0‖2L2(T)d ≤ C
∫ T ′

0

∫
ω

|g1(t, x)|2 dtdx, (69)

where g1 denotes the first d1 components of g.
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Proof. Let g0 ∈ F̃ h. By using the definition (55) of F̃ h, g0 decomposes as follows

g0 =
∑

µ∈Sp(A′)

∑
|n|>n0

P h
µ

( i
n

)∗
ĝ0(n)en. (70)

Then, the solution g of (30) is

g(t) =
∑

µ∈Sp(A′)

Gµ(t) where Gµ(t) =
∑
|n|>n0

e−tn
2E( i

n )∗P h
µ

( i
n

)∗
ĝ0(n)en. (71)

Let µ ∈ Sp(A′).

Step 1: We prove the existence of C1 = C1(T ′) > 0, independent of g0, such that

‖Gµ(0, ·)‖L2(T)d ≤ C1
(
‖Gµ‖L2(qT ′ )d + ‖g0‖H−1(T)d

)
(72)

where qT ′ = (0, T ′)× ω and

‖g0‖H−1(T)d =

 ∑
|n|>n0

|ĝ0(n)|2

n2

1/2

. (73)

By using i) and iii) of Proposition 7, we have

e−tn
2E( i

n )∗P h
µ

( i
n

)∗
= e−tn

2
(
µ i
n+( i

n )2
Rh
µ( i

n )
)∗
P h
µ

( i
n

)∗
= etµin+tRh

µ( i
n )∗P h

µ

( i
n

)∗
,

which leads to
∂tGµ − µ∂xGµ −Rh

µ(0)∗Gµ = Sµ in (0, T ′)× T, (74)
where

Sµ(t) =
∑
|n|>n0

(
Rh
µ

(
i

n

)∗
−Rh

µ(0)∗
)

etµin+tRh
µ( i

n )∗P h
µ

( i
n

)∗
ĝ0(n)en. (75)

By regularity of z 7→ Rh
µ(z), Bessel-Parseval identity and (73) there exists C = C(T ′) > 0,

independent of g0, such that

‖Sµ‖L∞((0,T ′),L2(T)d) ≤ C‖g0‖H−1(T)d . (76)

By (74), the function G̃µ defined by

G̃µ(t, x) = etR
h
µ(0)∗Gµ(t, x) (77)

solves {
∂tG̃µ − µ∂xG̃µ = etR

h
µ(0)∗Sµ in (0, T ′)× T,

G̃µ(0, ·) = Gµ(0, ·) in T.
(78)

We introduce the solution G[µ of{
∂tG

[
µ − µ∂xG[µ = 0 in (0, T ′)× T,

G[µ(0, ·) = Gµ(0, ·) in T. (79)

Using the Duhamel formula for system (78) and the estimate (76), we obtain

‖G̃µ −G[µ‖L∞((0,T ′),L2(T)d) ≤ C‖etR
h
µ(0)∗Sµ‖L1((0,T ′),L2(T)d) ≤ C‖g0‖H−1(T)d (80)

where C = C(T ′) > 0 is independent of g0. The time Tµ := `(ω)/|µ| is the minimal time for the
observability of the system (79) on ω (see for instance [1, Theorem 2.2]). Indeed, for any T ′′ > Tµ,

T ⊂ {x− µt; (t, x) ∈ [0, T ′′]× ω}.
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Since T ′ > Tµ, there exists C = C(T ′, ω) > 0, independent of g0, such that

‖Gµ(0, ·)‖L2(T)d ≤ C‖G[µ‖L2(qT ′ )d .

By the triangular inequality, (77) and (80), we deduce that

‖Gµ(0, ·)‖L2(T)d ≤ C
(
‖G̃µ‖L2(qT ′ )d + ‖G̃µ −G[µ‖L2(qT ′ )d

)
≤ C

(
‖Gµ‖L2(qT ′ )d + ‖g0‖H−1(T)d

)
which ends the first step.

Step 2: We prove the existence of C2 = C2(T ′, ω) > 0, independent of g0, such that

‖Gµ(0, ·)‖L2(T)d ≤ C2
(
‖P h

µ (0)∗g‖L2(qT ′ )d + ‖g0‖H−1(T)d
)
. (81)

Taking into account that the projection P h
λ (z) commutes wih E(z) we deduce from (71) that for

any λ ∈ Sp(A′),
Gλ(t) =

∑
|n|>n0

P h
λ

( i
n

)∗
e−tn

2E( i
n )∗P h

λ

( i
n

)∗
ĝ0(n)en

thus,

Gµ(t)− P h
µ (0)∗g(t)

=
∑
|n|>n0

(
P h
µ

( i
n

)∗
− P h

µ (0)∗
)

e−tn
2E( i

n )∗P h
µ

( i
n

)∗
ĝ0(n)en

−
∑

λ∈Sp(A′)\{µ}

∑
|n|>n0

P h
µ (0)∗

(
P h
λ

( i
n

)∗
− P h

λ (0)∗
)

e−tn
2E( i

n )∗P h
λ

( i
n

)∗
ĝ0(n)en

(82)

because, for λ 6= µ, P h
µ (0)∗P h

λ (0)∗ = 0. By using the regularity of z 7→ P h
λ (z), Bessel-Parseval

identity and (73), we obtain C = C(T ′) > 0 independent of g0 such that

‖Gµ − P h
µ (0)∗g‖L∞((0,T ′),L2(T)d) ≤ C‖g0‖H−1(T)d .

We deduce from Step 1, the triangular inequality and the previous estimate that

‖Gµ(0, ·)‖L2(T)d ≤ C
(
‖Gµ‖L2(qT ′ ) + ‖g0‖H−1(T)d

)
≤ C

(
‖P h

µ (0)∗g‖L2(qT ′ ) + ‖Gµ − P h
µ (0)∗g‖L2(qT ′ ) + ‖g0‖H−1(T)d

)
≤ C

(
‖P h

µ (0)∗g‖L2(qT ′ ) + ‖g0‖H−1(T)d
)
.

which ends Step 2.

Step 3: Conclusion. For every µ ∈ Sp(A′), we have P h
µ (0)∗ = P h

µ (0)∗P h(0)∗ thus

‖P h
µ (0)∗g‖L2(qT ′ ) ≤ |P

h
µ (0)∗|‖P h(0)∗g‖L2(qT ′ ) ≤ C‖g1‖L2(qT ′ ).

Using (71), the triangular inequality, Step 2 and the previous inequality, we obtain

‖g0‖L2(T)d ≤
∑

µ∈Sp(A′)

‖Gµ(0, ·)‖L2(T)d ≤ C
(
‖g1‖L2(qT ′ )d + ‖g0‖H−1(T)d

)
. (83)

From this estimate and the compact embedding L2(T) ↪→ H−1(T), a classical compactness-
uniqueness argument gives the observability inequality (69) (see for instance [12, Lemma 2.1 and
Remark 2.2]).

Indeed, by Peetre’s lemma (see [23, Lemma 3]), we have from (83) that

NT ′ := {g0 ∈ F̃ h; g1 = 0 in (0, T ′)× ω},

has finite-dimension. Moreover, from [23, Lemma 4], to prove (69), we only need to show that NT ′
is reduced to zero. First, by definition, we remark that NT ′ decreases as T ′ increases. By a small
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perturbation of T ′, we may therefore assume that NT = NT ′ for T − T ′ small, in which case NT ′
is stable by e−tL∗h where L∗h is the restriction of L∗ to F̃ h. Then, if NT ′ is not reduced to zero,
it contains an eigenfunction of L∗h, i.e. a function of the form Xen where X ∈ Cd, |n| > n0 and
X = P h( i

n

)
X. By definition of NT ′ , the first components of that eigenfunction vanishes on ω i.e.

X1 = 0, or equivalently P h(0)X = 0. Thus

|X| =
∣∣∣∣(P h

(
i
n

)
− P h(0)

)
X

∣∣∣∣ ≤ C

|n|
|X|

where C > 0 does not depend on n. For a large enough choice of n0, this is impossible.

4.4 Control of the parabolic high frequencies
The goal of this subsection is to prove Proposition 28. We recall that T and T ′ are chosen such
that T ∗ < T ′ < T and the control u is such that (58) and (59) hold.

The strategy is the following one: identify the equation satisfied by the last d2 components
of the parabolic equation (30) with the help of the asymptotics of Proposition 7, then construct
smooth controls by adapting the Lebeau-Robbiano’s method to systems.

In this section, for every vector ϕ ∈ Cd, we will note ϕ1 its first d1 components and ϕ2 its last
d2 components.

4.4.1 Reduction to a null-controllability problem

The goal of this paragraph is to transform the null-controllability problem of Proposition 28 into
a null-controllability problem associated to a parabolic system. Precisely, we will prove that
Proposition 28 is a consequence of the following result.

Proposition 31. If n0 is large enough, then for every T > 0, there exists a continuous operator

Up
T : F p→ C∞c ((0, T )× ω)d2

f0 7→ up,

such that for every f0 ∈ F p,
ΠpS(T ; f0, (0,Up

T (f0))) = 0.

Proposition 31 will be proved thanks to an adaptation of Lebeau-Robbiano’s method in Sec-
tion 4.4.4, after two sections of preliminary results. Now we prove Proposition 28 thanks to
Proposition 31.

Proof of Proposition 28. Let (f0, uh) ∈ L2(T)d×L2((0, T ′)×ω)d1 . We have to find up ∈ C∞c ((T ′, T )×
ω)d2 such that

ΠpS(T ; f0, (uh, up)) = 0, (84)

or equivalently,
ΠpS(T ; 0, (0, up)) = −ΠpS(T ; f0, (uh, 0)). (85)

In view of the support of the controls (Eq. (59)), the equality (85) is equivalent to

ΠpS(T − T ′; 0, (0, up(·+ T ′))) = −e−(T−T ′)Lp
ΠpS(T ′; f0, (uh, 0)), (86)

or
ΠpS

(
T − T ′; ΠpS(T ′; f0, (uh, 0)), (0, up(·+ T ′))

)
= 0. (87)

By using Definition 12 and Proposition 24, we see that the mapping (f0, uh) 7→ ΠpS(T ′; f0, (uh, 0))
is continuous from L2(T)d × L2((0, T ′)× ω)d1 into F p . Thus we get the conclusion with

∀t ∈ (T ′, T ), Up(f0, uh)(t) = Up
(T−T ′)

(
ΠpS(T ′; f0, (uh, 0))

)
(t− T ′).
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4.4.2 Equation satisfied by the parabolic components of the free system

We begin by proving that if g is in F̃ p then we can compute the first d1 components of g from the
last d2. This will allow us to write an uncoupled equation for these components.

Proposition 32. If z is small enough, there exists a matrix G(z) such that for every ϕ ∈ Cd,

ϕ ∈ Im(P p(z)∗)⇐⇒ ϕ1 = G(z)ϕ2.

Moreover, G is holomorphic in z and G(0) = 0.

Proof. We write

P p(z)∗ =
(
p11(z) p12(z)
p21(z) p22(z)

)
.

Since P p(z)∗ is a projection, ϕ is in Im(P p(z)∗) if and only if{
p11(z)ϕ1 + p12(z)ϕ2 = ϕ1

p21(z)ϕ1 + p22(z)ϕ2 = ϕ2.

In particular, if ϕ ∈ Im(P p(z)∗), then (Id1 − p11(z))ϕ1 = p12(z)ϕ2. And since P p(0)∗ =
( 0 0

0 Id2

)
(see Proposition 6), p11(0) = 0, and so, if z is small enough, |p11(z)| < 1 and Id1 − p11(z) is
invertible.

In that case, ϕ1 = (Id1 − p11(z))−1p12(z)ϕ2. This proves that the map

ϕ ∈ Im(P p(z)∗) 7→ ϕ2 ∈ Cd2

is one-to-one. But the rank of P p(z)∗ does not depend on z (Remark 8), and so it is always d2. So
the previous map is bijective. We note G(z) the first d1 component of its inverse. Note that we
have G(z) = (Id1 − p11(z))−1p12(z). Then, if ϕ ∈ Im(P p(z)∗), we have

ϕ = (ϕ1, ϕ2) = (G(z)ϕ2, ϕ2).

To prove the converse, note that the inverse of ϕ ∈ Im(P p(z)∗) 7→ ϕ2 is ϕ2 ∈ Cd2 7→ (G(z)ϕ2, ϕ2).

Increasing n0 if necessary, we may assume that for |n| > n0, G(i/n) is well-defined. Then, we
define the (bounded) operator G from L2(T,Cd2) to L2(T,Cd1) by

G

(∑
n∈Z

ϕn,2en

)
=
∑
|n|>n0

G

(
i
n

)
ϕn,2en. (88)

Then, according to the definition of F̃ p, we have the following corollary that allows us to compute
the first d1 components from the last d2.

Corollary 33. For every g ∈ (F 0)⊥ (the space of functions with no components along frequencies
less than n0), we have the equivalence g ∈ F̃ p ⇔ g1 = Gg2.

The Corollary 33 makes it easy to write an equation on the last d2 components of the adjoint
system (30) if the initial condition is in F̃ p.

Proposition 34. We define the operator D by

D(D) = H2(T)d2 , D = Dtr∂2
x +Atr

22∂x −Ktr
22 +Atr

12∂xG−Ktr
12G. (89)

Let g0 ∈ F̃ p and g(t) = e−tL∗g0. Then, for all t ≥ 0, g1(t) = Gg2(t) and g2 satisfies the following
equation

∂tg2(t, x)−Dg2(t, x) = 0 in (0, T )× T. (90)
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Proof. The function g satisfies the system

(∂t −Btr∂2
x −Atr∂x +Ktr)g(t, x) = 0 in (0, T )× T.

If we take the last d2 components of this system, we get, in (0, T )× T,(
∂t −Dtr∂2

x −Atr
22∂x +Ktr

22
)
g2(t, x)−

(
Atr

12∂x −Ktr
12
)
g1(t, x) = 0. (91)

But for all t ∈ [0, T ], g(t, ·) ∈ F̃ p, so, according to Corollary 33, g1(t) = Gg2(t). Substituting this
inside the equation (91) gives the stated equation (90).

4.4.3 Smooth control of a finite number of parabolic vectorial components

For N > n0 we introduce
F p
N :=

⊕
n0<|n|≤N

Im
(
P p
( i
n

))
en, (92)

F p
>N :=

⊕
|n|>N

Im
(
P p
( i
n

))
en.

and the projection Πp
N defined by

L2(T)d = F 0 ⊕ F p
N ⊕ F

p
>N ⊕ F h

Πp
N = 0 + IFp

N
+ 0 + 0

which is a bounded operator on L2(T)d (compostion of the bounded operator Πp with an orthogonal
projection). The goal of this section is to prove the following result.

Proposition 35. There exists C > 0 such that, for every T ∈ (0, 1] and N > n0, there exists a
linear map6

KT,N : F p → C∞0 ((0, T )× ω)

such that, for every f0 ∈ F p and s ∈ N

Πp
NS
(
T ; f0, (0,KT,N (f0))

)
= 0,

‖KT,N (f0)‖Hs0 ((0,T )×T) ≤
C

T s+1N
2seCN‖f0‖L2(T)d .

Proof. Let f0 ∈ F p. Throughout this proof, we will note E2(n) the d2 × d2 matrices defined by

∀|n| > n0, E2(n) := Dtr − i
n
Atr

22 + 1
n2K

tr
22 −

(
i
n
Atr

12 −
1
n2K

tr
12

)
G

(
i
n

)
.

Step 1: We prove that u2 ∈ C∞0 ((0, T )× ω) satisfies Πp
NS(T ; f0, (0, u2)) = 0 if and only if u2 solves

the following moments problem in Cd2

∀n0 < |n| ≤ N,
∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗u2(t, x)e−inx dxdt = Fn

where Fn = −e−n
2TE2(n)∗

(
G

(
i
n

)∗
f̂01(n) + f̂02(n)

)
(93)

and E2(n)∗ = E2(n)
tr
.

We first recall that, if P is a projection operator on Rd and x ∈ Im(P ), then

(x = 0)⇔ (∀z ∈ Im(P ∗), 〈x, z〉 = 0)
6The space C∞0 ((0, T )× ω) means that the function is supported on [0, T ]×K where K is a compact subset of ω,

and all the derivatives vanish on ω at time t = 0 and t = T .
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because |x|2 = 〈x, x〉 = 〈Px, x〉 = 〈x, P ∗x〉.
As a consequence, the relation Πp

NS(T ; f0, (0, u2)) = 0 is equivalent to

∀gT ∈ F̃ p
N , 〈S(T ; f0, (0, u2)), gT 〉 = 0 (94)

where 〈·, ·〉 is the scalar product of L2(T,Cd) and

F̃ p
N :=

⊕
n0<|n|≤N

Im
(
P p
( i
n

)∗)
en.

For gT ∈ F̃ p
N , we denote by g(t) = e−L∗(T−t)gT the solution of the adjoint system (30). Then,

by Proposition 34, g = (g1, g2), where g1 = G(g2) and

〈S(T ; f0, (0, u2)), gT 〉 = 〈f0, g(0)〉+
∫ T

0

∫
ω

〈u2(t, x), g2(t, x)〉dxdt.

where the first 2 scalar products are in L2(T)d and the last one is in Cd2 . By Corollary 33, the
assertion (94) is equivalent to

∀gT2 ∈ L2(T,Cd2),
∫ T

0

∫
ω

〈u2(t, x), g2(t, x)〉dxdt = −
〈
f0,
(
G(g0

2), g0
2
)〉
,

where g2(t) = e−D(T−t)gT2 and g0
2 = g2(0). By considering gT2 = Xen with X ∈ Cd2 and

n0 < |n| ≤ N , we obtain

g2(t) = e−n
2(T−t)E2(n)Xen and G(g0

2) = G

(
i
n

)
e−n

2TE2(n)Xen.

The previous property is equivalent to

∀n0 < |n| ≤ N, ∀X ∈ Cd2 ,

∫ T

0

∫
ω

〈u2(t, x), e−n
2(T−t)E2(n)X〉e−inx dx dt

= −〈f01, G(i/n)e−n
2TE2(n)Xen〉 − 〈f02, e−n

2TE2(n)Xen〉

or, equivalently,

∀n0 < |n| ≤ N, ∀X ∈ Cd2 ,

〈∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗u2(t, x)e−inx dx dt,X

〉
= −

〈
e−n

2TE2(n)∗G(i/n)∗f̂01(n) + e−n
2TE2(n)∗ f̂02(n), X

〉
which proves (93).

Step 2: Solving the moment problem. We look for a solution u2 ∈ C∞0 ((0, T )× ω) of the moment
problem (93) of the form

u2(t, x) = ρ(t, x)v2(t, x) (95)

where v2 ∈ C∞((0, T ) × T)d2 and ρ ∈ C∞0 ((0, T ) × ω) is a scalar function with an appropriate
support. More precisely, let

• ω̂ be an open subset such that ω̂ ⊂⊂ ω and ρ2 ∈ C∞c (ω,R+) such that ρ2 = 1 on ω̂,

• ρ1 ∈ C∞([0, 1],R+) such that ρ1(0) = ρ1(1) = 0 and

∃C0 > 0,∀γ > 0,
∫ 1

0
ρ1(τ)e−γτ dτ ≥ 1

C0
e−C0

√
γ . (96)
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For instance, we may consider ρ1 such that ρ1(τ) = ρ1(1− τ) = e− 1
τ for τ ∈ (0, 1/4). Indeed,

for every γ > 0, the change of variable s =
√
γτ gives∫ 1

0
ρ1(τ)e−γτ dτ ≥ 1√

γ

∫ √γ/4
0

e−
√
γφ(s) ds

where φ(s) = 1
s + s. The function φ takes its minimal value at s∗ = 1 and φ′′(1) = 2 > 0 thus, by

Laplace’s method (see [24, Chapitre 9, Théorème VI.1]),∫ 2

0
e−
√
γφ(s) ds ∼

γ→∞

√
π

4
√
γ

e−2
√
γ .

which proves (96) for a large enough constant C0.
Then we choose ρ(t, x) = ρ1((T − t)/T )ρ2(x). We also look for v2 of the form

v2(t, x) =
∑

n0<|k|≤N

e−k
2(T−t)E2(k)Vkeikx where Vk ∈ Cd2 . (97)

The construction of v2 will use the following algebraic result.

Lemma 36. There exists C > 0 such that, for every N > n0 and T ∈ (0, 1] the matrix A in
C(2(N−n0)d2)×(2(N−n0)d2), defined by blocks A = (An,k)n0<|n|≤N

n0<|k|≤N
by

An,k =
∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗e−k

2(T−t)E2(k)ei(k−n)xρ(t, x) dx dt ∈ Cd2×d2 ,

is invertible and
∀F ∈ C2(N−n0)d2 , |A−1F | ≤ C

T
eCN |F |,

where | · | is the hermitian norm on C2(N−n0)d2 .

Remark 37. For instance, when N = n0 + 2, then A is given by

A =


A−n0−2,−n0−2 A−n0−2,−n0−1 A−n0−2,n0+1 A−n0−2,n0+2
A−n0−1,−n0−2 A−n0−1,−n0−1 A−n0−1,n0+1 A−n0−1,n0+2
An0+1,−n0−2 An0+1,−n0−1 An0+1,n0+1 An0+1,n0+2
An0+2,−n0−2 An0+2,−n0−1 An0+2,n0+1 An0+2,n0+2

.
For X ∈ C4d2 with block decomposition

X =


X−n0−2
X−n0−1
Xn0+1
Xn0+2


where Xk ∈ Cd2 for every n0 < |k| ≤ n0 + 2, we have

AX =



∑
n0<|k|≤n0+2

A−n0−2,kXk∑
n0<|k|≤n0+2

A−n0−1,kXk∑
n0<|k|≤n0+2

An0+1,kXk∑
n0<|k|≤n0+2

An0+2,kXk


.

Thus 〈X,AX〉 =
∑
n0<|n|,|k|≤n0+2X

∗
nAn,kXk.
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Proof of Lemma 36. The proof relies on the following spectral inequality, due to Lebeau and
Robbiano (see [19] and also [18, Thm. 5.4]):

∃C1 > 0, ∀N ∈ N, ∀(an)n∈Z ∈ CZ,

+N∑
n=−N

|an|2 ≤ C1eC1N

∫
ω̂

∣∣∣∣∣
+N∑

n=−N
aneinx

∣∣∣∣∣
2

dx. (98)

By summing the components, the same inequality holds when an is a vector, an ∈ Cd2 , and | · |
denotes the hermitian norm on Cd2 .

Let N > n0 and X ∈ C2(N−n0)d2 written by blocks X = (Xk)n0<|k|≤N with Xk ∈ Cd2 . Then,
by using the definition of A, ρ, the properties of ρ2 and the above spectral inequality in vectorial
form, we obtain

〈AX,X〉 =
∑

n0<|n|,|k|≤N

X∗nAn,kXk

=
∫ T

0

∫
ω

∣∣∣ ∑
n0<|k|≤N

e−k
2(T−t)E2(k)Xkeikx

∣∣∣2ρ(t, x) dx dt

≥
∫ T

0

∫
ω̂

∣∣∣ ∑
n0<|k|≤N

e−k
2(T−t)E2(k)Xkeikx

∣∣∣2ρ1

(
T − t
T

)
dxdt

≥ e−C1N

C1

∫ T

0

∑
n0<|k|≤N

∣∣∣e−k2(T−t)E2(k)Xk

∣∣∣2ρ1

(
T − t
T

)
dt.

There exists c > 0 such that, for every |k| > n0, |E2(k)| ≤ c. Then,

∀|k| > n0, τ > 0, Y ∈ Cd2 , |eE2(k)τY | ≤ ecτ |Y |.

Then, by considering τ = k2(T − t) and Y = exp
(
−k2(T − t)E2(k)

)
Xk, we obtain

∀|k| > n0, t ∈ (0, T ),
∣∣e−k2(T−t)E2(k)Xk

∣∣ ≥ e−ck
2(T−t)|Xk|.

Therefore, by using the change of variable τ = T−t
T and (96), we get

〈AX,X〉 ≥ T e−C1N

C1

∑
n0<|k|≤N

|Xk|2
∫ T

0
e−2ck2Tτρ1(τ) dτ

≥ T e−C1N

C1C0

∑
n0<|k|≤N

|Xk|2e−C0k
√

2cT

≥ T

C1C0
e−(C1+C0

√
2cT )N |X|2.

The above relation, valid for any X ∈ C2(N−n0)d2 proves that any eigenvalue of A is positive, thus
A is invertible. Moreover, for any F ∈ C2(N−n0)d2 \ {0}, the vector X = A−1F satisfies

T

C1C0
e−(C1+C0

√
2cT )N |X|2 ≤ 〈AX,X〉 = 〈F,X〉 ≤ |F ||X|.

Thus
|X| ≤ C1C0

T
e(C1+C0

√
2cT )N |F |.

This gives the conclusion with C = max
{
C1C0; C1 + C0

√
2c
}
.

Now, let us come back to the proof of Proposition 35. For such a control of the form given by
equations (95) and (97), the moment problem (93) writes

∀n0 < |n| ≤ N,
∑

n0<|k|≤N

An,kVk = Fn
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or equivalently AV = F with the notations of Lemma 36. Thus, it is sufficient to take V = A−1F .
By the definition of F in (93), and Bessel-Parseval identity there exists C2 > 0 independent of
(T,N) such that

|F | =
( ∑
n0<|n|≤N

|Fn|2
)1/2

≤ C2‖f0‖L2(T)d .

Thus, by Lemma 36
|V | =

( ∑
n0<|k|≤N

|Vk|2
)1/2

≤ C2C
T

eCN‖f0‖L2(T)d . (99)

Step 3: Estimates on u2. Let s ∈ N∗. By (95) and the definition of ρ, there exists C = C(ρ, s) > 0
such that

‖u2‖Hs((0,T )×ω) ≤
C

T s
‖v2‖Hs((0,T )×T). (100)

For any s1, s2 ∈ N such that s1 + s2 ≤ s we have,

∂s1
t ∂

s2
x v2(t, x) =

∑
n0<|k|≤N

k2s1E2(k)s1e−k
2(T−t)E2(k)Vk(ik)s2eikx.

By Bessel-Parseval identity, we have

‖∂s1
t ∂

s2
x v2‖2L2((0,T )×T) =

∫ T

0

∑
n0<|k|≤N

∣∣∣k2s1+s2E2(k)s1e−k
2(T−t)E2(k)Vk

∣∣∣2 dt

≤ C
∫ T

0

∑
n0<|k|≤N

k4s
∣∣∣e−k2(T−t)E2(k)Vk

∣∣∣2dt
By working as in the proof of Proposition 9, we obtain, for n0 large enough, positive constants
Kp, cp > 0 such that

‖∂s1
t ∂

s2
x v2‖2L2((0,T )×T) ≤ C

∑
n0<|k|≤N

k4sK2
p

∫ T

0
e−2cpk2(T−t) dt |Vk|2

≤
CK2

p

2cp

∑
n0<|k|≤N

k4s−2|Vk|2 ≤
CK2

p

cp
N4s−1|V |2

By (99),

‖∂s1
t ∂

s2
x v2‖L2((0,T )×T) ≤

√
C

cp
KpN

2s−1/2C2C
T

eCN‖f0‖L2(T)d .

This provides a constant C > 0 independant of (T,N) such that

‖v2‖Hs((0,T )×T) ≤
C

T
N2s−1/2eCN‖f0‖L2(T)d

and (100) gives the expected estimate on u in Hs.

4.4.4 Lebeau-Robbiano’s method

The goal of this section is to prove Proposition 31. Let T > 0. We fix δ ∈ (0, T/2) and ρ ∈ (0, 1).
For ` ∈ N∗, we set N` = 2`, T` = A2−ρ` where A > 0 is such that 2

∑∞
`=1 T` = T − 2δ. Let f0 ∈ F p.

We define 
f1 = e−δL

p
f0,

g` = ΠpS(T`; f`, u`) where u` = (0,KT`,N`(f`)),
f`+1 = e−T`L

p
g`,
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where KT`,N` is the control operator introduced in Proposition 35. By construction Πp
N`
g` = 0 and

therefore, by Proposition 9

‖f`+1‖2L2(T)d = ‖e−T`L
p
g`‖2L2(T)d =

∑
|n|>N`

∣∣∣e−n2E(i/n)T` ĝ`(n)
∣∣∣2

≤
∑
|n|>N`

K2
pe−2n2cpT` |ĝ`(n)|2 ≤ K2

pe−2cpN2
` T`‖g`‖2L2(T)d .

By the semi-group property proved in Proposition 11, there exists positive constants K and c such
that

∀f ∈ L2(T)d, t ≥ 0 ‖e−tLf‖L2(T)d ≤ Kect‖f‖L2(T)d .

Then, according to the triangle inequality and Cauchy-Schwarz inequality,

‖g`‖L2(T)d ≤ ‖S(T`; f`, u`)‖ ≤ KecT`‖f`‖L2(T)d +
∫ T`

0
Kec(T`−t)‖u`(t)‖L2(T) dt

≤ KecT`
(
‖f`‖L2(T)d +

√
T`‖u`‖L2((0,T`)×ω)

)
,

and by Proposition 35
‖u`‖L2((0,T`)×ω) ≤

C
T`

eCN`‖f`‖L2(T)d . (101)

Thus
‖g`‖L2(T)d ≤ KecT`

(
1 + C√

T`
eCN`

)
‖f`‖L2(T)d .

By setting

m` = Kpe−cpN
2
` T`KecT`

(
1 + C√

T`
eCN`

)
,

we get
‖f`+1‖L2(T)d ≤ m`‖f`‖L2(T)d .

It is easy to see that there exists C1, C2 > 0 such that m` ≤ C1e−C22(2−ρ)` . Thus ‖f`‖L2(T)d → 0
and more precisely there exists positive constants C3, C4 > 0 such that

‖f`‖L2(T)d ≤ C3 exp
(
−C42(2−ρ)`

)
‖f0‖L2(T)d .

Moreover, from (101),

∞∑
`=1
‖u`‖2L2((0,T`)×ω) ≤ C

∞∑
`=1

eCN`
T`

C3 exp(−C42(2−ρ)`)‖f0‖L2(T)d <∞. (102)

We set a0 = δ, a2 = δ + 2T1, . . . , a` = a`−1 + 2T`. We have a` → (T − δ) as `→∞. Then, for
any f0 ∈ F p, we define the control

Up
T (f0)(t, x) =

 KT`,N`(f`)(t− a`−1) for a`−1 ≤ t ≤ a`−1 + T`,
0 for a`−1 + T` ≤ t ≤ a`−1 + 2T` = a`,
0 for T − δ ≤ t ≤ T.

Then, Up
T (f0) ∈ C∞0 ((δ, T − δ) × ω)d2 because all its derivatives vanish at times t = a`. Thus

Up
T (f0) ∈ C∞c ((0, T )× ω)d2 .
By (102), Up

T (f0) ∈ L2((0, T )× ω)d thus S(T − δ; f0,Up
T (f0)) is the limit, in L2(T)d, as `→∞,

of the sequence S(a`; f0,Up
T (f0)). As a consequence, ΠpS(T − δ; f0,Up

T (f0)) is the limit in L2(T)
of the sequence ΠpS(a`; f0,Up

T (f0)) = f`+1. Finally,

ΠpS(T ; f0,Up
T (f0)) = ΠpS(T − δ; f0,Up

T (f0)) = 0.
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By Proposition 35, for any s ∈ N∗,

‖Up
T (f0)‖Hs((0,T )×ω) ≤

∞∑
`=1

C
T s+1
`

N2s
` eCN`C3 exp

(
−C42(2−ρ)`

)
︸ ︷︷ ︸

<∞

‖f0‖L2(T)d .

This concludes the proof of Proposition 31.

4.5 Control of the low frequencies
The goal of this subsection is to prove Theorem 2. Let T > T ∗ where T ∗ is defined in (3). Then,
there exists T ′ > 0 such that (57) holds. Let G and U be as in Proposition 26.

Without loss of generality, we may assume that F0 ⊂ G by the following procedure. Let W be
a complement of G ∩ F 0 in F 0. Then W is a complement of G in7 G + F 0, and we extend U to
G ⊕W by setting U(f0) = 0 for every f0 ∈W .

Implicitly, G is equipped with the topology of the L2(T)d-norm. The operator S is defined in
Definition 12.

We introduce the vector subspace of L2(T)d defined by

FT =
{
f0 ∈ L2(T)d; ∃u ∈ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2/S(T ; f0, u) = 0

}
.

Step 1: We prove that FT is a closed subspace of L2(T)d with finite codimension.
For f0 ∈ G, the function S(T ; f0,Uf0) belongs to F 0, thus

K(f0) := −eTL
0
S(T ; f0,Uf0) (103)

is well defined in F 0 by Proposition 25. Then, K is a compact operator on G because it has finite
rank. By the Fredholm alternative, (I +K)(G) is a closed subspace of G and there exists a closed
subspace G′ of G, with finite codimension in G, such that (I+K) is a bijection from G′ to (I+K)(G).
Note that G′ is also a closed subspace with finite codimension in L2(T)d.

For any f0 ∈ G′, by using that K(f0) ∈ F 0 and (103), we obtain

S(T,K(f0), 0) = e−TLK(f0) = e−TL
0
K(f0) = −S(T, f0,Uf0)

thus
S(T, f0 +K(f0),Uf0) = S(T, f0,Uf0) + S(T,K(f0), 0) = 0.

This proves that FT contains (I +K)(G′), which is a closed subspace with finite codimension
in L2(T)d. Therefore, there exists a finite dimensional subspace F] of L2(T)d such that FT =
(I +K)(G′)⊕ F]. This gives the conclusion of Step 1.

Step 2: We prove that, up to a possibly smaller choice of T > T ∗, there exists δ > 0 such that
FT ′ = FT for every T ′ ∈ [T, T + δ]. When 0 < T ′ < T ′′, by extending controls defined on (0, T ′)
by zero on (T ′, T ′′), we see that FT ′ ⊂ FT ′′ . Thus, the map T ′ 7→ codim(FT ′) is decreasing and
takes integer values. As a consequence the discontinuities on (T ∗, T + 1] are isolated. If T is not
such a discontinuity point, then there exists δ > 0 such that codim(FT ′) = codim(FT ) for every
T ′ ∈ [T, T + δ]. In case T is such a discontinuity point, one may replace T by a smaller value, still
such that T > T ∗, for which this holds.

Step 3: We prove that
(
e−tL∗F⊥T

)⊥ ⊂ FT for every t ∈ (0, δ). Let t ∈ (0, δ) and g0 ∈ L2(T)d
be such that 〈g0, e−tL

∗
f0〉 = 0 for every f0 ∈ F⊥T . Then 〈e−tLg0, f0〉 = 0 for every f0 ∈ F⊥T , i.e.

e−tLg0 ∈ (F⊥T )⊥. By Step 1, FT is a closed subspace of L2(T)d thus (F⊥T )⊥ = FT . Therefore
e−tLg0 ∈ FT . By definition of FT , this implies that g0 ∈ FT+t. By Step 2, we get g0 ∈ FT , which
ends the proof of Step 3.

7If f ∈ G + F 0, we write it as fG + fF0 , and in turn we decompose fF0 along the sum F0 = G ∩ F0 ⊕ W :
fF0 = fG∩F0 + fW ∈ G+W . So f = (fG + fG∩F0 ) + fW . This proves that G+F0 = G+W . Moreover, if f ∈ G ∩W ,
since W ⊂ F0, we have f ∈ G ∩ F0 ∩W , which is {0}. So the sum G +W is direct.
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Step 4: We prove that F⊥T is left invariant by e−tL∗ , i.e. F⊥T = e−tL∗F⊥T for every t > 0. The

subspace e−tL∗F⊥T is closed in L2(T)d because it has finite dimension. Thus
((

e−tL∗F⊥T
)⊥)⊥ =

e−tL∗F⊥T and we deduce from Step 3 that, for every t ∈ (0, δ), F⊥T ⊂ e−tL∗F⊥T . Taking into account
that dim(e−tL∗F⊥T ) ≤ dim(F⊥T ), we obtain F⊥T = e−tL∗F⊥T for every t ∈ (0, δ). By the semi-group
property, this equality holds for every t > 0.

Step 5: We prove the existence of N ∈ N such that any f0 ∈ F⊥T can be written

f0 =
∑
k≤N

ϕkek with ϕk ∈ Cd. (104)

Let S(t)∗ be the restriction of the semigroup etL∗ to F⊥T , i.e. S(t)∗ = e−tL∗ |F⊥
T
. Then S(t)∗ = etM

where M is a matrix such that L∗f0 = Mf0 for every f0 ∈ F⊥T . But then ker(M − λ)j =
ker(L∗ − λ)j ∩ F⊥T . The Kernel decomposition theorem applied to M , and the structure of the
generalized eigenspaces of L∗ gives the conclusion of Step 4.

Step 6: We prove that any element of L2(T)d can be steered to FT in an arbitrary short time,
i.e. for every ε > 0 and f0 ∈ L2(T)d, there exists u ∈ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2 such
that S(ε; f0, u) ∈ FT . By the Hilbert Uniqueness Method, it is sufficient to prove an observability
inequality for S(t)∗. By using the finite-dimensionality of F⊥T , it is equivalent to prove that the
following unique continuation property holds: if f(t, ·) = etMf0 with f = 0 in (0, ε)×ω, then f0 = 0.
By using the spectral inequality of Lebeau-Robbiano, i.e. (98) and (104), we readily get the result.

Step 7: Conclusion. Step 5 implies the controllability of the system in any time τ > T . As T is an
arbitrary time such that T > T ∗, this concludes the null-controllability in any time T > T ∗.

By a duality argument, we obtain the following result, that will be used in the next sections.

Corollary 38. For every T > T ∗ and s ∈ N, there exists CT,s > 0 such that, for every g0 ∈ L2(T)d
the solution g(t) = e−tL∗g0 = (g1, g2)(t) of the adjoint system (30) satisfies

‖g(T )‖L2(T)d ≤ CT,s
(
‖g1‖L2(qT )d1 + ‖g2‖H−s(qT )d2

)
,

where qT = (0, T )× ω.

We will use the following standard lemma that gives a canonical isometry between H−s(Ω) and
Hs

0(Ω).

Lemma 39. Let Ω be an open subset of Rd or a compact manifold (possibly with boundary). Let
s ≥ 0 and ιs : Hs

0(Ω)→ L2(Ω) be the inclusion map.8 The map ι∗s : L2(Ω)→ Hs
0(Ω) extends to a

bijective isometry from Hs
0(Ω) to H−s(Ω).

Proof. The map ι∗s is defined on L2(Ω) by

∀f ∈ L2(Ω), ∀v ∈ Hs
0(Ω), 〈ι∗sf, v〉Hs0 = 〈f, v〉L2 . (105)

Thus, for evey f ∈ L2(Ω),

|ι∗sf |Hs0 = sup
|v|Hs0 =1

〈ι∗sf, v〉Hs0 = sup
|v|Hs0 =1

〈f, v〉L2 = |f |H−s ,

where we used the definition of H−s(Ω) as the dual of Hs
0(Ω) with respect to the pivot space L2(Ω)

(see for instance [27, Sec. 2.9]). Since L2(Ω) is dense in H−s(Ω)d, this proves that ι∗s extends by
continuity to H−s(Ω).

This extension is an isometry from H−s(Ω) onto its range. As such it is injective and its range
is closed. To prove it is bijective, we check that its range is dense, i.e. that its orthogonal is zero.

If g0 ∈ Hs
0(Ω) is orthogonal to Im(ι∗s), then, according to the definition of ι∗s (Eq. (105)) g0 is

orthogonal in L2(Ω) to Hs
0(Ω). But Hs

0(Ω) is dense in L2(Ω), so g = 0. Thus Im(ι∗s)⊥ = {0}.
8We recall that Hs

0(Ω) is the closure of C∞c (Ω) for the Hs-norm, and that H−s(Ω) is the dual of Hs
0(Ω) with

respect to the pivot space L2(Ω).
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Proof of Corollary 38. We apply the duality Lemma 14 with

Φ2 : f0 ∈ L2(T)d 7→ f(T, ·) ∈ L2(T)d,

where f is the solution to the system (Sys) with initial data f0 and control u = 0, and

Φ3 : u = (u1, u2) ∈ L2(qT )d1 ×Hs
0(qT )d2 7→ f(T, ·) ∈ L2(T)d,

where f is the solution to the system (Sys) with initial data f0 = 0 and control u. The null-
controllability result proved above is equivalent to the inclusion Im(Φ2) ⊂ Im(Φ3), thus to the
existence of C > 0 such that for every gT ∈ L2(T)d,

‖Φ∗2(gT )‖L2(T)d ≤ C‖Φ∗3(gT )‖L2(qT )d1×Hs0 (qT )d2 . (106)

We compute the adjoint operators of Φ2 and Φ3 thanks to the duality relation between the
solution f of (Sys) and the solution ϕ(·) = g(T − ·) of the adjoint system (30):

〈f(T ), ϕ(T )〉L2(T)d = 〈f(0), ϕ(0)〉L2(T)d +
∫ T

0

∫
ω

〈u(t, x), ϕ(t, x)〉dtdx (107)

=〈f(0), ϕ(0)〉L2(T)d +
∫ T

0

∫
ω

〈u1(t, x), ϕ1(t, x)〉+ 〈u2(t, x), ϕ2(t, x)〉dtdx. (108)

First, we have Φ∗2(gT ) = (e−TL)∗gT = e−TL∗gT . To compute Φ∗3, we introduce the input-output
operator FT : u ∈ L2(qT )d 7→ f(T, .) ∈ L2(T)d, where f is the solution of (Sys) with initial condition
f0 = 0 and right-hand side u. By (107), F∗T (gT ) is the restriction of e(t−T )L∗gT to [0, T ]× ω. We
have Φ3 = FT ◦ (I, ιs), where (I, ιs) stands for the inclusion map L2(qT )d1 ×Hs

0(qT )d2 → L2(qT )d.
Thus, according to Lemma 39, the right-hand side of the inequality (106) is

‖(I, ι∗s) ◦ F∗T (gT )‖L2(qT )d1×Hs0 (qT )d2 = ‖F∗T (gT )‖L2(qT )d1×H−s(qT )d2 ,

which gives the conclusion.

5 Hyperbolic control: coupling of order zero
The goal of this section is to prove the following result on the system{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22
)
f2 +K21f1 = 0 in (0, T )× T. (109)

Theorem 40. We assume (H.1)–(H.4), D = Id2 m = d1, M1 = Id1 , M2 = 0, A21 = 0 and A22 = 0.
Let T ∗ be defined by (3). The following statements are equivalent.

• The system (109) is null controllable in any time T > T ∗.

• The couple of matrices (K22,K21) satisfies the Kalman rank condition:

Span{Kj
22K21X1;X1 ∈ Cd1 , 0 ≤ j ≤ d2 − 1} = Cd2 . (110)

The interest of this theorem is that its proof is essentially the same as the one of Theorems 3
and 4 (that will be done in the next sections) but it is less technical.

In Section 5.1, we prove that the Kalman condition (110) is necessary for the null controllability
of System (109). In Section 5.2, we prove that the Kalman condition (110) is sufficient for the null
controllability of System (109), first in the case d1 = 1 (i.e. with one hyperbolic line in the system)
where the cascade structure (or Brunovski form) is easy to handle, then in the general case d1 > 1
which is more delicate to write.
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5.1 The Kalman condition is necessary
If the null controllability property for (109) holds, then, by considering the Fourier components of
the solution and the control, we obtain the null controllability, for every n ∈ Z \ {0}, of the system{

X1(t)′ + (inA′ +K11)X1(t) + (inA12 +K12)X1(t) = v1(t),
X ′2(t) + (n2Id2 +K22)X2(t) +K21X1(t) = 0,

with state X(t) = (X1, X2)(t) ∈ Cd1 × Cd2 and control v1 ∈ L2(0, T )d1 . This requires the null
controllability of the control system

X ′2(t) + (n2Id2 +K22)X2(t) +K21X1(t) = 0,

with state X2(t) ∈ Cd2 and control X1 ∈ L2(0, T )d1 , i.e. the Kalman rank condition (see for instance
[10, Thm. 1.16])

Span{(n2Id2 +K22)jK21v1; v1 ∈ Cd1 , j ∈ {0, . . . , d2 − 1}} = Cd2 ,

that can equivalently be written in the form (110).

5.2 The Kalman condition is sufficient
In this section, we explain how to complete the proof of Theorem 2 to prove that the Kalman rank
condition (110) implies the null controllability of (109) in time T > T ∗, in Theorem 40.

First, we treat the case d1 = 1 then we generalize to the case d1 > 1.
From now and until end of this subsection, C will denote positive constants which will vary from

line to line. For 1 ≤ i ≤ 2 and 1 ≤ j ≤ di, we denote by vji the j-th component of a vector vi ∈ Cdi .

5.2.1 The case of one hyperbolic component: d1 = 1

By using the Hamilton-Cayley’s theorem, we know that there exist c0, . . . , cd2−1 ∈ R such that

Kd2
22 = c0Id2 + c1K22 + · · ·+ cd2−1K

d2−1
22 . (111)

By using the Kalman condition (110), the matrix P defined as follows

P := (K21,K22K21, . . . ,K
d2−1
22 K21), (112)

is invertible. We set

K̂22 :=



0 . . . . . . 0 c0

1 0 . . .
... c1

0
. . . . . .

... c2
...

. . . . . . 0
...

0 . . . 0 1 cd2−1


and K̂21 :=


1
0
...
0

. (113)

From (111), (112), (113), we check that we have the following relations

K22P = PK̂22 and K21 = PK̂21, i.e. K̂22 = P−1K22P and K̂21 = P−1K21.

The function w = (w1, w2) = (f1, P
−1f2) solves

(∂t +A′∂x +K11)w1 + (A12P∂x +K12P )w2 = u11ω in (0, T )× T,(
∂t − ∂2

x + K̂22

)
w2 + K̂21w1 = 0 in (0, T )× T,

(w1, w2)(0, ·) = (w01, w02) in T.
(114)

The system (114) is a “cascade system”. Indeed, roughly speaking the control u1 directly controls
the component w1, the component w1 indirectly controls the component w1

2 in the second equation
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through the coupling term w1, the component w1
2 indirectly controls the component w2

2 in the
third equation through the coupling term w1

2, . . . the component wd2−1
2 indirectly controls the

component wd2
2 in the last equation through the coupling term wd2−1

2 .
The adjoint system of (114) is

(
∂t −A′tr∂x +Ktr

11

)
g1 + K̂21

tr
g2 = 0 in (0, T )× T,(

∂t − ∂2
x + K̂22

tr)
g2 +

(
−(A12P )tr

∂x + (K12P )tr
)
g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

(115)

From Corollary 38, we know that for every g0 ∈ L2(T)d, the solution g of (115) satisfies

‖g(T, ·)‖L2(T) ≤ C
(
‖g1‖L2(qT ) + ‖g2‖H−2d2+1(qT )

)
. (116)

By using the fact that K̂22 is a companion matrix, see (113), we have that for every i ∈ {2, . . . , d2},
the i-th equation of (115) is

∂tg
i−1
2 − ∂2

xg
i−1
2 + gi2 + bi−1∂xg1 + ai−1g1 = 0, with (ai−1, bi−1) ∈ R2

Then we deduce
‖gi2‖H−2i+1(qT ) ≤ C

(
‖gi−1

2 ‖H−2(i−1)+1(qT ) + ‖g1‖L2(qT )
)
. (117)

Here, we have used in particular that

‖(∂t − ∂2
x)gi−1

2 ‖H−2i+1(qT ) ≤ C‖gi−1
2 ‖H−2(i−1)+1(qT )

and
‖bi−1∂xg1 + ai−1g1‖H−2i+1(qT ) ≤ C‖g1‖L2(qT ).

Then, we deduce from (116) and (117) that

‖g(T, ·)‖L2(T) ≤ C
(
‖g1‖L2(qT ) + ‖g1

2‖H−1(qT )
)
. (118)

By using the fact that K̂21 is the first vector of the canonical basis of Rd2 , see (113), the first
equation of (115) is

∂tg1 −A′∂xg1 +K11g1 + g1
2 = 0.

Then, we obtain that
‖g1

2‖H−1(qT ) ≤ C‖g1‖L2(qT ). (119)

So, we deduce from (118) and (119) the observability inequality

‖g(T, ·)‖2L2(T)d ≤ C
∫ T

0

∫
ω

|g1(t, x)|2 dxdt,

in the case d1 = 1. This concludes the proof of Theorem 40 in the case d1 = 1 by duality.

5.2.2 The case of several hyperbolic components: d1 > 1

In this section, we deal with the general problem of null-controllability of (109). To this aim, we
introduce Ki

21 ∈ Rd2 the i-th column of the matrix K21 (1 ≤ i ≤ d1), i.e.

K21 =
(
K1

21|K2
21| . . . |K

d1
21

)
,

From the Kalman rank condition (110), we construct an adapted basis of Cd2 .

Lemma 41. There exist r ∈ {1, . . . , d2} and sequences (lj)1≤j≤r ⊂ {1, 2, . . . , d1} and (sj)1≤j≤r ⊂
{1, 2, . . . , d2} with

∑r
j=1 sj = d2, such that

B =
r⋃
j=1

{
K
lj
21,K22K

lj
21, . . . ,K

sj−1
22 K

lj
21

}
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is a basis of Cd2 . Moreover, for every j, with 1 ≤ j ≤ r, there exist αik,sj ∈ R (1 ≤ i ≤ j,
1 ≤ k ≤ sj) such that

K
sj
22K

lj
21 =

j∑
i=1

(
αi1,sjK

li
21 + αi2,sjK22K

li
21 + · · ·+ αisi,sjK

si−1
22 Kli

21

)
. (120)

For a proof of this lemma, see [3, Lemma 3.1].
Let B the basis of Cd2 provided by Lemma 41 and P be the matrix whose columns are the

elements of B, i.e.

P :=
(
Kl1

21|K22K
l1
21| . . . |K

s1−1
22 Kl1

21| . . . |K
lr
21| . . . |K

sr−1
22 Klr

21

)
.

Let us observe that the basis B has been constructed in such a way that (120) is satisfied.
Let the matrices Cii ∈ Rsi×si and Cij ∈ Rsi×sj , 1 ≤ i < j ≤ r, be defined by

Cii =


0 0 0 . . . αi1,si
1 0 0 . . . αi2,si
0 1 0 . . . αi3,si
...

...
. . . . . .

...
0 0 . . . 1 αisi,si

 and Cij =

0 . . . 0 αi1,sj
...

. . .
... αi2,sj

0 . . . 0 αisi,sj

. (121)

We set

K̂22 :=


C11 C12 . . . C1r
0 C22 . . . C2r
...

...
. . .

...
0 0 . . . Crr

 and K̂21 := P−1K21. (122)

From (120), (122) and (121), by denoting Pi :=
(
Kli

21|K22K
li
21| . . . |K

si−1
22 Kli

21

)
, we have

K22Pi =
(
K22K

li
21|K2

22K
li
21| . . . |K

si
22K

li
21

)
=
(
K22K

li
21

∣∣∣K2
22K

li
21

∣∣∣ . . . ∣∣∣ i∑
k=1

(
αk1,siK

lk
21 + αk2,siK22K

lk
21 + · · ·+ αksk,siK

sk−1
22 Klk

21

))

=
(

0
∣∣∣ . . . ∣∣∣0∣∣∣ i−1∑

k=1

(
αk1,siK

lk
21 + αk2,siK22K

lk
21 + · · ·+ αksk,siK

sk−1
22 Klk

21

))
+
(
K22K

li
21

∣∣∣K2
22K

li
21

∣∣∣ . . . ∣∣∣(αi1,siKli
21 + αi2,siK22K

li
21 + · · ·+ αisi,siK

si−1
22 Klk

21

))
= P1C1i + P2C2i + · · ·+ PiCii.

Then, we obtain
K22P = PK̂22 and PeSi = Kli

21, 1 ≤ i ≤ r, (123)

where eSi is the Si-element of the canonical basis of Rn with Si = 1 +
∑i−1
j=1 sj . In the following,

we will also use the notation Sr+1 := d2 + 1.
We argue as in the previous subsection. We perform the same change of variable w = (w1, w2) =

(f1, P
−1f2), we consider the solution g of the adjoint system

(
∂t −A′tr∂x +Ktr

11

)
g1 + K̂21

tr
g2 = 0 in (0, T )× T,(

∂t − ∂2
x + K̂22

tr)
g2 +

(
−(A12P )tr

∂x + (K12P )tr
)
g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

(124)

From Corollary 38, we recall that the solution g of (124) satisfies

‖g(T, ·)‖L2(T) ≤ C
(
‖g1‖L2(qT ) + ‖g2‖H−2m+1(qT )

)
, with m = max

1≤i≤r
si. (125)
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Then, we use the coupling terms in the system (124) in order to get rid of the term ‖g2‖2H−2m+1(qT )
in the right hand side of the inequality (125).

From the cascade form of the matrix K̂22, see (122), more precisely from the cascade form of
the block matrix Cii and the form of the matrices C1,i, . . . , Ci−1,i, see (121), the equations of the
adjoint system (124) are

∀i ∈ {1, . . . , r}, ∀j ∈ {Si, . . . , Si+1 − 2},

∂tg
j
2 − ∂2

xg
j
2 + gj+1

2 +
d1∑
k=1

bki,j∂xg
k
1 + aki,jg

k
1 = 0, (aki,j , bki,j) ∈ R2. (126)

To simplify, we will denote by Hk, k ∈ Z−, the space Hk(qT ).
We deduce successively from (126) with j = Si+1 − 2, Si+1 − 3, . . . , Si+1 − 2− (si − 2) = Si, the

following estimates∥∥∥gSi+1−1
2

∥∥∥
H−2si+1(qT )

≤ C
(∥∥∥gSi+1−2

2

∥∥∥
H−2(si−1)+1(qT )

+ ‖g1‖L2(qT )

)
≤ C

(∥∥∥gSi+1−3
2

∥∥∥
H−2(si−2)+1(qT )

+ ‖g1‖L2(qT )

)
≤ . . .

≤ C
(∥∥∥gSi+1−2−(si−2)

2

∥∥∥
H−1(qT )

+ ‖g1‖L2(qT )

)
.

So, we have for every i ∈ {1, . . . , r} and j ∈ {Si + 1, . . . , Si+1 − 1},∥∥∥gj2∥∥∥
H−2m+1(qT )

≤ C
(∥∥∥gSi2

∥∥∥
H−1(qT )

+ ‖g1‖L2(qT )

)
. (127)

Then, by using (122) and (123), we have K̂21
li = P−1Kli

21 = eSi . Consequently, the li-th equation
of the adjoint system (124) is

∂tg
li
1 +

d1∑
k=1

ali,k∂xg
k
1 + bli,kg

k
1 + gSi2 = 0, (ali,k, bli,k) ∈ R2.

Then, we obtain ∥∥∥gSi2

∥∥∥
H−1(qT )

≤ C‖g1‖L2(qT ). (128)

By gathering (127) and (128), we obtain

∀i ∈ {1, . . . , r}, ∀j ∈ {Si, . . . , Si+1 − 1},
∥∥∥gj2∥∥∥

H−2m+1(qT )
≤ C‖g1‖L2(qT ). (129)

By using that {S1, . . . , S2− 1, S2, . . . , S3− 1, . . . , Sr, . . . , Sr+1− 1} = {1, . . . , d2}, we finally deduce
from (129) and (125) the observability inequality

‖g(T, ·)‖2L2(T)d ≤ C
∫ T

0

∫
ω

|g1(t, x)|2 dxdt.

This concludes the proof of Theorem 40 in the case d1 > 1 by duality.

6 Hyperbolic control: coupling of order one
The goal of this section is to prove Theorem 3. The requirement of the Kalman rank condition
(6) for null-controllability is an adaptation of the proof given in Section 5.1. Now, we explain
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how to complete the proof of Theorem 2 to prove that the Kalman condition is sufficient for null
controllability. We set

F2 := L2(T)d1 × L2
m(T)d2 =

{
f0 = (f01, f02) ∈ L2(T)d ;

∫
T
f02(x) dx = 0

}
. (130)

We only give the proof in the case d1 = 1. The case d1 > 1 is an easy adaptation of the case
d1 = 1 and the arguments already presented for coupling terms of order zero in Section 5.2.2.

6.1 A special observability inequality
The goal of this section is to prove the following observability inequality.

Proposition 42. There exists C > 0 such that for every g0 ∈ F2, the solution of the adjoint
system (30) satisfies

‖g(T, ·)‖2L2(T) ≤ C
(
‖g1‖2L2(qT ) + ‖∂d2

x g2‖2H−2d2+1(qT )

)
. (131)

In order to prove Proposition 42, by a duality argument, it is sufficient to establish the following
null-controllability result.

Proposition 43. For every f0 ∈ F2, there exists u ∈ L2(qT )d1 × (H2d2−1
0 (qT ))d2 such that

S(T, f0, (uh, ∂
d2
x up)) = 0.

Proof of the equivalence between Proposition 42 and Proposition 43. We apply Lemma 14 with

Φ2 : f0 ∈ F2 7→ f(T, ·) ∈ F2,

where f is the solution to the system (Sys) with initial data f0 and control u = 0, and

Φ3 : u = (u1, u2) ∈ L2(qT )d1 ×H2d2−1
0 (qT )d2 7→ f(T, ·) ∈ F2,

where f is the solution to the system (Sys) with initial data f0 = 0 and control (u1, ∂
d2
x u2). Note

that by integrating the second equation of the system (1), we see that a control of the form
(u1, ∂

d2
x u2) cannot change the mean of the parabolic component. This justifies that Φ2 and Φ3 do

indeed take values in F2.
The null-controllability result of Proposition 43 is equivalent to the existence of C > 0 such

that for every gT ∈ L2(T)d,

‖Φ∗2(gT )‖F2 ≤ C‖Φ∗3(gT )‖
L2(qT )d1×H2d2−1

0 (qT )d2 . (132)

We have Φ∗2(gT ) = (e−TL)∗gT = e−TL∗gT . We claim that the right-hand side of the inequal-
ity (132) satisfies

‖Φ∗3(gT )‖
L2(qT )d1×H2d2−1

0 (qT )d2 = ‖(g1, (−1)d2∂d2
x g2)‖L2(qT )d1×H−2d2+1(qT )d2 , (133)

where g = e−(T−t)L∗gT . This will prove that the inequality (132) is exactly the observability
inequality (131).

We write Φ3 as
Φ3 = FT ◦ (I, ∂d2

x ) ◦ (I, ι2d2−1),
where FT : L2(T)d → L2(T)d is the input-output operator introduced in the proof of Corollary 38,
∂d2
x is seen as an unbounded operator on L2(T)d2 with domainHd2(T)d2 , and ι2d2−1 : H2d2−1(T)d2 →
L2(T)d2 is the inclusion map (see Lemma 39). Note that while Φ3 written this way looks like an
unbounded operator (because ∂d2

x is), we have Im(ι2d2−1) ⊂ D(∂d2
x ), so that the composition of

operators above is indeed a continuous operator. So, we have

Φ∗3 = (I, ι∗2d2−1) ◦ (I, (∂d2
x )∗) ◦ F∗T = (I, ι∗2d2−1) ◦ (I, (−1)d2∂d2

x ) ◦ F∗T .

Since ι∗2d2−1 is an isometry between H2d2−1
0 and H−2d2+1 (see Lemma 39), this proves the rela-

tion (133).

39



First, we show that the null-controllability result of Proposition 43 is true at the high-frequency
level, i.e. we prove the following adaptation of Proposition 26.

Proposition 44. There exists a closed subspace G� of L2(T)d with finite codimension and a
continuous operator

U� : G�→ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2

f0 7→ (uh, up),

that associates with each f0 ∈ G� a pair of controls U�f0 = (uh, up) such that

∀f0 ∈ G�, ΠS(T ; f0, (uh, ∂
d2
x up)) = 0. (134)

In order to prove Proposition 44, it is enough to prove Proposition 28 with parabolic control of
the form ∂d2

x up. Thus, by using Section 4.4.1, it is sufficient to show the following adaptation of
Proposition 31.

Proposition 45. If n0 is large enough, then for every T > 0, there exists a continuous operator

Up,�
T : F p→ C∞c ((0, T )× ω)d2

f0 7→ up,

that associates with each f0 ∈ F p a control Up,�
T f0 = up such that

ΠpS(T ; f0, (0, ∂d2
x up)) = 0.

Proof. Let f0 ∈ F p and f�0 be such that ∂d2
x f

�
0 = f0. Note that f�0 is well-defined because∫

T f0(x)dx = 0. We know from Proposition 31 that there exists up ∈ C∞c ((0, T )× ω)d2 such that
the solution f� of (Sys) with initial data f�0 and control (0, up) satisfies

Πpf�(T, ·) = 0.

Then, by setting f := ∂d2
x f

� and by applying ∂d2
x to the system (Sys) satisfied by f�, we deduce

that f is the solution of (Sys) with initial data f0 and control (0, ∂d2
x up) and satisfies

Πpf(T, ·) = 0,

because ∂d2
x and Πp commute.

We get the conclusion of the proof of Proposition 45 with the continuous operator Up,�
T (f0) =

Up
T

(
f�0
)
where Up

T is the operator defined in Proposition 31.

Secondly, we have to show that the null-controllability result of Proposition 43 is true at the low
frequency-level, as we have already shown for Theorem 2 in Section 4.5. All the steps of Section 4.5
remain unchanged except the Step 6. Indeed, the unique continuation argument transforms into:
if f(t, ·) = etMf0 with (f1, ∂

d2
x f2) = (0, 0) in (0, ε) × ω then (f01, ∂

d2
x f02) = (0, 0) thanks to the

spectral inequality of Lebeau-Robbiano (98), that is to say, f0 = 0 because
∫
T f02(x) dx = 0.

This concludes the proof of Proposition 43 thus the proof of Proposition 42.

6.2 The case of one hyperbolic component: d1 = 1
By the Hamilton-Cayley’s theorem, there exist c0, . . . , cd2−1 ∈ R such that

Ad2
22 = c0Id2 + c1A22 + · · ·+ cd2−1A

d2−1
22 .

By using the Kalman condition (6), the matrix P defined as follows

P := (A21, A22A21, . . . , A
d2−1
22 A21),
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is invertible. By setting

Â22 :=



0 . . . . . . 0 c0

1 0 . . .
... c1

0
. . . . . .

... c2
...

. . . . . . 0
...

0 . . . 0 1 cd2−1


and Â21 :=


1
0
...
0

, (135)

we check that we have the following relations

A22P = PÂ22 and A21 = PÂ21, i.e. Â22 = P−1A22P and Â21 = P−1A21.

Then, by setting w = (w1, w2) = (f1, P
−1f2), we have

(∂t +A′∂x +K11)w1 + (A12P∂x +K12P )w2 = u11ω in (0, T )× T,(
∂t − ∂2

x + Â22∂x

)
w2 + Â21∂xw1 = 0 in (0, T )× T,

(w1, w2)(0, ·) = (w01, w02) in T.
(136)

The system (136) is a “cascade system” with coupling terms of order one in the spatial variable.
The adjoint system of (136) is

(
∂t −A′tr∂x +K11

tr
)
g1 − Â21

tr
∂xg2 = 0 in (0, T )× T,(

∂t − ∂2
x − Â22

tr
∂x

)
g2 +

(
−(A12P )tr

∂x + (K12P )tr
)
g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

(137)

We know from Proposition 42 that the solution g of (137) satisfies

‖g(T, ·)‖L2(T) ≤ C
(
‖g1‖L2(qT ) + ‖∂d2

x g2‖H−2d2+1(qT )
)
. (138)

By using the fact that Â22 is a companion matrix, see (113), for every i ∈ {2, . . . , d2}, the i-th
equation of (137) is

∂tg
i−1
2 − ∂2

xg
i−1
2 + ∂xg

i
2 + bi−1∂xg1 + ai−1g1 = 0, (ai−1, bi−1) ∈ R2. (139)

Then, by applying ∂i−1
x to (139) with i ∈ {2, . . . , d2}, we get that there exists C > 0 such that

‖∂ixgi2‖H−2i+1(qT ) ≤ C
(
‖(∂t − ∂2

x)∂i−1
x gi−1

2 ‖H−2i+1(qT ) + ‖(bi−1∂
i
x + ai−1∂

i−1
x )g1‖H−2i+1(qT )

)
,

therefore we have

‖∂ixgi2‖H−2i+1(qT ) ≤ C
(
‖∂i−1
x gi−1

2 ‖H−2(i−1)+1(qT ) + ‖g1‖L2(qT )
)
. (140)

Then, we deduce from (138) and (140) that

‖g(T, ·)‖L2(T) ≤ C
(
‖g1‖L2(qT ) + ‖∂d2

x g2‖H−2d2+1(qT )
)

≤ C

(
‖g1‖L2(qT ) +

d2∑
i=1
‖∂ixgi2‖H−2i+1(qT )

)
≤ C

(
‖g1‖L2(qT ) + ‖∂xg1

2‖H−1(qT )
)
. (141)

By using the fact that Â21 is the first vector of the canonical basis of Rd2 , see (135), the first
equation of (137) is

∂tg1 −A′∂xg1 +K11g1 + ∂xg
1
2 = 0.

Then, we obtain that
‖∂xg1

2‖H−1(qT ) ≤ C‖g1‖L2(qT ). (142)
So, we deduce from (141) and (142) the observability inequality

‖g(T, ·)‖L2(T) ≤ C‖g1‖L2(qT ),

which concludes the proof of Theorem 3 in the case d1 = 1.
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7 Parabolic control
The goal of this section is to prove Theorem 4 and to illustrate the necessity of a regularity
assumption on the initial condition.

7.1 A regularity assumption is necessary
We consider for λ ∈ R∗ the system{

∂tf̃1 + λ∂xf̃1 + ∂xf̃2 = 0, in (0, T )× T,
∂tf̃2 − ∂2

xf̃2 + λ∂xf̃2 = v(t, x), in (0, T )× T,
(143)

i.e. ω = T, d = 2, m = 1,

A =
(
λ 1
0 λ

)
, A′ = (λ), B =

(
0 0
0 1

)
, M =

(
0
1

)
,

that satisfies (H.3),(H.4) and the Kalman condition (12) because A12 = 1. By Theorem 4, any initial
condition f0 = (f01, f02) ∈ H2

m ×H2(T) is null controllable. The following statement illustrates
that

• a regularity assumption on f01 is necessary for the null controllability

• the one given by Theorem 4 is sufficient but may not be necessary.

Proposition 46. An initial condition f0 = (f01, f02) ∈ L2
m(T) × L2(T) is null controllable with

v ∈ L2((0, T )× T) if and only if f01 ∈ H1(T).

Remark 47. Similar problems of regularity between initial data and control have already been
noticed in the context of transport systems, see [1, Remark 5].

Proof. In the proof, we use the notation QT = (0, T )× Ω.
The change of variable

f̃j(t, x) = fj(t, x− λt), v(t, x) = u(t, x− λt)

leads to {
∂tf1 − ∂xf2 = 0, in (0, T )× T,
∂tf2 − ∂2

xf2 = u(t, x), in (0, T )× T. (144)

The null controllability of (f̃1, f̃2) with control v ∈ L2(QT ) is equivalent to the null controllability
of (f1, f2) with control u ∈ L2(QT ). On Fourier components, equation (144) gives the ordinary
differential equations {

d
dt f̂1(t, n) = inf̂2(t, n),
d
dt f̂2(t, n) = −n2f̂2(t, n) + û(t, n).

(145)

Let f0 = (f01, f02) ∈ L2
m(T)× L2(T). The solution writes

f̂2(t, n) = f̂02(n)e−n
2t +

∫ t

0
e−n

2(t−τ)û(τ, n) dτ,

f̂1(t, n) = f̂10(n) + in
∫ t

0
f̂2(τ, n) dτ

= f̂01(n) + i
n

(1− e−n
2T )f̂02(n) + in

∫ t

0
û(τ, n)1− e−n2(t−τ)

n2 dτ.

thus the relation f(T ) = 0 is equivalent to the moment problem∫ T
0 e−n2(T−τ)û(τ, n) dτ = −f̂02(n)e−n2T , ∀n ∈ Z,∫ T
0 û(τ, n) dτ = inf̂01(n)− f̂02(n), ∀n ∈ Z \ {0}.

(146)
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Note that the assumption
∫
T f01 = 0 implies

∫
T f1(t) = 0 for every t > 0 thus the null controllability

of this component does not require any condition on the control u.

Necessary condition: We assume f0 = (f01, f02) null controllable with a control u ∈ L2(QT ) and we
prove that f01 ∈ H1(T). By the Bessel-Parseval equality and Cauchy-Schwarz inequality,

‖u‖2L2(QT ) =
∑
n∈Z

∫ T

0
|û(t, n)|2 dt

≥
∑
n∈Z

1
T

∣∣∣∣∣
∫ T

0
û(t, n) dt

∣∣∣∣∣
2

≥
∑
n∈Z

1
T

∣∣∣inf̂01(n)− f̂02(n)
∣∣∣2 = 1

T
‖∂xf01 − f02‖2L2(T)

thus f01 ∈ H1(T).

Sufficient condition: We assume f0 = (f01, f02) ∈ H1
m × L2(T) and we construct a control u ∈

L2((0, T )× T) that steers this initial condition to 0.
Let Gn be the Grammian matrix, in L2(0, T ), of the family (w1,n, w2,n) where w1,n : τ 7→

ne−n2(T−τ) and w2,n : τ 7→ 1, i.e. (Gn)i,j =
∫ T

0 wi,n(τ)wj,n(τ) dτ for every 1 ≤ i, j ≤ 2. Then Gn
is invertible for every n ∈ Z \ {0} (because it is the Grammian matrix of a linearly independent
family) and, when |n| → ∞,

Gn ∼
(

1/2 1/n
1/n T

)
thus there exists C > 0 such that, for every n ∈ Z \ {0}, ‖G−1

n ‖ ≤ C. We take

u(τ, x) = − 1
T
f̂02(0) +

∑
n∈Z\{0}

(αnw1,n(τ) + βnw2,n(τ))einx

where (
αn
βn

)
:= G−1

n

(
−nf̂02(n)e−n2T

inf̂01(n)− f̂02(n)

)
. (147)

Then, by Bessel-Parseval equality, we have for various positive constants C depending on T ,

‖u‖2L2(QT ) = 1
T
|f̂02(0)|2 +

∫ T

0

∑
n∈Z\{0}

|αnw1,n(t) + βnw2,n(t)|2dt

≤ 1
T
|f̂02(0)|2 + C

∑
n∈Z\{0}

(
|αn|2 + |βn|2

)
≤ 1
T
|f̂02(0)|2 + C

∑
n∈Z\{0}

(
|nf̂02(n)e−n

2T |2 + |inf̂01(n)− f̂02(n)|2
)

≤ C
(
‖f01‖2H1(T) + ‖f02‖2L2(T)

)
<∞.

Thus u ∈ L2(QT ). Note that the moment problem (146) can equivalently be written∫ T
0 û(τ, n) dτ = −f̂02(0) ,∫ T
0 w1,n(τ)û(τ, n) dτ = −nf̂02(n)e−n2T , ∀n ∈ Z \ {0},∫ T
0 w2,n(τ)û(τ, n) dτ = inf̂01(n)− f̂02(n), ∀n ∈ Z \ {0}.

(148)

Thus, by (147), u solves (146).
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7.2 Proof of Theorem 4
The Kalman rank condition (12) is a necessary condition for null-controllability of (10) by the same
arguments as in Section 5.1. Thus we only explain how to complete the proof of Theorem 2 to
prove that it is a sufficient condition for null-controllability of (10). We introduce the space

F1 := Hd1+1
m (T)d1 ×Hd1+1(T)d2 , (149)

equipped with the scalar product of Hd1+1(T)d and the space

F̃1 := L2
m(T)d1 × L2(T)d2 , (150)

equipped with the scalar product of L2(T)d.
The null-controllability of the system (10) in F1 with control of the form (0, u2) ∈ {0}d1 ×

L2(qT )d2 is equivalent to the following observability inequality: for every T > T ∗, there exists
C > 0 such that, for every g0 ∈ F̃1, the solution of the adjoint system (30) satisfies

‖g(T, ·)‖2H−(d1+1)(T)d ≤ C
∫ T

0

∫
ω

|g2(t, x)|2 dx dt. (151)

where g2(t, x) ∈ Cd2 is made of the last d2 components of g(t, x).

Proof of the equivalence between the null-controllability in F1 and the observability inequality (151).
We apply the duality Lemma 14 with

Φ2 : f0 ∈ F1 7→ e−TLf0 ∈ F̃1,

Φ3 : u2 ∈ L2(qT )d2 7→ S(T ; 0, (0, u2)) ∈ F̃1.

Note that the mean value of the d1 first components is indeed zero. The null-controllability result
in F1 is equivalent to the inclusion Im(Φ2) ⊂ Im(Φ3), thus to the existence of a constant C > 0
such that for every gT ∈ F̃1

‖Φ∗2(gT )‖Hd1+1(T)d ≤ C‖Φ∗3(gT )‖L2(qT )d2 . (152)

We compute the adjoint operators of Φ2 and Φ3 thanks to the duality relation between the solution
f of (Sys) and the solution ϕ(·) = g(T − ·) of the adjoint system (30):

〈f(T ), ϕ(T )〉L2(T)d = 〈f(0), ϕ(0)〉L2(T)d +
∫ T

0

∫
ω

〈u2(t, x), ϕ2(t, x)〉dtdx. (153)

First, Φ∗3(gT ) is the restriction of the d2-last components of e(t−T )L∗gT to [0, T ] × ω. Then, by
(153) and Lemma 39 (working as in the proof of Corollary 38), the left-hand side of (152) is

‖Φ∗2(gT )‖Hd1+1(T)d = ‖e−TL
∗
gT ‖H−(d1+1)(T)d .

Thus the inequality (152) is indeed the observability inequality (151).

By using the strategy developed in Section 6, we claim that, in the case d2 = 1, it is sufficient
to prove the following result in order to prove the observability inequality (151).

Proposition 48. For every T > T ∗, there exists C > 0 such that for every g0 ∈ F̃1, the solution
g of the adjoint system (30) satisfies

‖g(T, ·)‖2H−(d1+1)(T)d ≤ C
(
‖∂d1
x g1‖2H−(d1+1)(qT ) + ‖g2‖2L2(qT )

)
. (154)
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The observability inequality (154) has to be compared to the observability inequality (131) in
Section 6. Roughly speaking, the term ‖∂d1

x g1‖H−(d1+1)(qT ) comes from the fact that we will perform
(d1 − 1) steps of elimination, each of them “costs” one derivative (instead of two in Section 6.2)
because we will use transport equations which are of order one in time and space (instead of
parabolic equations which are of order two in space variable). The last step of elimination “costs”
two derivatives because we will use a heat equation which is of order one in time and two in
space. This explains the number (d1 − 1) + 2 = d1 + 1 derivatives. By adapting the arguments of
Section 5.2.2, we can also treat the case d2 > 1.

In order to prove Proposition 48, by duality (a simple adaptation of the proof that Proposition 42
and Proposition 43 are equivalent), it is sufficient to establish the following null-controllability
result.

Proposition 49. For every f0 ∈ F1, there exists u = (uh, up) ∈ (H2d1+1
0 (qT ))d1 × L2(qT )d2 such

that S(T, f0, (∂d1
x uh, up)) = 0.

The proof of this result is an adaptation of the proof of Theorem 2:

• we prove that parabolic high frequencies are null-controllable,

• we prove that hyperbolic high frequencies are null-controllable,

• we combine these two propositions to prove that high frequencies are null-controllable,

• we finally deal with low frequencies.

For the first point, we just need a special case of the corresponding result that was used in the
proof of Theorem 2, i.e. Proposition 28.

Proposition 50. If n0 is large enough, there exists a continuous operator

Up,] : F1 ×H2d1+1
0 ((0, T ′)× ω)d1 → C∞c ((T ′, T )× ω)d2

(f0, uh) 7→ up,

that associates with any (f0, uh) ∈ F1 ×H2d1+1
0 ((0, T ′)× ω)d1 a control up = Up,](f0, uh) such that

ΠpS(T ; f0, (∂d1
x uh, up)) = 0.

Proof. Proposition 50 is a consequence of Proposition 28 because F1 ×H2d1+1
0 ((T ′, T )× ω)d2 is

continuously embedded in L2(T)d × L2((T ′, T ) × ω)d2 and ∂d1
x uh ∈ L2((0, T ′) × ω)d1 for every

uh ∈ H2d1+1
0 ((0, T ′)× ω)d1 .

For the second point, we will prove the following adaptation of Proposition 27.

Proposition 51. If n0 is large enough, there exists a continuous operator

Uh,] : F1 ×H2d1+1
0 ((T ′, T )× ω)d2→ H2d1+1

0 ((0, T ′)× ω)d1

(f0, up) 7→ uh,

that associates with any (f0, up) ∈ F1×H2d1+1
0 ((T ′, T )×ω)d2 a control uh = Uh,](f0, up) such that

ΠhS(T ; f0, (∂d1
x uh, up)) = 0. (155)

While the ideas of the proof are the same as for Proposition 27, the proof of this Proposition is
technically more delicate, as we have to build regular controls, and, on the observability side, deal
with the (slightly impractical) Hs

0 and H−s norms. We postpone the proof to the next subsection.
For now, let us assume Proposition 51 holds true, and finish the proof of Theorem 4.

We now combine Propositions 50 and 51 with the Fredholm alternative, as in the proof of
Proposition 26, to prove that high frequencies are null-controllable. That is to say, we get the
following adaptation of Proposition 26.
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Proposition 52. There exists a closed subspace G] of F1 with finite codimension and a continuous
operator

U ] : G] → H2d1+1
0 (qT )d1 ×H2d1+1

0 (qT )d2

f0 7→ (uh, up),

that associates with each f0 ∈ G] a pair of controls U ]f0 = (uh, up) such that

∀f0 ∈ G], ΠS(T ; f0, (∂d1
x uh, up)) = 0. (156)

The last step consists in showing that the null-controllability result of Proposition 49 is true
at the low frequency-level, as we have already shown for Theorem 2 in Section 4.5. All the steps
of Section 4.5 remain unchanged except the Step 6. Indeed, the unique continuation argument
transforms into: if f(t, ·) = etMf0 with (∂d1

x f1, f2) = (0, 0) in (0, ε) × ω then (∂d1
x f01, f02) =

(0, 0) thanks to the spectral inequality of Lebeau-Robbiano (98), that is to say, f0 = 0 because∫
T f01(x) dx = 0.

This concludes the proof of Proposition 49 thus the proof of Proposition 48.

7.3 Proof of Proposition 51
The proof of Proposition 51 is an adaptation of the one of Proposition 27, with the following
changes:

• we deal with the fact that we want a control of the form (∂d1
x uh, 0),

• we adapt the duality argument to take into account the regularity of the controls that we
want (it involves some H−s norms),

• we adapt all the inequalities to replace the relevant L2 norms by H−s norms,

• to build regular controls of the simple transport equation ∂tf + µ∂xf = 0, we use [1].

Step 1: reduction to an exact controllability problem. We claim that in order to prove Proposition 51,
we only have to prove the following exact controllability result.

Proposition 53. If n0 is large enough, then for every T ′ > T ∗, there exists a continuous operator

Uh,]
T ′ : F h ∩H2d1+1(T)d → H2d1+1

0 (qT ′)d1

fT ′ 7→ uh,

that associates with any fT ′ ∈ F h ∩H2d1+1(T)d, a control Uh,]
T ′ (fT ′) = uh such that

ΠhS(T ′; 0, (uh, 0)) = fT ′ .

Indeed, by the choice of support in time of the controls, and by the reversibility of e−tLh (see
Section 4.3.1 for the details), the relation (155) is equivalent to

Πh(S(T ′; 0, (∂d1
x uh, 0))) = −e(T−T ′)Lh

ΠhS(T ; f0, (0, up)).

Note that functions in F h have zero mean (see the definition of F h Eq. (51)). Thus, ∂d1
x is invertible

on F h, and its inverse ∂−d1
x is, on the Fourier side, the multiplication by (in)−d1 . Moreover, the

operator ∂x commute with Πh and the semi-group e−tL. So the relation (155) is equivalent to

Πh(S(T ′; 0, (uh, 0))) = −∂−d1
x e(T−T ′)Lh

ΠhS(T ; f0, (0, up)) =: K(f0, up). (157)

So, if Proposition 53 holds, we may choose (assuming it makes sense)

uh := Uh,]
T ′ (K(f0, up)).

Thus, to end this first step, we just have to check that the right-hand side K(f0, up) of (157) is
indeed in F h ∩H2d1+1(T)d.
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The projection Πh has range F h, and etLh sends F h to itself, as do ∂−d1
x . So K(f0, up) belongs

to F h.
The group etLh sends everyHs(T)d into itself (see Remark 13). Since Πh is just the multiplication

on the Fourier side by P h(i/n), the operator Πh also sends every Hs(T)d into itself. Thus, we just
have to check that S(T, f0, (0, up)) = e−TLf0 + S(T, 0, (0, up)) ∈ Hd1+1(T)d because ∂−d1

x sends
Hd1+1(T)d into H2d1+1(T)d.

• The function f0 belongs to Hd1+1(T) by hypothesis, so e−TLf0 also belongs to Hd1+1(T) (see
Remark 13).

• The parabolic control up belongs to H2d1+1
0 ((T ′, T ) × ω)d2 by hypothesis, thus for almost

every t ∈ (0, T ), (0, up)(t, ·) belongs to H2d1+1(T) and thus

S(T ; 0, (0, up)) =
∫ T

0
e−(T−t)L(0, up)(t) dt ∈ H2d1+1(T)d.

This concludes this first step.

Step 2: Observability inequality associated to the controllability problem of Proposition 53. Let

Φ2 := Πh ◦ ι2d1+1 : H2d1+1(T)d → L2(T)d

be the restriction of Πh to H2d1+1(T)d and

Φ3 := Πh ◦ FT ′ ◦ (ι2d1+1, 0) : H2d1+1
0 (qT ′)d1 → L2(T)d,

where (ι2d1+1, 0) stands for the map uh ∈ H2d1+1
0 (qT ′)d1 7→ (uh, 0) ∈ L2(qT ′)d. Note that Φ2 and

Φ3 are continuous.
The controllability problem of Proposition 53 is equivalent to the inclusion Im(Φ2) ⊂ Im(Φ3).

Therefore, according to the duality Lemma 14, it is equivalent to the following inequality: there
exists C > 0 such that for every g0 ∈ L2(T)d, ‖Φ∗2g0‖H2d1+1(T)d ≤ C‖Φ∗3g0‖H2d1+1

0 (qT ′ )d
. Since Πh∗

is a projection on F̃ h, since F∗T ′g0 is the restriction of the first d1 components of e−(T ′−t)L∗g0 to
qT ′ , and since ι∗s is an isometry between Hs

0 and H−s,9 this inequality reads: there exists C > 0
such that for every g0 ∈ F̃ h, the solution g = e−tL∗g0 of the adjoint system (30) satisfies

‖g0‖H−2d1−1(T)d ≤ C‖g1‖H−2d1−1(qT ′ )d1 , (158)

where g1 are the first d1 components of g.
Let g0 ∈ F̃ h. For the remaining of this proof, we use the notations of Section 4.3.2, and in

particular we introduce the decompositions (70) and (71). In the following arguments, the constants
C do not depend on g0.

Step 3: We prove the observability inequality (158) assuming that, for every µ ∈ Sp(A′), there exists
C > 0 such that the solution G[µ of (79) satisfies

‖Gµ(0, ·)‖H−(2d1+1)(T) = ‖G[µ(0, ·)‖H−(2d1+1)(T) ≤ C‖G[µ‖H−(2d1+1)(qT ). (159)

We will prove (159) in Step 3.
We proceed as in the proof given in Section 4.3.2. By the explicit expression (75) of Sµ and

Bessel-Parseval identity, there exists C = C(T ′) independent of g0 such that

‖Sµ‖L∞((0,T ′),H−(2d1+1)(T)d) ≤ C‖g(0, ·)‖H−(2d1+2)(T)d . (160)

Using the Duhamel formula, we obtain that the function G̃µ defined by (77) satisfies

‖G̃µ −G[µ‖L∞((0,T ′),H−(2d1+1)(T)d)

≤ C‖etR
h
µ(0)∗Sµ‖L1((0,T ′),H−(2d1+1)(T)d) ≤ C‖g0‖H−(2d1+2)(T)d . (161)

9See Lemma 39, and also recall that because T has no boundary Hs
0(T) = Hs(T).
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By (159), the triangular inequality, (77) and (161), we deduce that

‖Gµ(0, ·)‖H−(2d1+1)(T)d ≤ C
(
‖G̃µ‖H−(2d1+1)(qT ′ )d + ‖G̃µ −G[µ‖H−(2d1+1)(qT ′ )d

)
≤ C

(
‖Gµ‖H−(2d1+1)(qT ′ )d + ‖g0‖H−(2d1+2)(T)d

)
.

(162)

Using Bessel-Parseval identity and the decomposition (82), we obtain

‖Gµ − P h
µ (0)∗g‖L∞((0,T ′),H−(2d1+1)(T)d) ≤ C‖g0‖H−(2d1+2)(T)d . (163)

We deduce from (162), the triangular inequality and (163) that

‖Gµ(0, ·)‖H−(2d1+1)(T)d ≤ C
(
‖P h

µ (0)∗g‖H−(2d1+1)(qT ′ )d + ‖g0‖H−(2d1+2)(T)d
)
.

Taking into account that P h
µ (0)∗ = P h

µ (0)∗P h(0)∗, we get10

‖P h
µ (0)∗g‖H−(2d1+1)(qT ′ )d ≤ |P

h
µ (0)∗|‖P h(0)∗g‖H−(2d1+1)(qT ′ )d ≤ C‖g1‖H−(2d1+1)(qT ′ )d1 .

Using (71), the triangular inequality and the previous two estimates, we obtain

‖g0‖H−(2d1+1)(T)d

≤
∑

µ∈Sp(A′)

‖Gµ(0, ·)‖H−(2d1+1)(T)d ≤ C
(
‖g1‖H−(2d1+1)(qT ′ )d1 + ‖g0‖H−(2d1+2)(T)d

)
. (164)

Proceeding as in the end of the proof given in Section 4.3.2, the inequality (164), together with a
compactness-uniqueness argument, end Step 2.

Step 4: We prove that the solution G[µ of (79) satisfies (159). By duality, it is actually enough to
prove the following exact-controllability result.

Proposition 54. Let ω = (a, b) and T ′ > 2π−(b−a)
|µ| . For every (f0, fT ′) ∈ (H2d+1(T)d)2, there

exists u ∈ H2d1+1
0 (qT )d such that the solution f of{

∂tf + µ∂xf = u1ω in QT ′ ,
f(0, ·) = f0 in T, (165)

satisfies f(T ′, ·) = fT ′ .

To prove Proposition 54, we will use the following lemma, which is an easy adaptation of [1,
Lemma 2.6].

Lemma 55. Let ω = (a, b) and T ′ > 2π−(b−a)
|µ| . Then, there exists δ > 0 small enough and a

cut-off function η ∈ C∞([0, T ′]× [0, 2π]) with

η = 0 in [0, T ′]× [0, 2π] \ ((δ, T ′ − δ)× (a+ δ, b− δ)), (166)

such that, for every x ∈ [0, 2π],

Qx :=
∫ T ′

0
η(s, x+ µs)ds 6= 0. (167)

Remark 56. We assumed that the function η is extended by 2π-periodicity in the spatial variable.
Now, we give the proof of Proposition 54 thanks to Lemma 55.

10Remark that if K is a matrix and f ∈ (H−s)d, then ‖Kf‖H−s ≤ |K|‖f‖H−s . Indeed, noting 〈·, ·〉 the duality
between Hs

0 and H−s, we have for every g ∈ Hs
0 , 〈Kf, g〉 = 〈f,K∗g〉 ≤ ‖f‖H−s‖K∗g0‖Hs0 ≤ ‖f‖H−s |K

∗|‖g0‖Hs0 ,
and taking the supremum over ‖g‖Hs0 = 1, we do have ‖Kf‖H−s ≤ |K∗|‖f‖H−s .
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Proof of Proposition 54. We take the control

u(t, x) = η(t, x)Q−1
x−µt(fT ′(x)− f0(x− µt)). (168)

We easily check that the control u belongs to Hk
0 (qT ) by using the support of η (166), and the

regularity of the three functions η, fT ′ and f0. Let f be the solution of (165) with initial data f0
and control u defined in (168). We just have to check that f satisfies f(T ′, ·) = fT ′ . We write the
solution along the characteristic, that is to say

d
dtf(t, x+ µt) = u(t, x+ t) = η(t, x+ µt)Q−1

x (fT ′(x+ µt)− f0(x)).

By integrating in space between 0 and T ′ and by using the defintion of Qx (167), we obtain

f(T ′, ·+ µT ′)− f(0, ·) = fT ′(·+ µT ′)− f0(·),

then f(T ′, ·) = fT ′ which concludes the proof of Proposition 54. ♦

This ends the proof of Proposition 53.

Appendix A Proof of the estimate on some operators on
polynomials

Proof. To prove Theorem 23, it is enough to prove the estimate (45). Let K and V be as in
Theorem 23.

Let us fix R′ > 0 large enough so that V ⊂ D(0, R′). Let f be any entire function that we write
f(z) =

∑
fnz

n. According to Cauchy’s integral formula, we have fn = 1
2iπ
∮
∂D(0,R′) ζ

−n−1f(ζ) dζ.
Then,

Hγ(f)(z) =
∑
n

γ(n)fnzn

=
∑
n

γ(n) 1
2iπ

∮
∂D(0,R′)

f(ζ)
ζn+1 z

n dζ

=
∮
∂D(0,R′)

1
2iπζKγ

(
z

ζ

)
f(ζ) dζ, (169)

with
Kγ(ζ) :=

∑
γ(n)ζn. (170)

According to the subexponential growth of γ(n), the Taylor series in (170) converges for |z| < 1.
We will prove that it can be analytically extended to C \ [1,+∞).

Proposition 57. Let γ ∈ Sd×dR . Then, Kγ can be extended to a holomorphic function on C\[1,+∞).
Moreover, γ ∈ Sd×dR 7→ Kγ ∈ O(C \ [1,+∞))d is continuous, i.e. for every compact subset K of
C \ [1,+∞), there exist C > 0 and a seminorm pε of Sd×dR such that for every γ ∈ Sd×dR ,

‖Kγ‖L∞(K) ≤ Cpε(γ). (171)

Let us finish the proof of Theorem 23 before proving Proposition 57. Let us remind that V
is a neighborhood of K that is star-shaped with respect to 0. So, we can choose V ′ a smooth,
open, star-shaped with respect to 0 neighborhood of K such that V ′ ⊂ V . Let c = ∂V ′ with
clockwise orientation. Since V ′ is star-shaped with respect to 0, for z ∈ V ′ and ζ ∈ c, we never
have z/ζ ∈ [1,+∞), so K(z/ζ) is well-defined. This justifies the change of integration path in the
expression of Hγ as a kernel operator (169) from ∂D(0, R′) to c. Therefore, we have

|Hγ(f)(z)| = 1
2π

∣∣∣∣∮
c

1
ζ
Kγ

(
z

ζ

)
f(ζ) dζ

∣∣∣∣
≤ length(c)

2π sup
ζ∈c
|ζ|−1 sup

z∈K, ζ∈c

∣∣∣∣Kγ

(
z

ζ

)∣∣∣∣‖f‖L∞(c).
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According to the estimation (171) on the kernel Kγ applying with the compact K ← K ′ :=
{z/ζ ; (z, ζ) ∈ K × c}, there exists C > 0 and ε > 0 independent of γ such that

sup
z∈K, ζ∈c

∣∣∣∣Kγ

(
z

ζ

)∣∣∣∣ ≤ Cpε(γ).

So,
|Hγ(f)(z)| ≤ C ′pε(γ)‖f‖L∞(c) ≤ C ′pε(γ)‖f‖L∞(V ).

This is the inequality (45) we wanted to prove.

Proposition 57 was essentially already proved by Lindelöf [21, Ch. V], and then slightly generalized
by Arakelyan in [4] and rediscovered by the second author in [17]. We will use here Lindelöf’s
method, based on the Residue theorem, instead of the method based on the Poisson summation
formula in [17].

Proof of Prop. 57. Let U be a bounded open subset of C \ [1,+∞). We note K the closure of U .
We want to extend Kγ to a holomorphic function on U and prove the estimate (171).

First, since the Taylor series
∑
γ(n)zn defining Kγ(z) converges for |z| < 1, it is enough to do

so for every bounded subset U of C \ R+.
The idea is to chose the right path Γ so that thanks to the Residue Theorem, Kγ(z) is equal to

∑
n>R

γ(n)zn = 1
2iπ

∫
Γ

γ(ζ)zζ

e2iπζ − 1 dζ. (172)

and then prove that the right hand side of (172) is defined for z ∈ C \ R+.

Step 1: the estimate on the integrand. As a technical preparation, we prove an elementary estimate
on gz(ζ) := zζ(e2iπζ − 1)−1. We claim that for every δ > 0, there exists Cδ > 0 such that if for
every ζ such that distance(ζ,Z) ≥ δ > 0 and z ∈ C \ R+,

|gz(ζ)| ≤ Cδe<(ζ) ln|z|−|=(ζ)| arg(z) if =(z) > 0,
|gz(ζ)| ≤ Cδe<(ζ) ln|z|−|=(ζ)|(2π−arg(z)) if =(z) < 0,

(173)

where we chose arg(z) ∈ (0, 2π).
If distance(ζ,Z) > δ, we have

|e2iπζ − 1|−1 ≤ Cδ if =(ζ) > 0,
|e2iπζ − 1|−1 ≤ Cδe2π=(ζ) if =(ζ) < 0.

Then since zζ = eζ ln(z), we have

|zζ | = e<(ζ ln(z)) = e<(ζ) ln |z|−=(ζ) arg(z).

By gathering these two upper-bounds, we deduce (173).

The choice of the path Γ. We see from the estimate (173) that for the integral to converge, we need
to minimize <(ζ) along the integration path. We choose R′ between R and bRc+ 1 (so that R′ is
not an integer) and we choose the path Γ to be {R′ − it, t ∈ R}.

Step 2: the Residue theorem. We first prove that the integral representation (172) of Kγ holds for
|z| < 1, z /∈ [0, 1).

For k ∈ N∗, let Γk be the positively oriented boundary of the half-disk {|ζ−R′| < k,<(ζ) > R′}
(see Fig. 2).

Note that (e2iπζ − 1)−1 has residues 1 at every ζ ∈ Z. Then, according to the Residue theorem,
we have for every k ∈ N∗, and z ∈ C,∑

R′<n<R′+k
γ(n)zn = 1

2iπ

∮
Γk

γ(ζ)zζ

e2iπζ − 1 dζ. (174)
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1 2 3 4 · · ·

Γk

k +R′R′

Γ Figure 2 – In red, the domain of definition
of γ. In blue, the integration path for
the Residue theorem in (174). By taking
k (the radius of the half-circle) going to
+∞, we prove that the integral on the
“half-circle” part of Γk tends to 0. So the
integral on Γk tends to the integral on the
vertical line Γ = {<(ζ) = R′} in black in
the right figure.

For |z| < 1, z /∈ [0, 1), we want to take the limit k → +∞. To that end, we prove the integral
on the “half-circle” part of γk tends to 0 as k → +∞. Note that all paths Γk stay at distance δ > 0
from Z, so we can apply the estimate (173). Note also that for such z, we have

cz := min(− ln |z|,− arg(z), arg(z)− 2π) > 0.

So, for every ε > 0 and <(ζ) > 0, we have the estimate on the integrand

|γ(ζ)gz(ζ)| ≤ Cδ|γ(ζ)|e−cz(<(ζ)+|=(ζ)|) ≤ Cδpε(γ)e−(cz−ε)|ζ|,

where we used that |ζ| ≤ |<(ζ)|+ |=(ζ)| and the definition of the seminorms of Sd×dR for the second
inequality.

We take ε = cz/2. So, if ζ = R′ + keiθ is in the “half-circle” part of γk, we have

|γ(ζ)gz(ζ)| ≤ CδeR
′cz/2pε(γ)e−(cz/2)k.

So we have the following upper-bound, valid for every k ∈ N∗ and ε > 0:∣∣∣ ∫|ζ−R′|=k
<(ζ)>R′

γ(ζ)gz(ζ) dζ
∣∣∣ ≤ Cδpε(γ)πke−(cz/2)k.

We see that this integral decays exponentially as k → +∞.
Coming back to the residue theorem of (174), the left-hand side has a limit for k → +∞. So,

the right-hand side also has a limit for k → +∞, and since the integral on the half-disk tends to 0,
we do have ∑

n>R

γ(n)zn = 1
2iπ

∮
Γ

γ(ζ)zζ

e2iπζ − 1 dζ,

which is what we wanted.

Step 3: the integral representation defines a holomorphic function for z /∈ R+. We again use the
upper bound (173) on gz. Let z /∈ R+ and ζ = R′ − it in the integration path. We also define
c′z = min(arg(z), 2π − arg(z)) > 0. We have according to the upper-bound (173)

|γ(ζ)gz(ζ)| ≤ Cδpε(γ)|ζ|R
′
e−(c′z−ε)|t|. (175)

So, the integrand in (172) is indeed integrable with respect to t. Moreover, this upper-bound is
uniform in σ < arg(z) < 2π − σ for every σ > 0. So, the integral in (172) is holomorphic in C \ R+
by the theorem of holomorphy under the integral sign.
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Step 4: continuity with respect to γ. We want to prove that for every compact set X of C \ [1,+∞),
there exists C > 0 and ε > 0 such that for every γ ∈ Sd×dR ,

‖Kγ‖L∞(X) ≤ Cpε(γ). (176)

As we saw in the previous steps, the case z ∈ [0, 1) cannot be handled with the integral
representation. This is a minor inconvenience. To circumvent it, we write X as a union X1∪X2 of a
compact subset X1 of D(0, 1) and of a compact subset X2 of C \R+, and we estimate ‖Kγ‖L∞(X1)
and ‖Kγ‖L∞(X2) separately.

We start with ‖Kγ‖L∞(X2). There exists σ > 0 such that X2 ⊂ {σ < arg(z) < 2π − σ}. Then,
with the notation of the previous step, for every z ∈ X2, we have

c′z = min(arg(z), 2π − arg(z)) > σ.

Then, according to the upper bound (175) of the previous step, we have for every ε < σ and z ∈ X2:

|Kγ(z)| ≤ 2Cδpε(γ)
σ − ε

.

Estimating ‖Kγ‖L∞(X1) is done by bounding termwise the series defining Kγ(z): if |z| < eε, we
have

|Kγ(z)| ≤ pε(γ)
∑
n>R

|z|neεn = pε(γ) |z|
bRc+1

1− |z|eε .

This proves that γ 7→ Kγ is continuous, and concludes the proof of Prop. 57.
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