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1. Introduction

High-Cycle Fatigue (HCF) is one of the major reasons behind the
failure of engineering structures. In metals, it is governed by macro-
elasticity and micro-plasticity (plasticity at the defects scale) and the
load carrying capacity is progressively decreased with successive load
fluctuations. For HCF to occur, the loading should cause stress levels at
the macro-scale below the yield stress, so that the macroscopic beha-
viour of the material remains elastic. However, plasticity and damage
may occur at the micro-scale (see Lemaitre, 1996; Dang Van, 1999;
Lemaitre and Desmorat, 2005). The simulations of HCF processes are
hindered not only by the requirement of sophisticated multi-scale
models, deterministic (Lemaitre and Doghri, 1994a; Lemaitre et al.,
1999; Desmorat et al., 2007; Lautrou et al., 2009; Gaborit, 2015;
Gaborit et al., 2016) or probabilistic (Doudard et al., 2005), but also by
the need of sophisticated numerical techniques such that a large
number of cycles can be simulated.

An energy-based micro-crack propagation theory has been used to

describe damage evolution at the macro-scale through homogenisation
Dascalu (2009). In Monchiet et al. (2006), a two-scale model describing
the physical micromechanism at the grain scale has been proposed. The
presence of persistent slip systems leads to the presence of plasticity at
the grain scale, eventhough the loading is below the macroscopic fa-
tigue limit. With the same interest of providing models for high cycle
fatigue based on microdeformation mechanics, HCF simulation based
on representative volume elements of the microstructure has been in-
troduced in Gillner and Münstermann (2017).

In the framework of continuum damage mechanics (CDM), which is
a branch of the classical continuum mechanics, the loss of load-bearing
capacity is described through a dedicated internal variable in a ther-
modynamically consistent framework (see Besson et al., 2010). The
most classical usage of CDM for the description of HCF with proper
agreement with experimental data was in Chaboche and Lesne (1988);
Xiao et al. (1998). Thereafter, damage evolution based on endurance
surface was presented in Ottosen et al. (2008). In this context and for
HCF, a two-scale damage model was proposed in Lemaitre and Doghri
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The goal of this paper is to introduce a model order reduction method for high-cycle fatigue simulations using a
kinetic damage model, i.e. a constitutive model in which the damage evolution law is defined as a rate form

t

d

d
D = D for the damage variable D. In the framework of continuum mechanics, high-cycle fatigue simulation
involves a two-scale damage model, which includes macroscopic elastic and microscopic plastic behaviours, for a
very large number of cycles. Unlike the classical usage of the two-scale damage model by Lemaitre and co-
workers, where damage is calculated as a post-process of an elastic or elasto-plastic macroscopic analysis, in this
work, a fully coupled analysis is conducted assuming a macroscopic damage feedback from its microscopic
counterpart. Damage is considered to be isotropic with micro-defect closure effect on both macroscopic and
microscopic scales. To overcome the numerical expense, the large time increment (LATIN) method is used as a
linearisation framework, where the constitutive behaviour is separated from the global admissibility which in
turn is solved through separation of variables using a proper generalised decomposition (PGD)-based model
reduction method. A multi-temporal discretisation approach is henceforth used based on finite element like
description in time for the quantities of interest, providing a sophisticated numerical approach suitable for high-
cycle fatigue simulation under complex loading.
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(1994b); Lemaitre et al. (1999) based on the idea that in HCF the
macroscopic elastic behaviour is maintained while at the microscopic
scale, micro-cracks/micro-voids are initiated and developed without
affecting the macroscopic elastic behaviour. Such behaviours are si-
mulated using an elastic finite element structural computation at the
macro-scale and a post-processing analysis of the micro-damage evo-
lution at the critical stress points. The failure of the corresponding re-
presentative volume element (RVE) at the meso-scale occurs when the
microscopic damage reaches the critical value (see Lemaitre, 1996).
This kind of uncoupled analysis seems unrealistic as the macroscopic
behaviour is assumed to be bereft of damage; however, failure still
occurs. Therefore, a more realistic approach would be to have a damage
description on the macro-scale, influenced by its counterpart at the
micro-scale. This issue is addressed, in the current work, by introducing
a backward coupling of the damage variable from the micro-scale to the
macro-scale. A recent work (see Tang et al., 2017), modified the clas-
sical version of the two scale damage model to model the high to low
cycle fatigue transition using a novel two-scale representative volume
element.

One of the key components when constructing damage models for
cyclic loading is the so-called quasi-unilateral condition of micro-defect
closure effect (see Lemaitre and Desmorat, 2005). This idea translates
into different damage evolution rates in tension and in compression.
The first usage of this methodology was in Ladevèze and Lemaitre
(1984), where a closure parameter to quantify the difference between
tensile and compressive behaviours was introduced. This model has
been extended later to include anisotropic damage variable (see
Desmorat and Cantournet, 2008). However, in order to ensure con-
vexity of the yield surface in this work, the quasi-unilateral effect is
introduced only on the hydrostatic stress (see Desmorat and
Cantournet, 2008).

Damage mechanics, although replicates the physical phenomena in
a thermodynamically consistent manner, can be numerically expensive,
especially for fully coupled analysis (see Desmorat et al., 2007) and
probably infeasible for real engineering structures. This issue becomes
more predominant for structural pre-design where quick methods are
required to predict the life-time of a structure and its possible failures. A
fast identification of localised plasticity and damage based on an en-
ergetic approach Desmorat (2002), developed after the historical works
of Neuber (1961) and Glinka (1985), can be a solution. On the other
hand, model order reduction (MOR) techniques can make such com-
putations feasible and efficient. For instance, an adaptive proper or-
thogonal decomposition with a local/global sub-domains technique was
used in Kerfriden et al. (2011, 2012) to reduce the computational effort
associated with damage computations. Another adaptive MOR tech-
nique was introduced by Ryckelynck et al. (2011), where based on a
priori hyper-reduction approach, the subspace spanned by the MOR
shape functions is extended and at the same time the quantities of in-
terest are integrated over a reduced integration domain. Proper gen-
eralised decomposition (PGD) is also a priori model reduction tech-
nique that reduces the problem's dimensionality to circumvent the
numerical expense, as done in Allix et al. (1989) for plasticity-based
damage models and in Bhattacharyya et al. (2018a) for viscoplasticity-
based damage models, in the context of the large time increment
(LATIN) method.

LATIN method, introduced first in Ladevèze (1985a, b), is a robust
strategy to address history-dependent non-linearities. It separates the
local and non-linear material behaviour from the global linearised
equilibrium, in which a space-time separated representation induces
spectacular efficiency and time saving (see Ladevèze, 1999, for details).
LATIN has been used extensively over the years with appreciable per-
formance for material non-linearities especially for visco-plasticity (see
Ladevèze et al., 2010; Relun et al., 2013, for instance), unilateral con-
tact (see Giacoma et al., 2015), or parametric studies (see Heyberger
et al., 2011; Néron et al., 2015).

For fatigue simulation, the numerical challenge is particularly due

to the large number of cycles involved in the computation. A traditional
method to overcome this cost is jump cycles (see Lemaitre and Doghri,
1994b; Van Paepegem et al., 2001). In this method, instead of a cycle-
by-cycle simulation, full blocks of cycles are skipped and only certain
cycles are computed. From the information of a particular simulated
cycle, the tendency of the quantities of interest and the number of cy-
cles to be jumped over are extrapolated and estimated respectively.
These jumps along with the corresponding extrapolations continue till
the complete temporal domain is encompassed or the critical damage
value is reached (see Lemaitre and Desmorat, 2005). Another jump
cycle method was proposed in Burlon et al. (2014). For combined cyclic
fatigue, a temporal homogenisation technique was investigated by
several authors (Devulder et al., 2010; Haouala and Doghri, 2015). This
homogenisation results in a number of initial boundary value problems
on different time scales. A different strategy to tackle HCF computations
is extended finite element method based on enrichment functions in
time, which have the temporal characteristic of the loading (see
Bhamare et al., 2014). An alternate fully-discrete approach is the multi-
temporal model order reduction method that has been proposed for
cyclic plasticity (see Cognard and Ladevèze, 1993) and recently ex-
tended for fatigue damage computation (see Bhattacharyya et al.,
2018c). This approach is based on a finite element like time dis-
cretisation, where each time element is confined within two successive
cycles, termed as nodal cycles, and only these cycles are computed then
the solution is interpolated over the time element. This idea can be
interpreted as a variant of the classical jump cycle algorithm with
temporal interpolation. The adaptive multi-temporal scale discretisa-
tion has proved efficient in Bhattacharyya et al. (2018c, b) for different
academic examples in low-cycle fatigue regime using a macro-scale
viscoplasticity-based damage model.

The goal of this contribution is to extend the multi-scale LATIN-PGD
framework to tackle high-cycle fatigue computations, involving a fully
coupled quasi-brittle damage model. This is one of the first attempts to
solve the two-scale damage formulation in a non-incremental frame-
work. Contrary to the classical uncoupled formulation of the two-scale
damage model which is based on post-processing of structural calcu-
lations, a two-way coupling behaviour is used to achieve better physical
representation. This approach of providing a damage feedback to the
macro-scale is also novel in its own right. The solution of the global
admissibility condition is performed through Galerkin-based PGD for-
mulations for both spatial and temporal problems. For the temporal
quantities of interest a finite element like description is used involving
the computation of only certain cycles and interpolating the quantities
of interest over the rest of the cycles.

The article is structured as follows. In section 2, the continuum
damage theory along with the used two-scale damage model are in-
troduced. In section 3, the innovative algorithm based on multi-tem-
poral LATIN-PGD model order reduction technique is detailed. Finally,
in section 4, the algorithm is tested on different academic examples.

2. Two-scale damage model

The problem of interest is a continuous structure under a quasi-
static and isothermal loading defined over time domain T[0, ]. The body
can be subjected to body forces fd on its domain , as illustrated on
Fig. 1. A part 1 of the boundary may be subjected to prescribed
displacements ud, and traction forces Fd may be prescribed on the
complementary part of the boundary 2 . The state of such structure is
defined by thermodynamically consistent state variables, observable or
internal ones. These variables not only satisfy the local material beha-
viour (constitutive laws) but also must satisfy the global admissibility
conditions (equilibrium equation).

In the framework of continuum damage mechanics, a variant of the
two-scale damage model proposed in Lemaitre (1996) is considered
here. The underlying concept of this sophisticated damage model in the
context of high-cycle fatigue is to have the macroscopic material
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behaviour purely elastic, but non-linear due to the presence of macro-
scopic damage which arises because of the damage existence at the
micro-scale which in turn is governed by micro-plasticity.

A key point of present work is that fatigue damage is considered as
part of the material behaviour, i.e. as part of the constitutive equations,
in a so-called kinetic damage model: the damage evolution law is
written in rate form = =D

D

t

d

d
for the damage variable D.

2.1. Macro-scale: elastic behaviour with unilateral damage

The admissibilities of the state variables at the macro-scale are de-
fined by the equilibrium equation, which in its weak form reads

= +

× ×

×

u t f u t

F u S t u

: ( ) d d d d

d d , ,

T T
d

T

d

[0, ]

*

[0, ]

*

[0, ]

* * 0

2 (1)

where 0 is the space associated with the kinematically admissible
field u and the stress tensor is statically admissible. From the dis-
placement field u, the kinematically admissible infinitesimal total
strain tensor is defined as

= +u u
1

2
( ( ) ).T

(2)

For HCF loading, governed by macro-elasticity, the total strain
tensor only comprises of the elastic contribution e as the plastic con-
tribution p vanishes (see Lemaitre et al., 1999).

Considering isotropic damage, defined by a scalar variable D, the
prescribed cyclic loading induces the phenomenon of micro-defects
closure (see Lemaitre, 1996; Lemaitre and Desmorat, 2005). The im-
portance of that phenomenon is generally evaluated through a closure
parameter, the value of which lies between 0 corresponding to com-
plete stiffness recovery, and 1 corresponding to no stiffness recovery.
However, closure is introduced here only with respect to the hydro-
static part of the stress and the deviatoric part is assumed to be bereft of
any closure effect, i.e. the yield surface is not affected by the closure.
This provides an alternative definition of the effective stress as

= +

D D
˜

1 1
,

D H

H

(3)

such that the non-linear elastic state law becomes

= C˜ , (4)

where C is the classical elasticity tensor defined using the modulus of

elasticity E and the Poisson ratio ν. The deviatoric stress is represented
by =D H , and = trH

1

3
is the hydrostatic part. The Macaulay

brackets • denote the positive part of the considered quantity •, and
is the identity matrix.

Unlike the previous versions of the two-scale model, a coupling
effect between the damage values at the two length scales is introduced,
which basically translates into the following relationship (see Gaborit
et al., 2016),

=D D1 (1 ) ,µ (5)

where Dµ denotes the damage at the micro-scale and the parameter φ
dictates the degree of coupling between the two length scales, with
= 1 providing the strongest possible coupling ( =D Dµ) and = 0

induces no coupling at all () (see Gaborit et al., 2013; Gaborit, 2015).
On Fig. 2 the effect of the micro-damage on the macro-damage, which
has been extensively investigated in Gaborit (2015), can be observed
for different values of the parameter φ. The idea of using such coupling
term is to mimic the HCF failure, where the macroscopic damage re-
tains a very low value for most of the structural lifetime and shows a
drastic increase towards the end, i.e. towards reaching the critical da-
mage Dc corresponding to the failure of the material due to the initia-
tion of macro-cracks. Lower the value of φ is, longer the macro-damage
remains to a small value whereas the micro-damage increases. There-
fore, the HCF damage phenomenon can be captured using low values of
φ.

2.2. Micro-scale: coupled elasto-plastic-damage behaviour

In the current model, the defects at the micro-scale are represented
by a weak inclusion subjected to plasticity and damage in a meso-scale
representative volume element (RVE) as shown in Fig. 3 (Lemaitre and
Doghri, 1994b). The matrix part of the RVE, which is endowed with the
RVE macro-scale effective material properties, remains elastic but
coupled with macroscopic damage resulting from its microscopic
counterpart (Besson et al., 2010). The idea is that the RVE effective
behaviour is representative of that of the material as a whole. Thus,
each Gauss point is associated with an RVE, which is chosen such that
the heterogeneous nature of the material is statistically well re-
presented, i.e. the dimension of the micro-defect lµ is much smaller than
the meso-scale size lRVE, which is itself much smaller than the char-
acteristic length of the structure lM . Hereafter, the mechanical proper-
ties of the material of interest at the micro-scale, i.e. in the microscopic
inclusion, are detailed. They are described in a general framework by a
set of constitutive relations including plasticity, damage and kinematic
hardening (see Lemaitre and Desmorat, 2005).

The total micro-strain tensor µ can be additively decomposed into
an elastic contribution µ e, and a plastic contribution µ p, . To maintain

Fig. 1. Reference problem in domain .

Fig. 2. Effect of the micro-damage evolution on the macro-damage for different
values of the parameter φ(from Gaborit, 2015).

3



the convexity properties, considering unilateral damage, the effective
stress at that scale ˜ µ is defined, similar to that of the macro-scale, by
its hydrostatic part H

µ and the deviatoric one D
µ. The compressive

contribution of the hydrostatic part has a full recovery, whereas the
tensile part of the hydrostatic stress has no recovery at all, i.e.

= +

D D
˜

1 1
.

µ D
µ

µ

H
µ

µ H
µ

(6)

The equations of state for the elasto-plastic materials read

= C˜ ,µ µ e, (7a)

=Y R
E

(~ )

2
,µ

v

eq
µ 2

(7b)

= Q .

µ µ (7c)

Similar to the macro-scale, the non-linear elastic state law in-
corporating damage is given by eq. (7a). The thermodynamic force
corresponding to the micro-scale damage is the strain energy release
rate Yµ defined in eq. (7b), which is non-linear with respect to the
damage variable and the stress tensor. The effects due to the direction
of the loading are described through the triaxiality function Rv, which is
defined as

= + +R
2

3
(1 ) 3(1 2 ) ,v

H
µ

eq
µ

2

(8)

with = (tr )H
µ µ1

3
being the hydrostatic part of the stress tensor,

=eq
µ

D
µ

D
µ3

2 ij ij
and =

~ ~ ~
eq
µ

D
µ

D
µ3

2 ij ij
being the equivalent stress and the

equivalent of the effective stress at the micro-scale, respectively. The
relationships between the internal variables describing the kinematic
hardening of the material i.e. µ and their corresponding thermo-
dynamic forces µ are given by eq. (7c) through the tensor Q which
incorporates the kinematic hardening modulus Q. The evolution equa-
tions for plasticity, hardening and damage at the micro-scale are given
by

=

D

3

2

~

(~ ) 1
,µ p

µ µ

µ µ
eq

p

µ

,

(9a)

=

3

2

~

(~ )
,µ

µ µ

µ µ
eq

p

(9b)

= >D
Y

S
p p p, if .

µ
µ s

µ µ
D (9c)

The evolution of the plastic strain with respect to time is given by
eq. (9a), where p is the plastic multiplier obtained from the con-
sistency condition with the micro-scale yield function f µ given as

=f (~ ) ,µ
D
µ µ

eq f (10)

with ˜D
µ being the deviatoric part of the effective stress and the

asymptotic fatigue limit f considered as the micro-scale yield stress.
Therefore, for any stress level below the asymptotic fatigue limit, nei-
ther micro-plasticity nor damage is induced, and the structure can
survive an infinite number of cycles (see Lemaitre and Desmorat, 2005).
Loading-unloading criterion is given by the classical Kuhn-Tucker
condition

=f f0, 0, 0.p
µ

p
µ (11)

The evolution of the kinematic hardening internal variable is similar
to that of the plastic strain excluding damage and it is described by eq.
(9b). The cumulative plastic strain, defined in rate form as

=p
2

3
: ,µ µ p µ p, ,

1/2

(12)

is related to the plastic multiplier and the damage variable through

=p
D1

.
µ p

µ (13)

Along with the material parameters S and s, the evolution of damage
is also governed by pµ according to eq. (9c) and the threshold pD is
considered here to be zero.

2.3. Scale transition based on the self-consistent scheme

The macro-micro scale transition is based on the assumption that
the RVE comprises of a spherical isotropic inclusion in an infinite iso-
tropic homogeneous matrix with effective mechanical properties (see
Kröner, 1961; Zaoui, 1985; Berveiller and Zaoui, 1979). Thus, knowing
the deformation at the macro-scale, the total deformation and the
plastic deformation at the micro-scale are defined using the Eshelby-
Kröner localisation law (see Eshelby, 1957; Besson et al., 2010) for non-
linear behaviours as

=( ) ( ),µ µ p p, (14)

where γ is the Eshelby coefficient given by

=

2

15

4 5

1
,

(15)

and the plastic deformation at the macro-scale p vanishes due to the
elasticity assumption.

As summarised in Fig. 4, it has to be mentioned that the macro-
scopic quantities of interest should satisfy the global admissibility
condition defined by eq. (1) along with the macroscopic material be-
haviour, however, the micro quantities of interest need to satisfy only
the microscopic material behaviour.

2.4. Multi-temporal Latin approach

Instead of using classical time incremental methods to solve non-
linear problems, a non-incremental approach, i.e. the LATIN method is

Fig. 3. Schematic representation of the RVE for the two-scale damage model.
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used as a solution framework in this research. It starts with an in-
itialisation for the quantities of interest over the complete space-time
domain and then successive corrections are added to the initial guess
till convergence is reached. The utility of the LATIN method lies on the
fact that the governing equations are separately solved, i.e. for a given
instant only the local material behavioural laws are solved and for the
next instant the linearised form of the equilibrium equation is solved.

For the given context of fatigue damage simulation involving large
number of cycles, LATIN method when employed for the complete
temporal domain may render the simulation extremely expensive.
Hence an innovative scheme is used which basically segregates the
complete time domain into separate time elements which are demar-
cated by nodal cycles. LATIN method thereafter is used to calculate the
quantities of interest at the nodal cycles and the intermediate cycles can
then be interpolated using temporal shape functions. This approach can
be viewed as a modified, non-incremental version of the classical jump-
cycle algorithm.

This idea boils down to two separated temporal discretisations of
the quantities of interest as illustrated in Fig. 5:

• a coarse scale discretisation θ which represents the slow evolution of
the quantities of interest along the cycles, chosen to be the initial
time point of every cycle,

• a fine scale discretisation τ at each cycle representing the fast evo-
lution of the quantities of interest within the cycle.
The continuous time field t may then be approximated using the

two-scale discretisation as

= +t i N T, with [0, 1] and [0, ],i i i (16)

with N being the total number of cycles comprised in the temporal
domain and T being the time period.

As emphasised before, the nodal cycles are calculated using the
LATIN algorithm on the fine scale τ, the knowledge of which is used
then to evaluate the quantities of interest on the whole time element
through interpolation on the coarse scale θ.

2.5. Computation of one nodal cycle of interest

For a given nodal cycle m, the solution set is initialised from the
converged solution of the previous nodal cyclem 1. In the case of the
first nodal cycle (i.e. =m 0) the initialisation is obtained from a linear
elastic solution considering all the boundary conditions. After the in-
itialisation, non-linear corrections are added at each iteration till con-
vergence is reached.

The separation of difficulties in LATIN introduces two separate
manifolds, one corresponding to the space of local constitutive beha-
viour, and the other corresponding to the global admissibility condi-
tions. From a given solution si belonging to the global manifold Ad, the
idea is first to seek the solution set +ŝi 1/2 belonging to the non-linear
manifold through the computation of sµ, which is the solution set at

Fig. 4. Schematic representation of the finite-element computation using the two-scale damage model.

Fig. 5. Two temporal scale discretisations.
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the micro-scale. It must be noticed that +ŝi 1/2 and s
µ are obtained

through the solution of the scale transition equation given by eq. (14),
the constitutive relations at both length scales, i.e. eqs. (4), (7) and (9)
and the coupled damage equations, i.e. eq. (5). Thereafter, knowing

+ŝi 1/2, the solution set +si 1 is calculated by solving the global equili-
brium equation defined by eq. (1). The macroscopic quantities of in-
terest must be calculated such that s Ad and ŝ , however, their
microscopic counterparts only satisfy the microscopic local equations.
To be more simplistic, the primary quantities of interest are the mac-
roscopic quantities, the exact solution of which lies in the intersection
of Ad and , and the microscopic quantities of interest are just inter-
mediaries to obtain ŝ in the local stage.

2.5.1. Latin local stage
Knowing si, the first stage of each iteration looks for the solution

+ŝi 1/2 in the space , which also involves the calculation of the solution
set sµ. The transfer of information from the global to the local stage
occurs through the search direction equation given by

+ =+
+

+H(ˆ ) ( ˆ ) 0.i i i i1/2 1/2 (17)

Following Ladevèze (1999), for the direction of ascent, the search
direction operator is assumed such that =

+
H( ) 01 , which gives

=+
ˆi i1/2 . It should be noted that the search direction operator mainly
influence the rate of convergence and not the converged solution.

At a current time step j the macroscopic strain is calculated from the
macroscopic effective stress through

= Cˆ ˜̂ ,j j
1 (18)

where the effective stress is given by

= +

D D
˜̂

1 ˆ 1 ˆ
.j

D j

j

H j

j

H j
,

1

,

1

,

(19)

Knowing the strain state at the macro-scale, the micro-strain is
elastically initialised through the localisation law and the rest of the
quantities of interest are initialised from the previous time step. The
trial state is thereby defined as

= + (ˆ ˆ ),j
µ e

j
µ e

j j
,

1
,

1

trial

(20a)

= ,j
µ p

j
µ p,
1
,

trial

(20b)

=p p ,
j
µ

j
µ
1

trial

(20c)

= ,j
µ

j
µ
1

trial

(20d)

= ,
j
µ

j
µ
1

trial

(20e)

=D D .j
µ

j
µ
1

trial

(20f)

Then, the trial stress state j
µ
trial

is evaluated from the non-linear
elastic state law as

= C
~ ,j
µ

j
µ e,

trial trial

(21)

with

= +

D D

˜

1 1

.j
µ D j

µ

j
µ

H j
µ

j
µ

H j
µ, ,

,

trial

trial

trial

trial

trial

trial

(22)

The elastic predictor step, thus obtained, must be verified by cal-

culating the yield function f
j
µtrial. If f 0

j
µtrial , there is no growth of

micro-plasticity nor micro-damage, therefore the predictor stage need

not be corrected. Otherwise, if >f 0
j
µtrial , plastic corrector step must be

employed. In the corrector step the following set of equations is solved

=f 0,
j
µ

(23a)

= + ( 1)( ),j
µ e

j
µ e

j
µ p

j
µ p, , , ,trial trial

(23b)

= +

D

3

2
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(~ ) 1
,j

µ p
j
µ p

µ µ

µ µ
eq

j

j
µ

, , trial

(23c)

= +p p
D1

,
j
µ

j
µ j

j
µ

trial

(23d)

= +
3

2
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(~ )
,j

µ
j
µ

µ µ

µ µ
eq

j

trial

(23e)

= +D D
Y

S D1
,j

µ
j
µ j

µ s
j

j
µ

trial

(23f)

=Y R
E

(~ )

2
,j

µ
v

eq
µ 2
j

(23g)

= Q .

j
µ

j
µ

(23h)

Non-linear solvers, such as the Newton-Raphson method can be
used to solve such coupled non-linear set of equations. Once converged,
the damage at the macro-scale can be updated as

=D Dˆ 1 (1 ) .j j
µ

(24)

Once the nodal cycle of interest has been investigated, the macro-
quantities ˆ and ˆ are fed to the global stage where the admissibility
conditions are solved.

2.5.2. Latin global stage using model order reduction
The transfer of information from the local stage to the global stage is

through the search direction equation

=+ + + +H( ˆ ) ( ˆ ),i i i i1 1/2 1 1/2 (25)

with the search direction operator =H C
1 as the structure is macro-

scopically elastic.
The boundary conditions being already taken into account in the

initialisation, the objective herein is to update the quantities of interest
in terms of corrections, which read

= = =+ + + + + +u u u, , .i i i i i i i i i1 1 1 1 1 1 (26)

The static admissibility condition, eq. (1), for a given nodal cycle
when written in terms of corrections, reads

=

× +

+ d dt: 0,

T

i

[ , ]

1
*

m m (27)

for any * kinematically admissible to zero. The search direction
equation defined by eq. (25) may be re-written in terms of corrections
as

= ++ + + +C C( ˆ ) (ˆ ).i i i i i i1 1 1/2 1/2 (28)

Equation (27) along with eq. (28) produce the following weak form

=

× +

+

× +

+

× +

+

d dt d dt

d dt

C C: (ˆ ):

( ˆ ): .

T

i

T

i i

T

i i

[ , ]

1
*

[ , ]

1/2
*

[ , ]

1/2
*

m m m m

m m

(29)

The high numerical cost for solving this weak form can be reduced
by using PGD-based model reduction approaches, as commonly used in
the global stage of LATIN (see Ladevèze, 1999; Chinesta and Ladevèze,
2014).

PGD is based on the idea of separation of variables over generalised
coordinates, e.g. space and time. The approximations of the quantities

6



of interest can thereby be written as the sum of products of functions of
space and time. The separated representation, when introduced in the
governing equation, decomposes it into sovereign spatial and temporal
problems, which can then be solved independently using fixed point
method.

For the current problem of interest, at a given LATIN iteration +i 1

the nodal degrees of freedom can be approximated as

= ++

=

u u ut x( ) ( ),i

j

n

j j1 0

1 (30)

with the corresponding strain field written as

= ++

=

t x( ) ( ),i

j

n

j j1 0

1 (31)

where the terms u0 and 0 represent the initial solution for the dis-
placement and total strain, respectively,

=

{ }j j

n

1
is a set of time functions,

and
=

u{ }j j
n

1 and =
{ }j j

n
1 are set of space functions such that

= ux x j nB( ) ( ), [1, ],j
T

j (32)

where B is a matrix containing the derivatives of the shape functions.
For a given LATIN iteration, the corrective terms are calculated

using a maximum of one PGD-pair. If at LATIN iteration i, n PGD pairs
have been generated and the objective in iteration +i 1 is to generate
one more couple, the corrective terms can be written as

=

=

+ + +

+ + +

u ux t t x

x t t x

( , ) ( ) ( ),

( , ) ( ) ( ).

i n n

i n

1 1 1

1 1 1 (33)

Incorporation of these separated forms in eq. (29), with
= +x t( ) ( )* * *, leads to separated spatial and temporal problems.

The spatial problem is given by

=+ + +d dC : :m m m1 1
*

1
*

(34)

with =

+

dt

T[ , ]m m

, = + +C(ˆ ) ( ˆ )i i i i1/2 1/2 and for all *

kinematically admissible to zero. This is a classical boundary value
problem that can be solved using finite element discretisation.

The temporal problem is obtained as

=

+

+ + +

+

+d dt d dtC : : ,

T

n n n

T

n

[ , ]

1 1 1
*

[ , ]

1
*

m m m m

(35)

with no conditions on *. This boils down to an algebraic equation given
by

=+ + + +d dC : : .n n n n1 1 1 1

(36)

This spatio-temporal problem can be expensive as the calculation of
the spatial part is costly, hence it is advised to add a new space-time
pair only if necessary. In most cases, the same spatial basis vectors can
be reused and the time functions can just be updated to obtain the
corrective quantities of interest. For a given LATIN iteration +i 1, the
quantities of interest can be approximated as

=

=

+ =

+ =

u ux t n t x

x t n t x

( , ) ( ) ( ),

( , ) ( ) ( ),

i j j j

i j j j

1 1

1 1 (37)

where
=

{ }j j

m

1
are the corrections to the time functions, and the space

functions are known from previous iterations. Such approximations
when introduced in eq. (29), lead to a temporal problem written as

= G P1 (38)

with

= t( ),ij i j (39a)

= x x dG C( ): ( ) ,ij i j

(39b)

= x t x dP ( , ): ( ) .ij j i

(39c)

This update step is very cheap and needs only to solve a linear
system of equations.

Table 1
Material properties for Cr–Mo steel at 20 C
as given in Lemaitre and Desmorat (2005).

E 200000 MPa
ν 0.3
C 6000 MPa
s 2
S 2.8 MPa

f 140 MPa

y 180 MPa

Fig. 6. A rectangular plate with circular hole, subjected to specified distributed
displacements.

Fig. 7. Distribution of damage at the macro-scale after macroscopic critical
value is reached.
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The global stage of the LATIN method generally starts with this
update step where the temporal basis is updated by reusing the spatial
basis built by the greedy algorithm during previous iterations. The re-
duced order model, hence obtained, if not satisfactory, is improved
through the enrichment step where a new space-time pair is calculated.
There have been several criteria to decide whether enrichment stage is
required or not (see Relun et al., 2011; Bhattacharyya et al., 2018a;
Bhattacharyya, 2018). In the current context, if the maximum norm of
the temporal corrections

=

{ }j j

m

1
is less than a pre-defined tolerance, a

new couple is added. Once the strain correction is obtained, the stress
correction can be calculated using eq. (28).

The convergence of the LATIN method can be measured using a
dedicated error indicator which is given by

=

+

+ +

+ +

s s

s s

ˆ

ˆ
,

i
p

i
p

i
p

i
p

1/2 1

1/2 1 (40)

with

= +

×

s d dtC C( : : ) .p

T

2

[0, ]

1

(41)

If this indicator is below a certain tolerance, the given nodal cycle

has reached convergence and the algorithm moves to the next nodal
cycle.

2.6. Temporal interpolation

To calculate nodal cycle +m 1 after the computation of nodal cycle
m, there are two problems that need addressing. The first is to evaluate
the length of the temporal element, i.e. the value of +m 1. It is possible,
of course to use uniform temporal mesh size as done in Bhattacharyya
et al. (2018b), however an adaptive scheme is pertinent to obtain an
optimum balance between expense and accuracy. Therefore an adaptive
scheme similar to the classical jump cycle algorithm (see Lemaitre and
Doghri, 1994b) is proposed as

= +N
D

˜ 2 min
|

,
D

N
m (42)

where =D
D

50

c and |
D

N
m represents the growth of macro-damage in the

nodal cycle m and Ñ is the total number of cycles within the time
element including both nodal cycles m and +m 1. Hence, (Ñ 2) is the
number of cycles to be jumped over.

The second issue is to determine the initial conditions, i.e. the
quantities of interest at +m 1, required at the local stage. The final
values at nodal cycle m, i.e. values at + Tm , for the cyclic quantities
of interest such as ˆ, , , , ,µ e µ p µ µ µ, , are considered to be the
initial values at nodal cycle +m 1. For the quantities of interest which
are not cyclic such as cumulative plastic strain pµ and damage D and
Dµ, the initialisation can be obtained through linear extrapolation.
These extrapolations can be represented as

Fig. 8. Distribution of damage at the micro-scale after macroscopic critical
value is reached for different values of φ

Fig. 9. Damage evolutions for different values of φ

Fig. 10. Influence of the parameter φ on the number of cycles before reaching
crack initiation (Nf ).
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= + ++D D T N D( ) ( ) (
~

2) ,m m m1 (43a)

= + ++D D T N D( ) ( ) (
~

2) ,µ
m

µ
m m

µ
1 (43b)

= + ++p p T N p( ) ( ) (
~

2) ,µ
m

µ
m m

µ
1 (43c)

with p
m

µ, Dm
µ, and Dm being the increments at the nodal cycle m. This

idea of linear extrapolation might be inaccurate, especially if N~ is large.
Therefore, the initial guess of the initial conditions are obtained from
eq. (43), and thereafter the initial conditions are improved using the
idea proposed in Bhattacharyya et al. (2018c). This boils down to an
update of the initial conditions at each LATIN iteration where these
conditions are recomputed based on

= + ++

=

D D D D( ) ( ) ,m m m

k

N

k1

1

~
2

(44a)

= + ++

=

D D D D( ) ( ) ,µ
m

µ
m m

µ

k

N

k
µ

1

1

~
2

(44b)

= + ++

=

p p p p( ) ( ) ,µ
m

µ
m m

µ

k

N

k
µ

1

1

~
2

(44c)

where •m represents the increments at nodal cycle m and •k is the
increment at each intermediate cycle. To bypass the computation time
needed to acquire all the increments, the increments at nodal cycle m

Fig. 11. Numerical behaviour of the multi-scale LATIN-PGD algorithm for different values of φ

Fig. 12. A block with a central groove subjected to distributed loading.

Fig. 13. Evolution of damage at the weakest Gauss point for both length scales
( = 0.03).

Fig. 14. Stress-strain diagram at certain cycles at the macro-scale.
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and +m 1, i.e. Dm and +Dm 1, are used to approximate •k using an
interpolation scheme. In such a scheme, linear shape functions in the
slow time scale can be defined as

= =

+

+

+

+

+

+

t

T

( ) , ( ) ,

[ , ].

m k

m k

m m

m k

k m

m m

m m

1

1
1

1

1 (45)

Using this assumption, the initial conditions for the “nodal cycle”
+m 1 can be written as

= + ++

=

+ +D D D D( ) ( ) ( ( ) ( ) ),m m

k

N

m k m m k m1

0

~
2

1 1

(46a)

= + ++

=

+ +
D D D D( ) ( ) ( ( ) ( ) ),µ

m
µ

m

k

N

m k m
µ

m k m
µ

1

0

~
2

1 1
(46b)

= + ++

=

+ +
p p p p( ) ( ) ( ( ) ( ) ).µ

m
µ

m

k

N

m k m
µ

m k m
µ

1

0

~
2

1 1
(46c)

Once the nodal cycles m and +m 1 have been calculated, shape
functions as previously defined in eq. (45) are used to interpolate the
solution set

= + = +

+ + ++ + + +

s s

s

t

t T

( ) ( ) ( )

( ) ( ), [ , ].

k k m k m m

m k m m m m1 1 1 1

(47)

The process is pursued subsequently for every temporal element
over the whole time domain or till the critical damage is reached.

3. Numerical examples

The proposed two-scale damage model in the multi-temporal
LATIN-PGD framework is tested on several academic examples. The
goal of the analyses is to estimate the number of surviving cycles before
reaching the critical damage value =D 0.2c at the macroscopic scale.
The material considered is a Cr–Mo steel at 20 C, the properties of
which are given in Table 1. The loading for each analysis is such that
the equivalent stress is between the macroscopic yield stress and the
asymptotic fatigue limit such there is no macro-plasticity and plasticity
exits only at micro-scale.

3.1. Plate with a hole

The first set of analyses is on a two-dimensional square plate with a
circular hole subjected to distributed sinusoidal displacements as re-
presented in Fig. 6. The geometry of the structure is defined by the
length of each side =L 100 mm and the diameter of the circular hole

= 40 mm. The prescribed displacement is of the form = ( )U U sind

t

T
0

2

with the amplitude =U 0.025 mm0 and the time period =T 10 s. The
spatial discretisation is done using 96 linear isoparametric quadrilateral
elements with four Gauss points per element. The time-step size used
for the fine time discretisation is 1 s.

This set of analyses aims at investigating the number of survival
cycles Nf for different values of the coupling parameter φ. Six different
tests are conducted with values of φ being 1, 0.5, 0.1, 0.05, 0.04, 0.03,
respectively, and the LATIN-PGD algorithm continues till the macro-
scopic damage reaches the critical value 0.2.

The macroscopic damage distributions after Dc value is reached are
found to be the same for all the values of φ, one of which is shown in
Fig. 7 along with the region of interest.

The micro-damage contour at the region of interest is shown in
Fig. 8 for different values of φ. The higher the coupling, the lower the
value of the microscopic damage when the macroscopic damage
reaches 0.2.

The evolution of damage with respect to number of cycles for the
weakest Gauss point for different values of φ at both length scales is
shown in Fig. 9. Lower the values of φ, higher is the number of survival
cycles. For lower values of φ, the macroscopic damage value remains
low for most of the life time and later on there is a drastic increase in

Fig. 15. Stress-strain diagram at certain cycles at the micro-scale.

Fig. 16. Distribution of damage at the micro-scale at =D Dmax c.
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damage. As far as the micro-damage evolutions are concerned, for
lower values of φ, the final values reach close to 1 when the macro-
scopic values reach Dc. For the sake of comparison, a post-processed
solution is calculated, considering a very low value of φ. In such cases
the macroscopic damage shows no visible evolution for the entire
lifetime and suddenly reaches the value of one when the microscopic

damage reaches one. For exact post-processing (see Lemaitre and
Desmorat, 2005, for instance), = 0, and =D 1, when =D 1

µ , and
zero otherwise. The idea therein is microscopic damage will have no
influence on the macroscopic behaviour and failure will occur all of a
sudden. In this case the value of φ considered as post-processed results
is 10 3 and not exact zero, to avoid numerical discrepancies. However,
the aforementioned idea can still be reflected (see Fig. 9), and with
decrease in the coupling parameter the damage curves will asymptoti-
cally reach the post-processed curves.

The increase in the total number of survival cycles with decrease in
the values of φ is represented in Fig. 10. Fig. 11a shows the fact that the
number of nodal cycles required for the simulation decreases with in-
crease in φ. The total number of PGD modes required increases with
increase in φ as shown in Fig. 11b. For lower values of φ the coupling
between macro- and micro-damage is reduced, hence higher micro-
damage value is required to achieve macroscopic critical damage value.
To achieve this higher microscopic damage, the number of cycles re-
quired is higher. Also for lower values of φ the gradients are much
higher towards the end of the structural life time (see Fig. 9a), thereby
the number of nodal cycles is higher. For higher values of φ, the non-
linearities introduced in the macro-scale are higher, leading to higher
number of PGD modes.

To summarise the two-dimensional analysis, the value of = 0.03

mimics the intended macro-micro behaviour most effectively, i.e. Dµ

approaches the closest to 1, when D reaches 0.2. This value of φ is used
in the next three-dimensional numerical example.

Fig. 17. Distribution of damage at the macro-scale at =D Dmax c.

Fig. 18. Evolution of principal stresses with respect to time during the first cycle ( + =T 10 si ), and the last cycle ( + = ×T 8.8 10 si
7 ), at the weakest Gauss

point.

Fig. 19. Evolution of the cumulative plastic strain pµ with respect to time at the
weakest Gauss point.
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3.2. Block with a groove

This analysis is on a cuboidal structure with a central groove as
shown in Fig. 12. The geometry of the structure is defined by the di-
mensions of the cuboid, i.e. =L 40 mm, =W 20 mm and =h 2 mm,
and the dimensions of the groove, i.e. =d 4 mm and =w 6 mm. The
structure is subjected to uniformly distributed displacements of the

form = ( )U U sind

t

T
0

2 with the amplitude =U 0.004 mm0 and the time

period =T 10 s. Considering symmetric boundary conditions, only 1/8
of the block is used for analysis.

The structure is discretised in space using 387 linear eight-noded
isoparametric brick elements with eight Gauss points per element. Such
spatial discretisation produces a total of 628 nodes and 3096 Gauss
points. For the temporal part, the time step size used for the fine time
discretisation is 10/32 s. Cyclic loading is applied to the structure till the
macroscopic damage reaches the critical value 0.2 for = 0.03.

The analysis resulted in a total number of surviving cycles
= ×N 8.8 10f

6 for a macroscopic damage value of 0.2, with 38 nodal
cycles and 9 PGD modes. The usage of = 0.03 resulted in the micro-
scopic damage value to be close to 1 when the macroscopic value
reaches 0.2. The evolution of damage for both length scales at the
weakest Gauss point is shown in Fig. 13.

The obvious decrease in the slope of the stress-strain diagram with
damage evolution for the macro-scale at the weakest Gauss point can be
seen in Fig. 14. Here, the curves plotted for certain cycles, belong to the
normal stress and normal strain of the z-component, i.e. zz and zz.
Evidently, the continuous stress-strain response shows an elastic be-
haviour, with decrease in slope, representing the damage behaviour.
The behaviour due to unilateral condition although exists, is relatively
less profound at the macro-scale.

The microscopic stress-strain behaviour, i.e. zz

µ - zz

µ , represented in
Fig. 15 shows the hysteretic behaviour due to micro-plasticity. The
decrease of the slope of the stress-strain diagrams is profound with
increase in number of load cycles. The unilateral behaviour is also
captured nicely, with profound difference in slope for the tensile and
compressive parts. Even for the case where the microscopic damage
reaches 1, the load carrying capacity in the compressive part still exists,
whereas the load carrying capacity for the tensile part vanishes.

The damage distributions at the end of loading for both length scales
are depicted in Figs. 16 and 17, showing localisation of the quantity of
interest.

The principal stresses, for the Gauss point with maximum damage,
as plotted in Fig. 18, show two interesting features. First of all, the
macroscopic principal stresses (Fig. 18a) are smooth sinusoidal in
nature, depicting the elastic macroscopic behaviour, however their
microscopic counterparts are not (Fig. 18b), exhibiting the presence of
plasticity at the micro-scale. Secondly, the amplitudes are drastically
reduced for the microscopic principal stresses from the first to the last
cycle (Fig. 18b), as compared to their macroscopic counterparts
(Fig. 18a). This is in coherence with the behaviour shown in Figs. 14
and 15, i.e. the drastic reduction in load carrying capacity of the micro-
scale compared to the macro-scale. It must be emphasised that although
the responses presented in this article are proportional in nature, the
damage model due to its kinetic nature, and the numerical strategy, are
not restrictive and so also applicable for non-proportional loadings and
responses. Finally the cumulative plastic strain for the weakest Gauss
point is plotted in Fig. 19 with respect to time and its evolution follows
a similar behaviour as that of the microscopic damage.

4. Conclusion

In this paper, high-cycle fatigue computations based on two-scale
damage model have been developed in the LATIN-PGD framework. A
two-scale damage model has been considered with a feedback of the
micro-scale damage growth on the macro-scale elastic behaviour. Both

fully coupled and uncoupled -by post-processing- two-scale damage
modelling have been presented. A continuous transition coupled/un-
coupled is obtained thanks to the volume fraction parameter φ. A two-
temporal scale scheme based on finite element like description in time
has been used to reduce the actual number of cycles which are calcu-
lated by satisfying the global admissibilities and the local constitutive
behaviour through the LATIN-PGD technique. The numerical frame-
work has proven efficient for different academic examples. This effi-
cient numerical framework opens the door to numerical simulations for
complex loading cases, i.e. random fatigue, and large three-dimensional
structures thanks to both the kinetic (rate) nature of the damage
modelling and the model order reduction capacities.
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