
HAL Id: hal-02190890
https://hal.science/hal-02190890v1

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A First Experimental Study on Functional Dependencies
for Imbalanced Datasets Classification

Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici

To cite this version:
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici. A First Experimental Study on Functional
Dependencies for Imbalanced Datasets Classification. 12th International Workshop on Information
Search, Integration, and Personalization (ISIP2018), May 2018, Fukuoka, Japan. �10.1007/978-3-030-
30284-9_8�. �hal-02190890�

https://hal.science/hal-02190890v1
https://hal.archives-ouvertes.fr

A First Experimental Study on Functional
Dependencies for Imbalanced Datasets

Classification

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

Université de Lyon, CNRS, INSA-LYON, LIRIS, UMR5205
F-69621, Villeurbanne, France

{marie.le-guilly, jean-marc.petit, marian.scuturici}@insa-lyon.fr

Abstract. Imbalanced datasets for classification is a recurring problem
in machine learning, as most real-life datasets present classes that are
not evenly distributed. This causes many problems for classification al-
gorithms trained on such datasets, as they are often biases towards the
majority class. Moreover, the minority class often yields more interest
for data scientist, when at the same time it is also the hardest to predict.
Many different approaches have been proposed to tackle the problem of
imbalanced datasets: they often rely on the sampling of the majority
class, or the creation of synthetic examples for the minority one. In this
paper, we take a completely different perspective on this problem: we
propose to use the notion of distance between databases, to sample from
the majority class, so that the minority and majority class are as distant
as possible. The chosen distance is based on functional dependencies,
with the intuition of capturing inherent constraints of the database. We
propose algorithms to generate distant synthetic datasets, as well as ex-
perimentations to verify our conjecture on the classification on distant
instances. Despite the mitigated results obtained so far, we believe this
is a promising research direction, at the intersection of machine learning
and databases, and it deserves more investigations.

1 Introduction

Databases, machine learning and data mining, are very important domains in
computer science. With the recent context of Big Data, they are receiving an
increased interest and experiencing an important expansion, both in academia
and industry. However, as important as they all are, they have tended to grow
in parallel, with limited interactions with one another.

There is everything to gain in bringing those domains together, and com-
bining them to propose innovative solutions: this argumentation was already
defended in 1996 in [14], and has since been followed in recent works trying to
increase the permeability between these domains. Among those, some have tried
to make use of machine learning algorithms to improve the use of databases,
with query discovery [24], query inference [6], or query rewriting [9]. Others are
trying to integrate machine learning into databases such as [26] or [10].

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

On the one hand, data dependencies are a powerful notion, that has been
thoroughly studied for both relational databases and data mining. It has been
applied in various situations, from the discovery of data quality rules [8] to
association rule mining [2]. On the other hand, supervised classification is a long
studied problem in machine learning.

This paper investigates whether or not those two independent domains can
benefit from one another. Indeed, existing supervised learning solutions [19] do
not seem to make any use of data dependencies. Is there a reason for this, and
is it possible to find supervised classification problem that would be suited for
the use of data dependency ?

Data dependencies, and more specifically functional dependencies, give global
constraints on a dataset: they describe constraints between attributes, and in
some way describe the structure of a given relation. If two relations are defined
on the same schema, they might satisfy similar dependencies, or even the exact
same one, or on the opposite completely different ones: quantifying this difference
of functional dependencies, with some sort of metric or distance, is then a way
to evaluate the similarity of two relations in terms of structure and underlying
patterns. With such a distance, which is then more semantic than ”traditional”
distances (e.g. euclidean, Manhattan, ...), interesting sub-problems of supervised
classification could be addressed with a new approach. In particular, it can be
interesting to look at the problem of imbalanced datasets: this happens in binary
classification, when one class is much bigger than the other. In this situation,
classifiers are biased and tend to always predict the majority class as there are
many more examples of it. But often the minority class is actually much more
interesting and is the one that data analysts want to predict accurately. One
example of this is a dataset of banking transactions, which only contains a tiny
proportion of fraudulent transactions, against thousands of regular ones. But
this tiny portion is still much more interesting as they are the one that are
crucial to detect !

Dealing with imbalanced datasets is a common issue in machine learning,
and various strategies have been proposed [18]. Among those, a common one
is the undersampling of the majority class: select only a subset of examples
in it, such that its size is similar to the one of the minority class. There are
several undersampling strategies: basic random sampling, identifying clusters in
the majority class, ... But to the best of our knowledge, there is no technique
that makes use of global constraints for imbalanced datasets. Using the notion
of a distance based on data dependencies, and selecting distant tuples (or on the
contrary close ones), makes sense: such an undersampling strategy could provide
a disruptive approach to the imbalanced dataset problem, by not only looking
at data values but also at the structural properties of data.

The general idea is to compute a set of functional dependencies satisfied by
the minority class, and compute the set of functional dependencies that are as
distant (or close) as possible from it.

The challenge is then to identify the tuples in the majority class that, to-
gether, satisfy exactly (or as many as possible) this set of dependencies. This is

Experimental Study on FDs for Imbalanced Datasets Classification

not a trivial problem, and it raises several combinatorial challenges. Moreover,
it is based on this notion of semantic distance based on data dependencies: it
makes the study of such a problem really ambitious but also quite perilous. As
a first step, it is therefore possible to consider several subproblems, that can be
summarized as follow:

Is it easier to classify imbalanced datasets between distant relations ?
And can functional dependencies help to identify better balanced classi-
fication datasets ?

In this paper, we present our ongoing work, to partially answer these two
difficult questions. Our approach works as follows: instead of getting dependen-
cies from existing data, we propose to first determine the required constraints
in order to then generate synthetic data accordingly. We can then refine our
problem statement:

Is it possible to find synthetic datasets verifying this conjecture: datasets
that are distant in terms of DF are easier to classify ?

To answer this, the contributions of this paper are then :

– The use of a semantic distance based on functional dependencies and closure
systems, as described in [17].

– The construction of a synthetic imbalanced dataset such that the distance
between the minority and the majority class is maximum.

– Experimentations, applying various classification models, to compare classi-
fiers performances when discriminating between the different relations gen-
erated.

The purpose is first to point out if synthetic relations generated as distant
are easier to classify than random relations. Then, further experimentations
verify how well classifier trained on such relation adapt when tested on the
imbalanced dataset. The obtained results are mitigated, reflecting the difficulty
of the new problem presented in this paper. Even if further investigations will be
necessary in future works, especially regarding the values of the synthetic data,
we believe that we propose a first attempt at tackling an important problem at
the intersection of machine learning and databases.

Section 2 introduces the necessary preliminary notions required to under-
stand the paper. Then section 3 explicits the notion of distance between instances
of a database, and explains the intuitions lying behind it. Sections 4 describes
the generation strategies, from closure systems to imbalanced dataset. Based on
this, experimentations are detailed in section 5, comparing different approaches,
and testing the conjecture of this paper on various classification algorithms. Fi-
nally, section 6 offers a discussion on the presented approach and related works,
as well as a conclusion.

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

2 Preliminaries

We first recall basic notations and definitions that will be used throughout the
paper. It is assumed that the reader is familiar with databases notations (see
[20]).

Let U be a set of attributes. A relation schema R is a name associated with
attributes of U , i.e. R ⊆ U . A database schema R is a set of relation schemas.

Let D be a set of constants, A ∈ U and R a relation schema. The domain of
A is denoted by dom(A) ⊆ D. A tuple t over R is a function from R to D. A
relation r over R is a set of tuples over R. The active domain of A in r, denoted
by ADOM(A, r), is the set of values taken by A in r. The active domain of r,
denoted by ADOM(r), is the set of values in r.

We now define the syntax and the semantics of a Functional Dependency
(FD).

Let R be a relation schema, and X,Y ⊆ R. A FD on R is an expression of
the form R : X → Y (or simply X → Y when R is clear from context)

Let r be a relation over R and X → Y a DF on R. X → Y is satisfied in r,
denoted by r |= X → Y , if and only if for all t1, t2 ∈ r, if t1[X] = t2[X] then
t1[Y] = t2[Y].

Many concepts have been defined on set of FDs, some of them are presented
below.

Let F be a set of FDs on U and X ⊆ U . The closure of X w.r.t F , denoted
by X+

F , is defined as : X+
F = {A ∈ U | F |= X → A} where |= means ”logical

implication”. X is closed w.r.t F if X+
F = X. The closure system CL(F) of F is

the set of closed sets of F : CL(F) = {X ⊆ U |X = X+
F }

There exists a unique minimal subfamily of CL(F) irreducible by intersection,
denoted by IRR(F), and defined as follows:

– IRR(F) ⊆ CL(F), U 6∈ IRR(F)

– for all X,Y, Z ∈ IRR(F), if X ∩ Y = Z, then X = Z or Y = Z.

Finally, the concept of Armstrong relations [3] allows to obtain relations
satisfying a set of functional dependencies, and only those dependencies. Let
F be a set of FD on R. A relation r on R is an Armstrong relation for F if
r |= X → Y if and only if F |= X → Y .

There exists a relationship between Armstrong relations and closure systems
[4]. First, agree sets have to be defined. Let r be a relation over R and t1, t2 ∈ r.
Given two tuples, their agree set is defined as: ag(t1, t2) = {A ∈ R|t1[A] = t2[A]}.
Given a relation, their agree sets are then: ag(r) = {ag(t1, t2)|t1, t2 ∈ r, t1 6= t2}.

Then, the relationship can be given as a theorem [4]:

Theorem 1 Let F be a set of FDs on R and r be a relation over R.
r is an Armstrong relation for F if and only if IRR(F) ⊆ ag(r) ⊆ CL(F)

Experimental Study on FDs for Imbalanced Datasets Classification

3 Distance between databases

The notion of distance has been studied for years. In computer science, distances
are often required, especially in machine learning, for example for Clustering
algorithms or K-nearest-neighbors (see [13]). It is possible to define distances
between numerical values, vectors, but also words, sentences, ... However, the
notion of distance between databases is not a notion that seems to have been
given much attention. A first attempt can be found in [21], that proposes an
update distance between databases, similarly to the edit distance for strings:
the distance between two databases is the minimal number of modification op-
erations to be applied to one database to obtain the other one. However, this
distance is not symmetric, and is mostly defined for cases of multiple replications
of a database, when the same database is dulicated and modified at different
places.

Another definition of distance between databases is given in [17]. This dis-
tance is defined in terms of functional dependencies, using the notion of closure
systems. Formally, the distance between two databases, instances of the same
schema, is defined as follows:

Definition 1 [17] Let r1 and r2 be two relations over R, and F1 (respectively
F2) the FDs statisfied in r1 (respectively r2). The distance between r1 and r2 is:

d(r1, r2) = |CL(F1)4 CL(F2)|

where A4B denotes the symmetric difference of the two sets, i.e:

A4B = A \B ∪B \A.

This definition can be puzzling at first, and it is necessary to understand
the intuitions that lie behind it. Closure systems are intimately related to func-
tional dependencies: therefore similar closure systems lead to similar FDs, and
vice-versa. As a consequence, regardless of the values taken by the values of
the instances, this distance characterizes the similarity of two sets of functional
dependencies. Indeed, distant relations tend to have opposite FDs, while close
ones will have similar or even shared FDs.

Moreover, the following property holds:

Property 1 [17] Let |R| = n. Then d(r1, r2) ≤ 2n − 2 for any two instances of
schema R.

Example 1 Let’s take the two following closure systems:

– CL1 = {ABC,AB,AC,A, ∅}
– CL2 = {ABC,BC,B,C, ∅}

For two relation r1 and r2 with respective closure systems CL1 and CL2, the
distance is:

d(r1, r2) = |{AB,AC,A,BC,B,C}| = 23 − 2 = 6

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

r1 is a far as possible from r2 and vice-versa. Moreover, they respect the
following sets of functional dependencies:

– r1 |= {B → A,C → A}
– r2 |= {A→ BC}

This illustrates this intuition of ”opposites” functional dependencies in dis-
tant relations.

This notion of distance between databases is clearly semantic: it does not
look at all at the domains of the relation’s attributes, or at their types. Instead,
it captures underlying patterns and structure, through functional dependencies,
and evaluates the distance between relations as the similarity in terms of such
structure and patterns between them.

This is exactly the semantic distance that gives an indication of how two re-
lations are distant regarding their functional dependencies. The strong semantic
meaning carried by this distance could match the needs required for the problem
defined in this paper as motivated in the introduction.

4 Imbalanced datasets generation

In order to verify the conjecture that distant relations, in terms of functional
dependencies, should be easier to classify, a five step process is proposed. The idea
is to recreate the conditions of an imbalanced dataset, simulating two different
sub-samples r+ and s from a majority class Z, to compare their classification
against a minority class r−. More specifically, we simulate an imbalanced dataset,
where r+ and s are two different samples of Z, generated with two different
strategies: tuples in s are selected at random from Z, while r+ is generated to
be as distant from r− as possible. The structure of those different relations is
outlined on figure 1.

We follow the following process:

Step 1: For a given schema R = {A1, ..., An} of size n, create two closure
systems CF+ and CF−, as close as possible in size, but as different as
possible in terms of attribute set.

Step 2: From step 1, generate two Armstrong relations r+ and r− for CF+

and CF−.
Step 3: Apply a classification model to discriminate between r+ and r−.
Step 4: Create a synthetic majority relation Z over R, from which r+ is

supposed to be a sample.
Step 5: Sample Z to get s, such that |s| = |r−|, and classify between s and

r−.

The objective is to see if the performances of classifiers are better when
discriminating between r+ and r−, two relations constructed using ”opposite”
functional dependencies, than between |s| and |r−|, where s is ”only” a random

Experimental Study on FDs for Imbalanced Datasets Classification

Fig. 1. Generation process for random data

sample. This approach raises several questions and sub-problems, that are ad-
dressed in the following sections. As expected, the most crucial one is the data
values taken to build r−, r+ and therefore Z. Indeed, by definition, FDs care
about data equality, but independently of the data values themselves. However,
the classification algorithms do care about them, and therefore the generation
strategy might modify the results obtained in our experiments. It is therefore
important to approach this problem carefully.

4.1 Synthetic closure systems generation

The first problem is to generate two closure systems such that 1) the size of their
symmetric difference is maximum and 2) the sizes of the two closure systems is
as close as possible. This is not a trivial problem: given a schema R of size n,
many different closures system can be obtained satisfying this condition.

This problem is interesting and difficult, but is not the center of our paper.
To be able to generate automatically two closure systems with a maximized
symmetric difference, we propose algorithm 1. It uses a level-wise (top-down)
breadth-first approach strategy on P(R):

The algorithm works as follows:

– The two closure systems are initialized with R as it necessarily belongs to
each of them.

– At a given level, all elements that do not belong in either CF− or CF+

are considered as available candidates for insertion in one of the closure
systems. They are selected in a random order, so that each execution of the
algorithm does not ensure to produce the same result. This way, we can
obtained various closure systems to work with.

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

– Before inserting an element e, it is necessary to verify if its insertion would
satisfy the properties of a closed set. Thus, if the intersection of an element
e with any of the elements of same size in CF− is an element from CF+,
then e has to be added to CF+, and vice-versa.

– Otherwise an element is added to the closed set with the smallest number of
elements. This is to obtain the closest possible size between CF− and CF+.

– Once it is decided in which set an element is added, it is also necessary to
add all its intersections with elements of same size that already are in the
closure system: this is the role of the recursive function add.

Algorithm 1: Closure systems generation procedure

1 procedure ClosureSystems (R);
Input : A schema R
Output: Two closure systems CF− and CF+ such that

CF− 4 CF+ = 2|R| − 2
2 CF− = {R, ∅}
3 CF+ = {R, ∅}
4 for l = |R| to l = 1 do
5 available = {e ∈ P(R)| |e| = l, e 6∈ CF− and e 6∈ CF+}
6 for each e in available do
7 if ∃a ∈ inter(e, CF−) such that a ∈ CF+ then
8 add(CF+, e)
9 end

10 else if ∃a ∈ inter(e, CF+) such that a ∈ CF− then
11 add(CF−, e)
12 end
13 if e 6∈ CF− and e 6∈ CF+ then
14 if |CF−| < |CF+| then
15 add(CF−, e)
16 end
17 else
18 add(CF+, e)
19 end

20 end

21 end

22 end
23 return CF1, CF2

24 Function add(CF, e):
25 sameSize = {a ∈ CF |length(a) = length(e)} for a ∈ sameSize do
26 i = a ∩ e
27 if i 6∈ CF then
28 add(CF, i)
29 end

30 end

Experimental Study on FDs for Imbalanced Datasets Classification

The idea behind this algorithm is, given a schema R, to divide evenly all
elements from P(R) into the closure systems. Therefore, they can not be con-
stituted at random, and the insertion of an elements in a closed set has to
guaranty some properties, especially regarding the closure by intersection. This
algorithm allows to obtain diverse closure systems even for schema of consequent
size, automatizing a task which is not feasible ”manually”. This turns out to be
valuable for experimentations, as various closure systems, and therefore various
relations, can be tested using this algorithm. It should however be noted that
this algorithm has an exponential complexity in the size of R, that limits the
size of schema that can be used, if the closure systems are to be obtained in a
reasonable amount of time. In practice, we set |R| = 12 in our experimentations.

4.2 Data generation from closure systems

Once two closure systems are generated it is quite easy to derive relations from
them, using Armstrong relations, as explained in [3]. Indeed, the structure of
an Armstrong relation for a set of functional dependencies is a problem that as
already been addressed (see [4]). It relies on the results of theorem 1.

Given a closure system, an Armstrong relation is defined with a reference
tuple t0 to encode each member of the irreducible set obtained from the closure
system with respect to this reference: for a tuple t encoding the ith element X,
t[X] = t0[X] and t[A] = i, with A ∈ R \X.

Example 2 Let’s take the first closure systems from example 1:

CF− = {ABC,AB,AC,A, ∅} and IRR− = {ABC,AB,AC}

Relation r− is derived from CF−:

r− A B C encodes
0 0 0 reference
0 0 1 AB
0 2 0 AC

In our setting, the situation is slightly more complicated, as there are two
closure systems. Therefore it implies to make some additional choices regarding
the generation of relations, especially the second one. The future use of those
relations, i.e for classification problems, should also be taken into account.

Indeed, there is a balance to be found, in order to obtain a convincing clas-
sification dataset: the dataset should have two classes, so that their values are
not completely similar, but also such that the problem to solve is not trivial,
meaning the two classes should overlap in some way.

In particular, there is the question of the reference value for the second re-
lation: it could be the same for both of them. But that would mean that the
two relations would have one tuple in common, and a great number of similar
tuples, as they would use the same values and therefore have the exact same

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

active domain. Moreover, if in one relation, all the tuples share the same refer-
ence value, the classification problem might become too trivial, as the algorithm
might be biased toward learning weather or not this specific reference value ap-
pears in a tuple, and therefore discriminate between the classes solely based on
their respective reference value.

This balance is a crucial point of our process, that deserves more investiga-
tions in future works. In this paper, we propose two elements to address this
problem:

– For one relation, the reference value to use is based on the previous tuple
that was inserted in the relation.

– The two relations do not share any common reference value

We formalize our approach in algorithm 2, that details how the relations are
created in order to respect the given constraints.

Algorithm 2: Relations generation given two closure systems

1 procedure RelationsFromCS (R, CF−, CF+);
Input : A schema R, two closures systems CF− and CF+

Output: Two relations r− and r+ with respective closure systems CF−

and CF+ and overlapping active domains
2 n = |R|
3 values = [0...2n + 2]
4 r− = ArmstrongRelation(CF−, values, n)
5 r+ = ArmstrongRelation(CF+, values, n)
6 return r−, r+

7 Function ArmstrongRelation(CF, values, n):
8 r ← |R| ∗ |CF | matrix
9 refvalue = random(values)

10 values.remove(refvalue)
11 tref = [refvalue] * n
12 r[0] = tref
13 i = 1
14 for each e ∈ CF do
15 randomvalue = random(values)
16 values.remove(randomvalue)
17 t = [randomvalue] * n
18 for each X ∈ e do
19 t[X] = r[i− 1][X]
20 end
21 r[i] = t
22 i + +

23 end
24 return r

It works as follows:

Experimental Study on FDs for Imbalanced Datasets Classification

– Given a schema R of size n, a pool of possible values is generated, with
all integers values from 0 to 2n + 2, which is equal to |CF−| + |CF+| plus
two reference values. This represents all the values that have to be used to
generate the two Armstrong relations.

– Then function ArmstrongRelation is applied to CF− to generate r−.
– A reference value is selected at random in the pool of possible values. It is

used to construct the reference tuple, so it is then no longer a possible new
value (line 10).

– Then for each element in the closure system, a random value is selected (at
random) in the pool of remaining possible values. It is used to create a new
tuple, and the random value is thus removed from the pool. Each attribute
from the considered element is encoded with respect to the previous tuple
in the relation.

– Once r− is complete, the same procedure applies for r+, using the remaining
values in the pool of available values.

Example 3 Following example 2, and using the second closure system from 1:

CF+ = {ABC,BC,B,C, ∅} and IRR+ = {ABC,BC,B,C}

Applying algorithm 2 we could obtain:

r+ A B C encodes
3 3 3 reference
7 3 3 BC
2 3 2 B
9 9 2 C

r− A B C encodes
1 1 1 reference
1 1 6 AB
1 4 6 AC
1 5 5 A

4.3 Random Data generation

Once the two relations derived from closure systems are generated, it is time to
generate relations Z and s, in order to give a basis for comparison of classifiers.
The generation of such a relation Z has to be thought carefully, and be coherent
with the generation technique previously applied. For sake of clarity, we only
consider values in N.

The final objective is to study the case of imbalanced dataset, and to propose
a new undersampling technique based on functional dependencies. The active
domain of this relation is crucial, and various strategies are possible:

– ADOM(Z) = ADOM(r+)

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

– ADOM(Z) = ADOM(r+ ∪ r−)
– ADOM(Z) = ADOM(r+ ∪ r−) ∪ I where I is an interval in N.

The last solution has some flaws, because it would add tuples with values
in I that would be easier to classify, with the same problem than explained
in example 3: better classification score would then not be due to functional
dependencies but to the fact that tuples are on two distinct domains that are easy
to separate. But the two first possibilities are both interesting, giving two possible
levels of difficulty. The first one, ADOM(Z) = ADOM(r+), proposes the exact
same conditions when comparing between r− versus r+ and r− versus s: indeed
both r+ and s have an active domain that is overlapping with r−’s one, but
with no common value. The second possibility, ADOM(Z) = ADOM(r+ ∪ r−),
introduces some noise as s and r− could have values in common, which would
provide a more challenging dataset. Therefore, these two options are explored in
the experimentations (section 5).

Once the active domain of Z is set, its generation is not complicated, and
the number of possible tuples is bounded.

Property 2 Let R be a schema of size n, and Z a relation such that |ADOM(Z)| =
m. The number of possible tuples for Z is the number of permutations of size n
from an alphabet of m elements, i.e max(|Z|) = mn.

This grows considerably fast, and clearly the size of Z can be arbitrarily large.
Generating all possibilities would take time and consume memory. Therefore, to
limit the size of Z, we consider the factor sf , which is the ratio of size difference
between r− and Z:

sf = |Z|
|r−|

This allows to adapt the ”imbalanceness” of the dataset, and to generate
only a limited number of tuples for Z: the generation method for this relation
is simply to create a relation on a schema R of size n, with a fixed number of
|r−| ∗ sf tuples, and for each tuple and each attribute, select randomly a value
in ADOM(Z).

Finally, relation s is just a random sample of size |r−| over Z ∪r+, just like a
random undersampling of the majority class for an imbalanced dataset problem.

4.4 Classification problem

At this point, all necessary relations have been generated. We have the minority
class r−, and the majority one Z. r+ and s are samples from Z, such that r+ is
as distant as possible from r− in terms of FDs, while s is just a random sample
from Z without any FD consideration.

The purpose is now to apply classification algorithms on different datasets
and compare their performances. The first objective is to see if it is easier to
classify between distant datasets, and the comparison is therefore done between
r− versus r+ and r− versus s. Classification datasets are constituted only by
combining two relations and adding one additional class attribute.

Experimental Study on FDs for Imbalanced Datasets Classification

Example 4 Let’s take relations r− and r+ from example 3 . They constitute
the following classification dataset:

A B C class
r− 3 3 3 -

7 3 3 -
2 3 2 -
2 3 2 -

r+ 1 1 1 +
1 1 6 +
1 4 6 +
1 5 5 +

Using the available datasets, we build two classification models:

– r− versus r+

– r− versus s

Each dataset has then to be divided into training and testing sets, with
proportions to be given depending on the experimentation setting. Algorithms
are then trained on the training set and their performances evaluated on the
testing one. For this preliminary study, the score used to compare classifiers
is accuracy. This first test relates to one our our initial questions, which is
whether or not it is easier to classify between distant sets.

For our second experimentation, we come back to the problem of imbalanced
datasets. To do so, the same relations can be used but with a slight change
in the testing and training sets. Indeed, the philosophy of the data generation
presented previously is to emulate such a problem, with r+ and s being two
different undersampling of a bigger relation Z. Therefore we train the models
exactly as before, but the testing sets are now different: both models are now
evaluated using tuples from r− and Z, as in a real imbalanced dataset scenario.

5 Experimentations

5.1 Implementation

The algorithms have been implemented using Python 3. All classification algo-
rithms are from the scikit-learn machine learning library [22].

Ten classification algorithms were selected for the experimentations (see [13]
for details), with a fixed parametrization as follows:

– K Nearest Neighbors: classification according to the class of surrounding
examples. Fixed k = 3.

– Decision Tree: learns decision rules and builds a tree. Fixed a maximum
depth of 5 for the tree.

– Random Forest: several decision trees on different subsamples of the data.
Maximum depth of 5 for 10 trees in total.

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

– AdaBoost on a decision tree: give different weights to examples, by increasing
the weight of misclassified examples.

– Neural Network: fixed two hidden layers with 12 neurons each.
– Naive Bayes: probabilistic model based on Bayes theorem, with the ”naive”

assumption that variables are independent.
– Quadratic Discriminant Analysis: finds a quadratic decision surface.
– Linear Support vector machine: classic SVM with linear kernel
– Radial Basis Function (RBF) kernel Support vector machine: RBF kernel.

5.2 Semantic distance and classification

The purpose of the first set of experimentations was to study the first conjecture
on which this paper is based: it is easier to classify between distant sets. The
experimental verification of this is simple and follows the explanations given in
section 4.

For experimentations, the size of the schema is fixed to n = 12. Then:

– |P(R)| = 4096
– |r+ ∪ r−| = 4099

Moreover, sf is fixed to 100: |Z| is therefore around 200 000 tuples. Training
test is composed of 80% of a dataset, the remaining 20% are for testing.

The experience was done on ten different instances generated with algorithms
1 and 2, with each time a new closure system generation and new relations,
considering the random components of each algorithm. This is done to make sure
any observation is not due to a specific relation, but really a general phenomenon.

ADOM(Z) = ADOM(r+) ADOM(Z) = ADOM(r+ ∪ r−)

Classifier r− vs r+ r− vs s r− vs r+ r− vs s

Nearest Neighbors 0.95 0.87 0.93 0.77
Decision Tree 0.99 0.99 0.99 0.96

Random Forest 0.99 0.99 1.0 0.99
AdaBoost 0.99 0.99 0.99 0.99
Neural Net 0.81 0.72 0.85 0.77
Naive Bayes 0.99 0.99 1.0 0.75
RBF SVM 0.82 0.79 0.77 0.70

Linear SVM 0.62 0.48 0.67 0.47

Table 1. Accuracy of each classifier for each data generation strategy. Both models
are evaluated on their own testing sets.

Table 1 presents the average accuracy score obtained for each algorithm over
the ten iterations, when data is generated such that ADOM(Z) = ADOM(r+),
so that Z and r− do not share any common value. Those results are very en-
couraging, as it appears that classifiers perform better for the distant instances,

Experimental Study on FDs for Imbalanced Datasets Classification

supporting the conjecture that is easier to classify between distant sets. Indeed,
this tendency does not appear to be limited to only one or a few algorithms.
Moreover, if the observed difference is anecdotal for some algorithms such as
Random Forest and Adaboost, it is pretty important for others. This also opens
the way for other paths of research, on how each specific algorithm can be affected
by functional dependencies, or how functional dependencies could be integrated
in the algorithms themselves to improve their performances. Finally, the active
domain on the majority class does not seem to affect our observations, as results
are also good with noisy data, and even better in some cases.

5.3 General imbalanced dataset problem

With the good results obtained for the first experimentation, a second one was
conducted, closer to the initial imbalanced dataset problem. Indeed, in the end,
a classifier should be able to classify correctly on the general dataset: it is trained
on a subsample of the majority class, but in the end will be confronted to the
real dataset where the classes are imbalanced again. Therefore, in this second
experimentation, the training sets stay the same: two balanced datasets, one
with two classes voluntarily built as distant, and another with a random sample
of the majority class against the minority one. But the testing conditions are
different, as the objective is now to see if this different training can improve
classifier’s performances on the imbalanced dataset. The testing set is therefore
an imbalanced dataset, with all samples from r− and Z that have not been used
for training.

The conditions are exactly the same as previously with |R| = 12 and sf =
100. Results are presented in table 2. They are less positive than the ones ob-
served in 1: the difference between the two models is less pronounced, and seems
to be more algorithm-specific.

ADOM(Z) = ADOM(r+) ADOM(Z) = ADOM(r+ ∪ r−)

Classifier r− vs r+ r− vs s r− vs r+ r− vs s

Nearest Neighbors 0,70 0,72 0,68 0,71
Decision Tree 0,79 0,81 0,72 0,74

Random Forest 0,95 0,87 0,92 0,86
AdaBoost 0,75 0,78 0,70 0,73
Neural Net 0,66 0,70 0,66 0,77
Naive Bayes 0,83 0,78 0,94 0,75

QDA 0,75 0,89 0,80 0,85
RBF SVM 0,83 0,56 0,77 0,55

Linear SVM 0,99 0,99 0,99 0,99

Table 2. Accuracy of each classifier for each data generation strategy. Both models are
evaluated on the same testing set, corresponding to data from an imbalanced datasets,
with tuples from r− and Z.

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

The results of this experimentations are mitigated, but also encouraging:
considering the difficulty and novelty of the considered problem, more work is
required, but this first study shows that there is interesting things to investigate.
the choice of the values for the synthetic relations is a central problem, and it
might be a potential source of improvement. Other types of data could also be
used; if letters were used instead of integers, this might bypass the algorithms
that rely more or the values.

6 Related work and conclusion

The work presented in this paper brings together two problems that do not
seem to have been combined before: functional dependencies, a powerful notion
in databases on the one hand, and the imbalanced datasets problem, which of-
ten occurs in classification, on the other hand. It could impact many application
domains, from medical diagnosis to fraud detection. Many overviews on how to
handle classification datasets can be found, with various methods relying on di-
verse computing and mathematical tools. Some solutions work at the data level
and resample the data distribution to work on a balanced dataset, with under-
sampling of the majority class as exposed in this paper, or oversampling of the
minority one [7]. Other solutions focus on the algorithms, by trying to adapt
them for imbalanced datasets [12]. Finally there are solutions combining both
data and algorithmic solutions for imbalanced datasets, such as cost-sensitive ap-
proaches [25], as well as boosting algorithms [11]. However some recent works try
to address the imbalanced classes problem from a different perspective, like [23]:
they use the Mahalanbois distance to create synthetic samples for the majority
class.

Functional dependencies have proven to be powerful, in the design of databases
[1], or data quality and data cleaning [5], or even to constrain the parameters of
type classes in languages such as Haskell [16]. In this paper, we propose to use
functional dependencies for the well-known problem of imbalanced datasets. If
some results on the classification of distant sets are encouraging, they do not, for
now, highlight if functional dependencies could significantly improve the results
in imbalanced classification problems. It should however be kept in mind that
this is only a first study, that addresses a completely new problem, that is both
complex and difficult.

Further experiments are required in future works; studying other data gen-
eration strategy, and applying our approach to real data.

It could be argued that on real data, the approach presented could suffer from
the lack of existence of functional dependencies in real datasets: however this can
be tackled by releasing a bit the constraint of functional dependencies. This is a
subject that has already been addressed abundantly in the literature, especially
with the concept of fuzzy functional dependencies (FFDs) [15]. The application
of this approach to real data will therefore be a logical continuation of this work,
but is far from trivial and certainly raises a few combinatorial problems: given a
set of functional dependencies, how to select the tuples in the dataset such that

Experimental Study on FDs for Imbalanced Datasets Classification

they satisfy those FDs, or as much as possible of them ? Moreover, this first
contribution opens the way to many more possibilities, as there are presumably
other machine learning or data mining problems that could benefit from the use
of functional dependencies.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc., 1995.

2. R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

3. W. W. Armstrong. Dependency structures of database relationship. Information
processing, pages 580–583, 1974.

4. C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of armstrong
relations for functional dependencies. Journal of the ACM (JACM), 31(1):30–46,
1984.

5. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, pages 746–755. IEEE, 2007.

6. A. Bonifati, R. Ciucanu, and S. Staworko. Interactive join query inference with
jim. Proceedings of the VLDB Endowment, 7(13):1541–1544, 2014.

7. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: syn-
thetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357, 2002.

8. F. Chiang and R. J. Miller. Discovering data quality rules. Proceedings of the
VLDB Endowment, 1(1):1166–1177, 2008.

9. J. Cumin, J.-M. Petit, V.-M. Scuturici, and S. Surdu. Data exploration with
sql using machine learning techniques. In International Conference on Extending
Database Technology-EDBT, 2017.

10. K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Aide: an active learning-based
approach for interactive data exploration. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2842–2856, 2016.

11. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

12. V. Ganganwar. An overview of classification algorithms for imbalanced datasets.
International Journal of Emerging Technology and Advanced Engineering, 2(4):42–
47, 2012.

13. J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,
2011.

14. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

15. L. Jekov, P. Cordero, and M. Enciso. Fuzzy functional dependencies. Fuzzy Sets
and Systems, 317(C):88–120, 2017.

16. M. P. Jones. Type classes with functional dependencies. In European Symposium
on Programming, pages 230–244. Springer, 2000.

17. G. O. Katona, A. Keszler, and A. Sali. On the distance of databases. In Interna-
tional Symposium on Foundations of Information and Knowledge Systems, pages
76–93. Springer, 2010.

Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici

18. S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al. Handling imbalanced datasets: A
review. GESTS International Transactions on Computer Science and Engineering,
30(1):25–36, 2006.

19. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas. Supervised machine learning: A
review of classification techniques. Emerging artificial intelligence applications in
computer engineering, 160:3–24, 2007.

20. M. Levene and G. Loizou. A guided tour of relational databases and beyond.
Springer Science & Business Media, 2012.

21. H. Müller, J.-C. Freytag, and U. Leser. Describing differences between databases.
In Proceedings of the 15th ACM international conference on Information and
knowledge management, pages 612–621. ACM, 2006.

22. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

23. S. Sharma, C. Bellinger, B. Krawczyk, O. Zaiane, and N. Japkowicz. Synthetic
oversampling with the majority class: A new perspective on handling extreme
imbalance. 2018.

24. Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries
based on example tuples. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 493–504. ACM, 2014.

25. B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-
proportionate example weighting. In Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 435–442. IEEE, 2003.

26. B. Zou, X. Ma, B. Kemme, G. Newton, and D. Precup. Data mining using relational
database management systems. In Pacific-asia conference on knowledge discovery
and data mining, pages 657–667. Springer, 2006.

