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A study of the rate of convergence of generalized inverse
Gaussian and Kummer distributions to the gamma distribution

via Stein’s method

Essomanda Konzou? Angelo Efoévi Koudou! Kossi E. Gneyou *

Abstract

A sequence of random variables following the generalized inverse Gaussian or the Kummer distribution
converges in law to the gamma distribution under certain conditions on the parameters. We provide explicit
upper bounds for the distributional distance between such generalized inverse Gaussian (resp. Kummer)

variables and their limiting gamma distribution applying Stein’s approach.

Keywords: Generalized inverse Gaussian distribution, Kummer distribution, gamma distribution, Stein’s

method, Taylor expansions.

1 Introduction

The generalized inverse Gaussian (hereafter GIG) distribution with parameters p € R,a > 0,b > 0 has
density
(a/b)"*
Gp,ap(T) = mfﬂ
where K, is the modified Bessel function of the third kind.
Fora > 0,b € R, ¢ > 0, the Kummer distribution K (a, b, ¢) has density function

p—le—%(am—*—b/m), x> 0, (1)

1 -1 —a—b_—cx
kape(x) = T(a) (a1 — b C):n 1+ x) e, (x> 0) (2)

where 1) is the confluent hypergeometric function of the second kind and I' is the gamma function.
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The following formulae, immediately obtained from (1) and (2), will be used in the proof of the main
results. If X ~ GIG(p, a, b) distribution, then

b K Vv ab b K Vvab
E(X):\ﬁx—”“( ) px2) = b Bea(Vab),
a " K,(vab) a " K,(vab)
if X ~ K(a,b, c) distribution, then
P(a+ 1,2 — bsc) P(a+ 2,3 —b;c)
¢(a,1 - b; C) ¢(a,1 - b; C)
For more details on GIG and Kummer distributions see for instance Barndorff-Nielsen and Halgreen (1977),

Koudou and Ley (2014), Koudou and Vallois (2012), Piliszek and Wesotowski (2018) and references therein.
For & > 0, A > 0, the gamma distribution (8, ) has density function

(3)

E(X)=a ; E(X?) =a(a+1) (4)

0

A
~¥(0,A)(x) = 0 a:e_le_)‘m]l{m>0}.

We have the following well-known convolution properties which can be easily proved from the Laplace

transforms of the considered distributions:
GIG(—p,a,b) xv(p,a/2) = GIG(p, a,b); (5)

K(a,b,c) *y(b,c) = K(b+ a,—b,c). (6)

In this paper, the gamma distribution is considered in the context of Stein’s method. This method, in-
troduced by Stein (1972), is a powerful technique used in statistics and probability theory to characterize
probability distributions and to bound the error in the approximation of the distribution of a random variable of
interest, by another probability distribution. The main steps of the method are the determination of an operator
(called Stein operator) characterizing the targeted distribution, the resolution of a differential equation called
Stein equation, and the derivation of bounds of the solution obtained and its derivatives.

As a first example of the method, Stein (1972) showed that a random variable X has a standard normal dis-
tribution if and only if, for all real-valued absolutely continuous function f such that E |f/(Z)| < oo for
Z ~ N(0,1),

E[f(X) - Xf(X)] =0.

The corresponding Stein equation is
f'(z) —xf(z) = h(z) — Eh(Z) (7)

where h is a bounded function and Z a random variable following the standard normal distribution.

If f5, solves equation (7), then for any random variable X, we have
E [f4(X) — X fn(X)]| = |[ER(X) — Eh(Z)] .

Thus, we can bound |Eh(X) — Eh(Z)| given h, by finding a solution f;, of the Stein equation (7) and

bounding the left-hand side of the previous equation. For instance, as shown in Ross (2011), if X4,:-- , X,



are independent mean zero random variables such that, ]EX? = 1 and I[:E|Xi|4 < oo t=1,--+,mn,then, by

Stein’s approach,

1 & V2
Eh(W,) —Eh(Z)| < — ) E|X;]’+ —— 8
[BA(W,) = ER(Z)] < -5 S EIXGE + ®
1 & T
where W,, = —— Z X; and Z has the standard normal distribution.
A=
If the random variables X; of (8) have common distribution, then the right-hand side is of order n=*/2. For

more details on Stein’s method, see Chen et al (2011), Ross (2011).

The aim of this paper is to provide a bound for the distance between a GIG (resp. a Kummer) random
variable and its limiting gamma variable, and therefore to give a contribution to the study of the rate of con-
vergence, via Stein’s method. For this purpose we make use of bounds established in Luk (1994) and Gaunt
et al (2017) in the framework of the Stein’s method for the gamma distribution. These bounds are recalled in
Section 2. Section 3 presents our results and section 4 contains the proofs.

2 Stein characterization for the gamma distribution

The following result (see Luk, 1994) gives the Stein characterization for the gamma distribution.

Theorem 2.1 A random variable X follows the (0, A) distribution if and only if, for any bounded and
differentiable function f,
E[Xf'(X)+ (6 — AX) f(X)] = 0.

The corresponding differential equation is

zf'(z) + (6 — Az) f(x) = h(z) — Eh(A),
where h is a bounded function and A a random variable following ~ (6@, A) distribution. It is straightforward
(see Gaunt, 2017, Schoutens, 2001) to prove that the solution of this Stein’s equation is

fn(x) = 7(8,A)(t) [h(t) — ER(A)] dt

@ b

el BRCCITOREAER

Luk (1994) used the generator approach of Barbour (1988) to derive the following Stein equation
zf"(x) + (0 — Ax) f'(x) = h(x) — Eh(A) 9)

and obtained bounds for the derivatives of the solution. Let us recall this result:



Theorem 2.2 (Luk, 1994) For k > 1 let £¥) denote the k-th derivative of a function f. Let

Chr={h:Ry — R:3c > 0,a < AsuchthatVNe € R,,Vj =0,1,--- ,k —1

|h@ ()| < ce®® and h**=Y) is absolutely continuous }.
If h € C)k, then the solution fy, of (9) is k times differentiable and

(k)
ol < B2 g, (10)

where || f|| = sup |f(z)| and h(® = h.
x>0

Alternative bounds were obtained by Picket (2004) and Gaunt (2013). Picket (2004) obtained for h € C)

)< [\ 3] ez

and Gaunt (2013) showed that for h € C' ,

\/_ -1
5] < | S+

Recently, Gaunt et al (2017) provided new bounds.

[Imen, ez

Theorem 2.3 ( Gaunt et al (2017)) Let k > 2. Suppose h € C' y_1 and that h*=2) is bounded. Then

IE2 (8[|~ + 22|42 ). (1)

"l <
“O0+k—-1

The bounds recalled in this section will be used in the proof of our results stated in next section.

3 Main results

3.1 About the rate of convergence of the generalized inverse Gaussian
distribution to the gamma distribution

Before giving our first main result in Theorem 3.1 below, we recall in the following proposition the convergence

of the GIG distribution to the gamma distribution as the third parameter tends to 0. We give the proof, even if

it is elementary.

Proposition 3.1 For p > 0, a > 0, let (W,)n>1 be a sequence of random variables such that W, ~
1

GIG (p, a, —) foreachm > 1. Then, as n — 0o, the sequence (Wy,),>1 converges in distribution to a
n >

random variable following the ~ (p, %) distribution.



Proof:
Forall x > O,

p/2 x ) )
P(W, <x)= %)/ tr—1e—3(at+5s) gt
0

2K, (V5

We now use the well-known fact that, if p # 0,
K,(2) "R 277D (|p])= (12)

and the Lebesgue’s Dominated Convergence Theorem to see that

lim P(W, < z) = / (a/2)”

L yp—le—3atgy,
0 I‘(p)

Unsing the convolution property (5) and Proposition 3.1 we have the following result :

Proposition 3.2 Let p > 0, a > 0. Consider a random variable Y ~ ~v(p,a/2). Let (X,,) be a sequence
of random variables such that, for each n > 1, X,, is independent of Y and X,, ~ GIG <—p, a, —).

n
Let W, = X,, +Y, n > 1. Then

1
1. W, ~GIG (p, a, —).
n

2. Asm — oo, the sequence (Wy)p>1 converges in distribution to a random variable A following the

~ (p, 2) distribution.

1
In view of the previous proposition, one natural question is how close the GIG (p, a, —) distribution of
n

W, is to the ~ (p, %) distribution of A for n big enough. The following theorem addresses this question by
proposing a bound for |ER(W,,) — Eh(A)| given a regular function h.

Theorem 3.1 With the notation of Proposition 3.2, if h € Ca 3 then

ER(W,) — ER(A)] < 2 x LEwen (Vi) [ B 1K pi2 (V)

VaVa Ko, (VD) T a n K, (/I

where
6p 4p

A = 2a —|——) h -|-( + + ) Rl + B!
(2 T2 ) Il (74 o+ o ) I+ I

4ap , 12p 4p . 12p
B=—||h||+( 4 )||h |+ P ||h®]|.
24 p 24+p 3+p a(3 + p)

Remark: Using the equivalence (12), for p > 2 we have

Kopn(Va) va 1 K_pi2 (V3) a

Ko, (/9 "2 Ve KL (VD) T ae-1)

hence the upper bound provided by Theorem 3.1 is of order n = for all p > 2.

and

1
><—as n — +oo,

The proof of Theorem 3.1 will be given in Section 4.



3.2 About the rate of convergence of the Kummer distribution to the

gamma distribution

The following theorem contains results corresponding to those given in the previous subsection, in the frame-

work of the convergence of the Kummer distribution to the gamma distribution.

Theorem 3.2 For any integer n > 1, let Z,, and Y, be independent random variables such that
Zy~K(:,a—2,c)andY, ~~v(a—%,c)witha >0,b€ER ¢> 0.
LetV,, = Z, + Y,.

1.V, ~K (a, —a + %,c).

2. Asn — oo, the sequence (V) converges in distribution to a random variable A following the v(a, c)

distribution.

3. Forany h € C,g3,

1 F 1 a— 1
[BR(V,) — ER(A)] < —[I0]] + & x £ 280 =50
cn c nya,l+a—;c)

H 1 1 ,—1 — 1
+—x—(1+—>¢(a e 1”6)
2 n n/) Pa,1+a—;c)
where
F=(1c+ i (7 (ot ) e )
= C —_ — a — —
1—|—ca n 1+a 2+a n
6 1
. _ h/l
e e I
and

H— 4c ( n
_2—|—a, “

S A TR T S P RPN E
a— )i+ o e = 189

+(arat (aratare) fomw))
a— — .
2+a 2+a 3+a n

Remark: Since 1) is a continuous function,

Y(a,a — 15c) ¥(a, a;c)
i > < 003
P(a,1+a— Lic) noeo (a,1+asc)

wla,—1+a—1ic)  tla,—1+a;c)
YP(a,1+a— %;c) n—oo’ P(a,1+ a;c)

Theorem 3.2 shows an upper bound of order n~*.

< oC.




4 Proofs

For convenience we denote by f := f}, the solution of the Stein equation for the gamma distribution.

4.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the following lemmas.
Lemma 4.1 X,, and W, satisfy

K_pt1 (\/g)
Van K_, (/%)

‘E X f" (W) - anf’(Wn)H SRR

Proof
By the triangular inequality,

B X (W) = $X0f (W) | < [E L7 (Wo]l + | SEX, /(W)

< (171+ 501) 506
- (llf"||+“||f||) Korit (V) oy (3)).

2 van K_, (/%)
[l
Lemma 4.2 Y and W, satisfy
=[(p=2¥) -] | < 20115 \/Z—nKIZH(%?’ 13
v £®) 2P oy L Ko (V3)
B [Y (W = V)10 < PUFON o m 2 o (14)
=[(p-5v) [Tom, —t)f(3)(t)dtH < zmu(f‘)n%%ﬁ, (15)
'E v/ "(Wn—t>f<4>(t>dtH ||f‘4’llan#f/@- (16)

Proof
We use the triangular inequality and the fact that the random variables X,, and Y are independent. We have

(- 32) o] - o 22) e

<pI]E[an”(Y)]|+ |E[Y X, 7 (Y)]]

< (b+55M)) s

)||f"|| L Ky (/)
Var Kop (V)

G
P 2



by independance of X, and Y, which gives inequality (13). Noting that
E[Y(W, —Y)fO )] = [E[Y X fO )] < [IFPNEY Xn) = [[FPE(Y)E(XR),

we get inequality (14). For (15), we have

(- 30) oot

< lFP|E (p gY) n(Wn — Y)dtH
= [|f@E (p gY) (W, —Y)z}
sl (p- 5v) x|

< IF@) (p + —E(Y)) EX?

1 K py2 (\/ﬁ)
n K_, (V%)

— 2p||F ]| x —
a

Inequality (16) follows from the fact that

‘E lY /YW"(W" —0f (4)“)‘”} ‘ <IFDNE[]Y (Wa — V)2

= [|f@EYEX?.
Proof of Theorem 3.1
We have
|[ER(W,) — Eh(A)|
I a
— |E an//(Wn) + <p — 5Wﬂ> f’(Wn)} ‘

=[5 | X0 (W) = S Xur (W) + Y5/ W) + (p= 5 ) 77|

IA

E :an"(wn) — gxnf'(wn)H + 'E {Yf”(Wn) + (p - —Y) f! (Wn)H

The upper bound of the first term in the right hand side of the above inequality is given by Lemma 4.1 in terms
of || f’|| and || f”||- By Taylor’s expansion of f”(W,,) and f’(W,,) in the neighborhood of Y, we have

Y W) = Y S/ 4 Y (W = V)FO0) 47 [ (W= 05O @ya



and

(P—3Y) f'(Wa) = (p—5Y) F'(Y)+ (p— 5Y) (Wa — Y)F"(Y)

a Wn
_ _ _ (3)
+<p 2y) |- s @a
Hence

‘E {Yf,,(wn) N <p _ _Y> F (Wn)} ‘ SI+IT+IIT+1V+V
where I= ‘E {Yf”(Y) + (p - gY) f'(Y)H
I1 = [E[Y (W, — Y) O]

II1 = ‘]E Kp - gY) (W,, — Y)f”(Y)} ‘

Y

E [(p — gY> /YWR(Wn — t)f(3)(t)dt] ' .

By Stein characterization of v (p, a/2) distribution deduced from (9), I = 0. We obtain the upper bounds of
II,III, IV and V by Lemma 4.2 in terms of || /||, || £”||. || £®|| and || f®|]. Inequality (10) gives

v = ‘IE [Y /Wn(Wn — t)f(“)(t)dt] '

V =

2
1P < 1Rl (17)
a

and inequality (11) gives

2
15711 < ? (311R|| + al|hl])
£ < 2— (311R"1] + allP|1) (18)
2
1F1 < 55, BRI+ allA”]]) -

Theorem 3.1 follows by substituting, in (17) and (18, || f’||,

4.2 Proof of Theorem 3.2

The first item comes from the convolution property (6).
The second item is easily proved as for Proposition 3.1.

In the sequel of the proof we need the following lemmas.
Lemma 4.3 V,, and Z,, satisfy

Y(a,a — i;C)
YP(a,1+a — c).

E1Z0f" (V) — eZaf (Va)ll < [ell 1| + 11571 -
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Proof
Using the triangle inequality, we have
|E[Znf"(Va) — cZnf' (V)] < (ellF'I| + [ F71) EZy

with
E7 — 1¢(1+%,2—a—|—%;c) 1 ¢(a,a—%;c)
" n gb(%,l—a—l—%;c) _cnw(a,l—i—a—%;c)'

The last equality is obtained by using the fact that
P(a,byx) =2 P(a — b+ 1,2 — b;x).

Lemma 4.4 V,, and Y,, satisfy
E[Yaf" (Ya) + (a — ) £ (vl < 121 (19)
o 1 Y(a,a— —s5c)
““D”fW;¢m1+a__c) (20)
1 dlaa-bio)
(3) n
L= et S

- (14 2)

n c“n n
¢(aa_1+a’_%;c)
baita_ Lo

mua—dmaa—xaﬂamns(a+

E [V (Vi — Yo) FO (V)] <

‘E [(a —evy [ v — t)f(?’)(t)dtH < <a tla

Yn

1 1 1 1
Vo= 0@t < *la= i@l 5 (14 1) x
C n c“n n

Vn

Y(a,—1+a— %;c)
Y(a,1+a—L5¢) (22)

Yn

dic

Proof
For inequality (19) we have

|E [Ynf”(Yn) + (a - CYn)f,(Yn)]l
:hﬂx¢%nr+m—%—wx¢ﬂxo+%famﬂ

B [Yos (%) + (@ ) - ¥ r ()| +

<
1Y)
s

n




noting that E [Y,, f”(Y,) + (a — = — ¢Y,,) f(Y,)] = 0 by the Stein characterization for v(a —

distribution.

For inequality (20), we have

[E[(@ — cYn) (Ve — Ya) £/ (V)] = [E [(a — c¥o)(Zn) F7 (Ya)]
< 1711 (a + c|E(Y,)]) E(Z,)
_ (a+ 1 @b(a»a—%;c)

E [Ya(Va — Y) SO (Ya)]| = [E [Ya(Za) FO (V)]

< If®|||EY,EZ,| (Y, and Z, are independent)
1 1 Y(a,a— %; c)
c

1
(3)
a— — — .
n‘ I/ ”cn’(p(a,l—l—a— %;c)

We obtain inequality (21) by

For inequality (22), we have

‘E [(a —evy [ v — f(?’)(t)dt} ‘

Yn

1 144
@ ;D I/ ||cn1,b(a,1—|—a— %;c)'

1

11

w2 €)

Vn
smwmnwwwﬂf|m—nw)
Y.

= (a + c[EY,)|IFPE(Z])
1

1 1
Cc°Nn n

a— —
n

¢(a7_1+a_%;c)

w(a31+a_%;c) ’

since
Y (24+2,3—a+;c)
P (;ml—a+ 50

E(Z2%) = % (1 + —)

1 1 't,b(a,—l—l—a—%;c)
an (17 0) Wi ra fa

c2n n

The last inequality of Lemma 4.4 is obtained by

Vn
‘Eﬁ; wz—wﬂWﬂﬁHsnﬂ@wmuEﬁ
Y.
1 1 1 1
a2l (14 1) x
n CcC“Nn n

Y(a,—1+a— %;C)
"/’(aal_"a_%;C) .
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We are now able to prove the last item of Theorem 3.2.
Proof of Theorem 3.2
We check that

[ER(V,) — Eh(A)]
= [E[Vaf"(Va) + (a — cVa) f/(Va)]l
= |E[(Zn + Yo) " (Vo) + (@ — c(Zn + Y2)) f/(Va)]
= |E[Znf"(Va) — €Znf'(Va) + Yo f" (Vo) + (a — cYy) f/(Va)]|
S E[Znf" (V) — cZnf (Vo)ll + [E [Yo f"(Va) + (a — cYa) f/(Va)]l -
The upper bound of |E [Z,, f"" (V) — ¢Z, f'(Vy)]| is given by Lemma 4.4 in terms of || f/|| and || f”||. By

Taylor’s expansion of f”/(V,,) and f’(V},) in the neighborhood of Y,,, we have
Vn

Yof" (Vo) = Yuf" (Vo) + Ya(Va = V) FOY) + Yo | (Vo — ) F@(2)dt
and "
(@ —cY,) (Vo) = (a — cYy) F/(Ya) + (a — cYs) (Vi — Yo) 7 (Ya)
a—evy) [ (Vi — ) £O byt
Hence "

B [Yof” (V) + (a — c¥a) £/ (Vo)ll < [E[Yof"(Ya) + (a — cYo) f/(Ya)]l +

E [Ya(Ve = Ya) FO (Ya)]| + [E [(a — Ya) (Vo — Ya) £/ (Ya)]| +

‘E {Yn "o - t)f<4>(t)dt] ’ n

Yn

E [(a —evy) [ - f<3>(t)dt] ’ . (24)

Yn

We obtain the upper bounds of the expressions of the right-hand side of the inequality (24) by Lemma 4.3 in
terms of || ][, 1771, || £ and || f®)]|

Inequality (10) gives || f’|| < 1||h’|| and inequality (11) gives

2
"< ——— (3||n 2¢||h
|| f ||_1+a( [|R'|| + 2cl|h]])
2
@Gl < —— (3||n" 2¢||h
| f H_2+a(ll || + 2¢||h'|])

2
17N < 57 BIRDI+ 2¢lln”]])

which ends the proof of Theorem 3.2.
OJ
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