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aSorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire
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Abstract

In this paper, we address the problem of the exponential stability of density-velocity systems with
boundary conditions. Density-velocity systems are omnipresent in physics as they encompass all systems
that consist in a flux conservation and a momentum equation. In this paper we show that any such
system can be stabilized exponentially quickly in the H2 norm using simple local feedbacks, provided
a condition on the source term which holds for most physical systems, even when it is not dissipative.
Besides, the feedback laws obtained only depends on the target values at the boundaries, which implies
that they do not depend on the expression of the source term or the force applied on the system and
makes them very easy to implement in practice and robust to model errors. For instance, for a river
modeled by Saint-Venant equations this means that the feedback laws do not require any information on
the friction model, the slope or the shape of the channel considered. This feat is obtained by showing
the existence of a basic H2 Lyapunov functions and we apply it to numerous systems: the general
Saint-Venant equations, the isentropic Euler equations, the motion of water in rigid-pipe, the osmosis
phenomenon, etc.

1 Introduction

Density-velocity systems are important hyperbolic systems as they represent the physical phenomena where
the flux is conserved, while the energy can be either increased or decreased. In physics they are found in fluid
mechanics, electromegnetism, etc. The increase or decrease of the energy leads to nonuniform steady-states
with sometimes large variations in space. In this paper, we address the exponential stability of such nonlin-
ear systems for the H2 norm, although the result is also true for the Hp norm for any p ≥ 2. Mentioning
the norm is not superfluous as, for nonlinear systems, the stability for different norms are not equivalent
[11]. In particular it has been shown in [1] that the basic quadratic Lyapunov functions fail to ensure the
stabilization in the L2 norm for nonlinear hyperbolic systems systems and that one has to study the H2

norm instead. Other attempt of basic Lyapunov functions have been constructed to ensure the stability of
hyperbolic systems in the C1 norm, for instance [7, 23, 24].

Physical density-velocity systems often have well-known conservative or dissipative energy or entropy func-
tions when no source term occurs [12]. These dissipative energy or entropy functions are quite useful for the
analysis of such system and enable to obtain stability results (see for instance [4, 8, 10] for the use of entropy
as control Lyapunov function for Saint-Venant equations and [4] for the Euler equations). When source
terms appear, however, no such function is usually known, especially when the source term is not dissipa-
tive. In the previous contribution [4], the authors also studied the stabilization of hyperbolic density-velocity
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equations, but with dissipative source terms only depending on the unknown functions. This is the case for
Saint-Venant equations with no slope and with a constant friction, or for the isentropic Euler equations when
the gas pressure is simply assumed to be a function of a gas density and a friction proportional to the square
of the velocity. However, the source terms may also depend on the space variable in practice and may not
be dissipative. This is the case for example for the Saint-Venant equations with both slope and arbitrary
friction, or Euler equations with arbitrary friction slope, and general gas pressure, which are more realistic.

For general density-velocity systems, we find that for any H2 steady-state, there always exists a basic
quadratic Lyapunov function for the H2 norm (or basic H2 Lyapunov function) that guarantees the expo-
nential stability of the steady-states for the H2 norm provided suitable boundary conditions and a reasonable
physical condition on the source term. Our result in this paper is quite generic and can be widely used in
applications, we illustrate it by applying it to several physical systems: the general nonlinear Saint-Venant
equations, the general isentropic Euler equations, the motion of water in a rigid pipe, a flow model under
osmosis phenomenon. Moreover, our method has many advantages when applying in the real world. For
example, to stabilize the Saint-Venant equations, we require some information on the section and the veloc-
ities only at the boundaries. No information on the internal section profile, on the slope or on the friction is
required. This is very convenient in practice, as this feedback law can be applied without a clear information
of the inner state of the channel (bathymetry, material, profile, etc.) since there may be no way to know
properly the precise shape or material of the channel. Besides, while many friction models exist (see e.g. [6,
Section 4.5]), it also completes the debate about which friction model to use as this feedback law works for
any of them, without requiring to know it.

Another contribution of this paper is that we study the stabilization of general density-velocity systems with
one single boundary control. This is for example in the regulation of navigable rivers, one usually applies
only one boundary control at the downstream of the channel.
The organization of the paper is as follows. In Section 2, we first present the main results: the exponential
stabilization of general density-velocity systems with two boundary controls in Theorem 2.1. Moreover in
Theorem 2.2, the exponential stabilization result with a single boundary control is presented. Then we apply
the result to several physical models. In Section 3, we give the proof of our main results, namely Theorem
2.1 and Theorem 2.2. In addition, we show the optimality of the conditions on the control in Section 4,
Finally, some detailed computations are provided in the appendices.

2 Model considered and main result

A nonlinear hyperbolic density-velocity system is composed of a mass conservation law and a balance of
momentum [4] and is thus given by

∂tH + ∂x(HV ) = 0, (2.1)

∂tV + V ∂xV + ∂x(P (H,x)) + S(H,V, x) = 0, (2.2)

where t ∈ [0,+∞), x ∈ [0, L] with L > 0 any arbitrary constant. In many applications, H : [0,+∞)×[0, L]→
(0,+∞) denotes the density, V : [0,+∞) × [0, L] → (0,+∞) denotes the propagation velocity, HV is the
flow density and and S(H,V, x) is a source term resulting of non-conservative forces acting on the system,
such as slope or friction. The first equation expresses the flux conservation and is often known as continuity
equation, while the second equation is usually referred as dynamical or momentum equation. In this second
equation, V ∂xV represents the variation of the kinetic energy, while ∂x(P (H,x)) represents the variation of
the potential energy and corresponds to a conservative force (e.g. pressure, gravitation, etc.). As we are
interested in physical systems, we assume that S ∈ C2((0,+∞)2 × [0, L];R), P ∈ C2((0,+∞) × [0, L];R)
and here and hereafter, we also assume that

H > 0, V > 0, ∂HP (H,x) > 0. (2.3)
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The steady-states (H∗, V ∗) of (2.1)–(2.2) are the solutions of

H∗x = V ∗x
H∗

V ∗
, (2.4)

V ∗x = V ∗
S(H∗, V ∗, ·) + ∂xP (H∗, ·)
∂HP (H∗, ·)H∗ − V ∗2

. (2.5)

For each initial condition (H∗(0), V ∗(0)) ∈ (0,+∞)2 satisfying ∂HP (H∗(0), 0)H∗(0) − V (0)∗2 > 0, there
exists a unique maximal solution to (2.4)-(2.5), and this maximal solution exists as soon as the condition
∂HP (H∗, ·)H∗ > V ∗2 is satisfied. Besides, as hyperbolic systems with propagation velocities of the same
sign can always be stabilized by the means of proportional boundary feedback (see e.g. [24]), we assume
in the following that the propagation velocities of this system have opposite signs, which, from (2.1)–(2.2),
means that ∂HP (H∗, ·)H∗ > V ∗2. This holds for example in the case of the fluvial regime for Saint-Venant
equations.

In the following, we give two strategies of boundary controls. As a first strategy, Theorem 2.1 relies on two
boundary controls, i.e. the number of controls are equal to the number of the unknown functions. While
in practice, one may control only one boundary. In the regulation of navigable rivers, for instance, one
usually applies only one control at the downstream of the channel. Theorem 2.2 is thus concerned with the
stabilization of general density-velocity systems with a single boundary control.

Two boundary controls We aim at stabilizing the steady-states of (2.1)–(2.2) with boundary feedback
controls. We suppose that the boundary conditions have the form

V (t, 0) = B1(H(t, 0)),

V (t, L) = B2(H(t, L)),
(2.6)

where the control function B = (B1,B2) : R2 → R2 is of class C2. These kind of boundary conditions are
imposed by physical devices in engineering system (e.g. sluice gates, feeding valves, pumps, etc.). This
control function is one of the most simple potential feedback law as one does not need to know the full-state.
Moreover, this control is local in the sense that one only needs to measure the value at the same end where
the control acts.

As we study the stabilization in the H2 norm, for any given initial condition

H(0, x) = H0(x), V (0, x) = V0(x), x ∈ [0, L], (2.7)

with (H0, V0) ∈ H2((0, L);R2), the following first-order compatibility conditions are needed [2]

V0(0) =B1(H0(0)),

V0(L) =B2(H0(L)),

(V0∂xV0 + ∂HP (H0, ·)∂xH0 + ∂xP (H0, ·) + S(H0, V0, ·)) (0) =B′1(H0(0))∂x(H0V0)(0),

(V0∂xV0 + ∂HP (H0, ·)∂xH0 + ∂xP (H0, ·) + S(H0, V0, ·)) (L) =B′2(H0(L))∂x(H0V0)(L).

(2.8)

We recall now the definition of the exponential stability for the H2 norm.

Definition 2.1. A steady-state (H∗, V ∗) of the system (2.1), (2.2), (2.6) is exponentially stable for the H2

norm if there exist δ > 0, γ > 0 and C > 0 such that, for any (H0, V0) ∈ H2((0, L);R2) satisfying

|H0 −H∗|H2 + |V0 − V ∗|H2 < δ (2.9)

and the compatibility conditions (2.8), and for any T > 0, the Cauchy problem (2.1), (2.2), (2.6) and (2.7)
has a unique solution (H(t, ·), V (t, ·)) ∈ H2((0, L);R2) satisfying

|H(t, ·)−H∗|H2 + |V (t, ·)− V ∗|H2 ≤ Ce−γt (|H0 −H∗|H2 + |V0 − V ∗|H2) , ∀ t ∈ [0, T ). (2.10)
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Our main result is the following

Theorem 2.1. Assume that S ∈ C2((0,+∞)2 × [0, L];R) and P ∈ C2((0,+∞)× [0, L];R), let (H∗, V ∗) be
a steady-state of the nonlinear hyperbolic density-velocity system (2.1), (2.2), (2.6) satisfying

∂V S(H∗, V ∗, ·)
V ∗

− ∂HS(H∗, V ∗, ·)
∂HP (H∗, ·)

≥ 0, ∀x ∈ [0, L]. (2.11)

If the boundary conditions satisfy:

B′1(H∗(0)) ∈
[
−∂HP (H∗(0), 0)

V ∗(0)
,−V

∗(0)

H∗(0)

]
,

B′2(H∗(L)) ∈ R \
[
−∂HP (H∗(L), L)

V ∗(L)
,−V

∗(L)

H∗(L)

]
,

(2.12)

then the steady-state (H∗, V ∗) is exponentially stable for the H2 norm.

Remark 2.1. Note that condition (2.11) holds naturally for most physical systems with source terms, (e.g.
friction, slope, electric field, external forces, etc.), as illustrated in the physical examples at the end of this
section. Besides, note also that the source term is not necessarily dissipative, as S could be negative.

The proof of this result is given in Section 3. As announced in the introduction, this is done by showing the
existence of a basic quadratic Lyapunov function for the H2 norm (or basic H2 Lyapunov function).

Single boundary control Suppose now that we have only a single feedback control, the other boundary
condition being imposed, for instance by a constant but unknown upstream flow rate on which we cannot
act. The boundary conditions are now

H(t, 0)V (t, 0) = Q0,

V (t, L) = B2(H(t, L)),
(2.13)

where Q0 is the unknown constant inflow upstream, while B2 : R→ R of class C2 is still the control function.
Using the same basic quadratic Lyapunov function for the H2 norm we can still achieve the exponential
stability which is a direct application of Theorem 2.1 by noticing now that B1(H(t, 0)) = Q0/H(t, 0) and
that the steady-state satisfies H∗(x)V ∗(x) = Q0. We thus have

Theorem 2.2. Assume that S ∈ C2((0,+∞)2 × [0, L];R) and P ∈ C2((0,+∞)× [0, L];R), let (H∗, V ∗) be
a steady-state of the nonlinear hyperbolic density-velocity system (2.1), (2.2), (2.13) satisfying (2.11). If the
boundary control satisfies:

B′2(H∗(L)) ∈ R \
[
−∂HP (H∗(L), L)

V ∗(L)
,−V

∗(L)

H∗(L)

]
, (2.14)

then the steady-state (H∗, V ∗) is exponentially stable for the H2 norm.

Remark 2.2. Note that Q0 is assumed to be constant otherwise no steady-state (H∗, V ∗) exists. However,
the stabilization of slowly-varying target-state when Q0 can vary, possibly a lot, but slowly would hold under
the same condition, adapting the control as in [25].

Remark 2.3. Theorem 2.2 still holds if the control is located on x = 0 instead, while the imposed flow is
located on x = L, i.e.,

V (t, 0) = B1(H(t, 0)),

H(t, L)V (t, L) = QL,
(2.15)

where QL is the unknown constant outflow downstream, while B1 : R→ R of class C2 is the control function.
In this case, the condition on the control becomes

B′1(H∗(0)) ∈
(
−∂HP (H∗(0), 0)

V ∗(0)
,−V

∗(0)

H∗(0)

)
. (2.16)

One can find a brief proof in Appendix C.

The abstract system (2.1), (2.2) covers many well-known systems and we give now a few examples.
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General Saint-Venant equations The Saint-Venant equations are the basis model for the regulation
of navigable rivers and irrigation networks in agriculture. The stabilization of the Saint-Venant equations
by means of local boundary feedbacks has been widely studied [4, 5, 8, 9, 16, 28]. Recently in [26], the
authors obtained the stabilization of the Saint-Venant equations with non-negligible friction and arbitrary
slope. However, this result is obtained under the assumption of a rectangular cross section with a constant
width and a known friction model. In the following, we show that our result applies to the most general 1D
Saint-Venant equations with arbitrary varying slope, section profile and friction model [13]:

∂tA+ ∂x(AV ) = 0, (2.17)

∂t(AV ) + ∂x(AV 2) + gA(∂xH − Sb(x) + Sf (A, V, x)) = 0, (2.18)

where A is the cross-sectional area of the section, V is the velocity, AV is consequently the flux, H is the
height of the water, Sb is the slope, Sf is the friction and g is the gravity acceleration. Note that the friction
logically depends on H and V but can also depend on x for external reasons, for instance if the material
of the channel changes. Whatever is the section profile, A is strictly increasing with H, thus there exists a
function G strictly increasing with A such that H = G(A, x) and consequently (2.18) can be written as

∂tV + V ∂xV + g∂AG(A, x)∂xA+ g∂xG(A, x) + g(Sf (A, V, x)− Sb(x)) = 0. (2.19)

Thus, system (2.17)-(2.18) has the form (2.1)–(2.2) with P = gG(A, x) and S = g(Sf − Sb). Besides,
to be physically acceptable, the friction term has to be increasing with V and decreasing with A. Hence
∂V S = g∂V Sf > 0 and ∂AS = g∂ASf < 0, noticing that ∂AP = g∂AG(A, x) > 0, thus condition (2.11) is
satisfied and we have the following theorem

Theorem 2.3. Any steady-state (A∗, V ∗) of the general Saint-Venant equations (2.17), (2.19) with boundary
conditions (2.6) with A instead of H, is exponentially stable for the H2 norm provided that

B′1(A∗(0)) ∈
[
−g∂AG(A∗(0), 0)

V ∗(0)
,−V

∗(0)

A∗(0)

]
,

B′2(A∗(L)) ∈ R \
[
−g∂AG(A∗(L), L)

V ∗(L)
,−V

∗(L)

A∗(L)

]
.

(2.20)

Water motion in a rigid pipe The water motion in a rigid pipe is a common example for engineering
system, whose equations are given in [3] as follows

∂t

(
exp

(
gH
c2

))
+ ∂x

(
V exp

(
gH
c2

))
= 0,

∂tV + V ∂xV + ∂x(gH) + Sf (V, x) = 0,

(2.21)

where H is the piezometric head, V > 0 is the water velocity, c is the sound velocity in water, g is the gravity
acceleration, and Sf is the friction term. Denoting H = exp

(
gH/c2

)
, this system has the form of (2.1)–(2.2)

with P = c2 lnH. As previously, to be physically acceptable, the friction term Sf has to be nondecreasing
with V , thus (2.11) holds and Theorem 2.1 applies again.

The isentropic Euler equations The isentropic Euler equations are used to model the gas transportation
in pipelines. There are many literatures on the stabilization of the isentropic Euler equations [4, 14, 15, 17,
18, 19, 20]. But all those results are obtained without considering the pipeline slope and using the polytropic
gas assumption or the isothermal assumption. The isentropic Euler equations with slope and friction have
exactly the form (2.1)–(2.2) as (see e.g. [3][1.8.1] or [21])

∂t%+∂x(%V ) = 0,

∂tV+V ∂xV +
∂x(P(%))

%
+

1

2
θV |V |+ g sinα(x) = 0,

(2.22)
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where % is the gas density, V is the velocity, α ∈ C2(R) is the slope of the pipe, g is the acceleration gravity,
P(%) is the pressure (increasing with %) with

√
P ′(%) > 0 being the sound speed in the gas, θ = λ/D with

λ > 0 is the friction coefficient and D > 0 the diameter of the pipe. In this case, P :=
∫ %
0
P ′(s)/s ds and

S = θV |V |/2 + g sinα. Thus, ∂%P (%) > 0, ∂%S = 0, ∂V S > 0 as long as V > 0, which implies that (2.11)
holds and that Theorem 2.1 applies. Note that this holds in particular in the case where the gas is polytropic,
i.e. P = a2%γ with γ > 1 (as in [4]), and in the case of the isothermal Euler equation, i.e. P = a2% (as in
[21]).

Flow under osmosis Osmosis is a spontaneous movement of solvant or solute through a semipermeable
membrane in a solute/solvant mix. This phenomenon is extremely important in chemistry and biology
as it is the main way by which water is transported out of cells in living organisms. Besides, biological
membranes allow much faster filtration than any artificial mechanical membrane [], thus attempts have been
recently made to design active membranes that would mimic this behavior and a mechanical model for this
phenomenon can be found in [27].
Osmosis phenomenon through a membrane permeable to the solute but not to the solvant can be modeled
by a potential barrier which acts on the solute. This creates, from Newton’s law, a volume force on the fluid
−c(x)∂xU , where U is the profile of the potential barrier, compactly supported, c is the concentration and x
is the space variable [27]. In an inviscid fluid modeled by the isentropic Euler equations (2.22), this reduces
to adding an external compactly supported pressure term. Therefore, we still have ∂%P (%) > 0, ∂%S = 0,
∂V S > 0 as long as V > 0, and Theorem 2.1 applies. Note that any external potential acting on a fluid
modeled by the isentropic Euler equations would fit in our framework, osmosis is only an example.

3 Exponential stability of density-velocity hyperbolic systems

In this section we prove Theorem 2.1. Let (H∗, V ∗) be a steady-state of (2.1)–(2.2). We start by proving
the exponential stability of the linearized system around this steady-state for the L2 norm to give an idea of
how the proof works and then, we show that the same type of Lyapunov function can be applied to ensure
the exponential stability of the nonlinear system for the H2 norm.

3.1 Exponential stability of the linearized system

Around the steady-state (H∗, V ∗), the linearized system of (2.1)-(2.2) and (2.6) is given by:

∂th+ V ∗∂xh+H∗∂xv + V ∗x h+H∗xv = 0,

∂tv + V ∗∂xv + V ∗x v + ∂HP (H∗, x)∂xh+ ∂2HHP (H∗, x)H∗xh+ ∂2xHP (H∗, x)h

+ ∂HS(H∗, V ∗, x)h+ ∂V S(H∗, V ∗, x)v = 0.

(3.1)

and

v(t, 0) = c1h(t, 0),

v(t, L) = c2h(t, L),
(3.2)

where h = H − H∗ and v = V − V ∗ are the perturbations and c1 = B′1(H∗(0)) and c2 = B′2(H∗(L)). To
simplify the notations, we denote from now on

∂HP (H∗, x) := f(H∗, x), SH∗ := ∂HS(H∗, V ∗, x), SV ∗ := ∂V S(H∗, V ∗, x),

SH∗ := ∂xf(H∗, x) + SH∗ .
(3.3)

Thus, the linearized system of (2.1)-(2.2) and (2.6) around the steady-state (H∗, V ∗) given by (3.1) becomes(
h
v

)
t

+

(
V ∗ H∗

f(H∗, x) V ∗

)(
h
v

)
x

+

(
V ∗x H∗x

SH∗ + ∂Hf(H∗, x)H∗x SV ∗ + V ∗x

)(
h
v

)
=

(
0
0

)
. (3.4)
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We recall that the steady-state 0 ∈ L2((0, L);R2) (3.4) is said exponentially stable (for the norm of
L2((0, L);R2)) if there exist ν > 0 and C > 0 such that, for every (h0(x), v0(x)) ∈ L2((0, L);R2), the
Cauchy problem (3.4) with initial condition

h(0, x) = h0(x), v(0, x) = v0(x) (3.5)

is well-posed and its solution satisfies

|(h(t, ·), v(t, ·))|L2((0,L);R2) ≤ Ce−νt|(h0, v0)|L2((0,L);R2), ∀t ∈ [0,+∞). (3.6)

We prove the following proposition

Proposition 3.1. Let (H∗, V ∗) be any given steady-state such that (2.11) holds, if the boundary conditions
satisfy:

c1 ∈
[
−f(H∗(0), 0)

V ∗(0)
,−V

∗(0)

H∗(0)

]
,

c2 ∈ R \
[
−f(H∗(L), L)

V ∗(L)
,−V

∗(L)

H∗(L)

]
,

(3.7)

then the null steady-state h = 0, v = 0 of the system (3.4) and (3.2) is exponentially stable for the L2 norm.

Proof. Observe that the matrix

(
V ∗ H∗

f(H∗, ·) V ∗

)
can be diagonalized, therefore the system can be put under

the Riemann invariant form by the following change of variables

(
z1
z2

)
=

 √
f(H∗,x)
H∗ 1

−
√

f(H∗,x)
H∗ 1

(h
v

)
. (3.8)

Then (3.4) becomes (see Appendix A)

∂tz1 + λ1∂xz1 + γ1z1 + δ1z2 = 0,

∂tz2 − λ2∂xz2 + γ2z1 + δ2z2 = 0,
(3.9)

where

λ1 = V ∗ +
√
f(H∗, x)H∗ > 0, λ2 =

√
f(H∗, x)H∗ − V ∗ > 0 (3.10)

and

γ1 =
1

4

(
2SV ∗ + 2SH∗

√
H∗

f(H∗, x)
− 3λ2

V ∗x
V ∗
− λ1

∂xf(H∗, x)

f(H∗, x)
+ λ2

∂Hf(H∗, x)H∗x
f(H∗, x)

)
,

γ2 =
1

4

(
2SV ∗ + 2SH∗

√
H∗

f(H∗, x)
+ λ1

V ∗x
V ∗
− λ2

∂xf(H∗, x)

f(H∗, x)
+ λ1

∂Hf(H∗, x)H∗x
f(H∗, x)

)
,

δ1 =
1

4

(
2SV ∗ − 2SH∗

√
H∗

f(H∗, x)
− λ2

V ∗x
V ∗

+ λ1
∂xf(H∗, x)

f(H∗, x)
− λ2

∂Hf(H∗, x)H∗x
f(H∗, x)

)
,

δ2 =
1

4

(
2SV ∗ − 2SH∗

√
H∗

f(H∗, x)
+ 3λ1

V ∗x
V ∗

+ λ2
∂xf(H∗, x)

f(H∗, x)
− λ1

∂Hf(H∗, x)H∗x
f(H∗, x)

)
.

(3.11)
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The boundary conditions (3.2) become

z1(t, 0) = k1z2(t, 0), z2(t, L) = k2z1(t, L) (3.12)

with

k1 =
c1 +

√
f(H∗(0),0)
H∗(0)

c1 −
√

f(H∗(0),0)
H∗(0)

, k2 =
c2 −

√
f(H∗(L),L)
H∗(L)

c2 +
√

f(H∗(L),L)
H∗(L)

. (3.13)

With these conditions, the Cauchy problem (3.9), (3.12) with any given initial condition z(0, x) = (z10, z20) ∈
L2((0, L);R2) is well-posed (see [3, Appendix A]), which implies that the original system in physical coordi-
nates is also well-posed.
We define the function φ by

φ(x) = exp

(∫ x

0

γ1(s)

λ1(s)
+
δ2(s)

λ2(s)
ds

)
(3.14)

and we introduce the following lemma, that can also be found in [26] in the particular case of the Saint-
Venant equations with constant rectangular section and friction given by Sf = kV 2A−1 where k > 0 is a
constant friction coefficient.

Lemma 3.1. For any x ∈ [0, L], (
λ2
λ1
φ

)′
(x) =

φδ1
λ1

+
φ−1γ2
λ2

(
λ2
λ1
φ

)2

. (3.15)

The proof of this lemma is given in Appendix B.
We introduce now the following Lyapunov function candidate for the L2 norm

V =

∫ L

0

(
f1(x)e

2
∫ x
0

γ1(s)

λ1(s)
ds
z21(t, x) + f2(x)e

−2
∫ x
0

δ2(s)

λ2(s)
ds
z22(t, x)

)
dx, (3.16)

where µ > 0 is a constant and f1, f2 are positive C1 functions to be chosen later on. From the positivity of
f1 and f2, there exist a1 and a2 positive constants such that

a2‖(z1, z2)‖L2((0,L);R2) ≤ V ≤ a1‖(z1, z2)‖L2((0,L);R2) (3.17)

which means that V is equivalent to the L2 norm of (z1, z2), thus is equivalent to the L2 norm of (h, v)
from the linear change of variables (3.8). Therefore, it suffices to show the exponential decay of V to obtain
the exponential stability of (3.4) and (3.2) for the L2 norm. Differentiating (3.16) with time along the
C1-solutions of (3.9) and (3.12), one has

dV

dt
=−

[
λ1f1e

2
∫ x
0

γ1(s)

λ1(s)
ds
z21 − λ2f2e

−2
∫ x
0

δ2(s)

λ2(s)
ds
z22

]L
0

−
∫ L

0

[
− (λ1f1)′e

2
∫ x
0

γ1(s)

λ1(s)
ds
z21 + (λ2f2)′e

−2
∫ x
0

δ2(s)

λ2(s)
ds
z22

+ 2(f1δ1e
2
∫ x
0

γ1(s)

λ1(s)
ds

+ f2γ2e
−2

∫ x
0

δ2(s)

λ2(s)
ds

)z1z2

]
dx.

(3.18)

Using the boundary conditions (3.12), we get

dV

dt
=−

(
λ1(L)f1(L)e

2
∫ L
0

γ1(s)

λ1(s)
ds − k22λ2(L)f2(L)e

−2
∫ L
0

δ2(s)

λ2(s)
ds

)
z21(t, L)

−
(
λ2(0)f2(0)− k21λ1(0)f1(0)

)
z22(t, 0)

−
∫ L

0

(
e
∫ x
0

γ1(s)

λ1(s)
ds
z1

e
−

∫ x
0

δ2(s)

λ2(s)
ds
z2

)T
I

(
e
∫ x
0

γ1(s)

λ1(s)
ds
z1

e
−

∫ x
0

δ2(s)

λ2(s)
ds
z2

)
dx,

(3.19)
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where

I =

(
−(λ1f1)′ f1δ1φ(x) + f2γ2φ

−1(x)
f1δ1φ(x) + f2γ2φ

−1(x) (λ2f2)′

)
. (3.20)

Therefore, it suffices using the definition of φ given in (3.14) to show that there exist f1 and f2, such that
the matrix I is positive definite and that

λ1(L)f1(L)φ2(L)− k22λ2(L)f2(L) ≥ 0,

λ2(0)f2(0)− k21λ1(0)f1(0) ≥ 0 (3.21)

to prove the exponential decay of V . Indeed, if I is positive definite, there exists a constant θ > 0 and a
small µ > 0 such that for any (z1, z2) ∈ L2, one has

∫ L

0

(
e
∫ x
0

γ1(s)

λ1(s)
ds
z1

e
−

∫ x
0

δ2(s)

λ2(s)
ds
z2

)T
I

(
e
∫ x
0

γ1(s)

λ1(s)
ds
z1

e
−

∫ x
0

δ2(s)

λ2(s)
ds
z2

)
dx ≥ θ

∫ L

0

(
e
2
∫ x
0

γ1(s)

λ1(s)
ds
z21 + e

−2
∫ x
0

δ2(s)

λ2(s)
ds
z22 dx

)
≥ µV. (3.22)

Before going any further, observe that under the assumption (2.11), from (3.11), (3.10) and noticing the
notations (3.3), one has

φδ1
λ1

+
φ−1γ2
λ2

(
λ2
λ1
φ

)2

=
φ

λ21
(λ1δ1 + λ2γ2)

=
φ

λ21

(
(λ1 + λ2)

2
SV ∗ +

(λ2 − λ1)

2
SH∗

√
H∗

f(H∗, x)
+

(λ21 − λ22)

4

∂xf(H∗, x)

f(H∗, x)

)

=
φ

λ21

(√
f(H∗, x)H∗SV ∗ − V ∗

√
H∗

f(H∗, x)
SH∗

)
≥ 0, (3.23)

which together with Lemma 3.1 implies that λ2φ/λ1 is a solution to the differential equation

η′ =

∣∣∣∣ δ1λ1φ+
γ2
λ2
φ−1η2

∣∣∣∣ , η(0) =
λ2(0)

λ1(0)
(3.24)

on [0, L]. Thus, there exists ε1 > 0 such that for any ε ∈ [0, ε1), there exists a solution ηε on [0, L] to

η′ε =

∣∣∣∣ δ1λ1φ+
γ2
λ2
φ−1η2ε

∣∣∣∣+ ε, ηε(0) =
λ2(0)

λ1(0)
+ ε (3.25)

and such that we can define a map ε→ ηε which is C0 on [0, ε1) (see [22]). Let us define

f1 = (λ1ηε)
−1 and f2 = λ−12 ηε, (3.26)

where ε ∈ (0, ε1) can be chosen later on. One has from (3.7) and (3.13) that

k21 ≤
(
λ2(0)

λ1(0)

)2

, k22 <

(
λ1(L)

λ2(L)

)2

. (3.27)

Therefore, from the continuity of ε→ ηε, there exists 0 < ε2 < ε1 such that for all ε ∈ (0, ε2)

k21 <
λ2(0)f2(0)

λ1(0)f1(0)
, k22 <

λ1(L)f1(L)

λ2(L)f2(L)
φ2(L), (3.28)

which is exactly the same as condition (3.21) from the definition of φ in (3.14). We choose such ε ∈ (0, ε2),
and we are left to prove that I defined by (3.20) is positive definite. We have from (3.20), (3.26) and (3.25)
that
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det(I) =− (λ1f1)′(λ2f2)′ −
(
f1δ1φ+ f2γ2φ

−1)2
=

1

η2ε

(
(η′ε)

2 −
(
δ1
λ1
φ+

γ2
λ2
φ−1η2ε

)2
)
> 0.

(3.29)

Besides, from (3.25) and (3.26), one has −(λ1f1)′ > 0 and (λ2f2)′ > 0, hence I is positive definite. Thus,
there exists µ > 0 sufficiently small such that

dV

dt
≤ −µV (3.30)

along the C1-solutions of the system (3.9) and (3.12) for any µ ∈ (0, µ1). Since the C1-solutions are dense
in the set of L2-solutions, inequality (3.30) also holds in the sense of distributions for the L2-solutions (see
[3, Section 2.1]) for the details). Thus, the exponential stability of (3.4) and (3.2) in the L2 norm is also
guaranteed thanks to the linear change of variables (3.8). This ends the proof of Proposition 3.1.

3.2 Exponential stability of the nonlinear system

For the exponential stability of nonlinear system, the proof will be similar to the linearized case. For a given
steady-state (H∗, V ∗) defined on [0, L], we can still define h = H −H∗ and v = V − V ∗ as previously and
(z1, z2) using the same change of variables (3.8). Then, for (z1, z2) small enough, the system (2.1)–(2.2),
(2.6) is equivalent to

zt +A(z, x)zx +M(z, x)z = 0, (3.31)

where

A(0, x) =

(
λ1(x) 0

0 −λ2(x)

)
, M(0, x) =

(
γ1(x) δ1(x)
γ2(x) δ2(x)

)
, (3.32)

and

z1(t, 0) =m1(z2(t, 0)),

z2(t, L) =m2(z1(t, L)),
(3.33)

with
m′1(0) = k1, m′2(0) = k2, (3.34)

here, k1 and k2 are defined as (3.13). In (3.33), m1 and m2 are found by the implicit function theorem
around 0, for z1 and z2 small enough (see [26, A.2] for more details in a similar case). Noticing that the
exponential stability of the steady-state (H∗, V ∗) of system (2.1)–(2.2) and (2.6) is therefore equivalent to
the exponential stability of the null steady-state (z1 = 0, z2 = 0) of system (3.31)–(3.34), we use the following
theorem, which is a direct application of [3, Theorem 6.10].

Theorem 3.2. If there exists C1 functions g1(x) > 0 and g2(x) > 0 such that, with Q = diag(g1(x), g2(x)),
one has

− (QA(0, ·))′ +QM(0, x) +MT (0, x)Q (3.35)

is positive definite on [0, L] and the following inequalities hold

k21 <
λ2(0)g2(0)

λ1(0)g1(0)
, k22 <

λ1(L)g1(L)

λ2(L)g2(L)
, (3.36)

then the null steady-state of the system (3.31)–(3.34) is exponentially stable for the H2 norm.
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Remark 3.1. This theorem actually shows the existence of a Lyapunov function for the H2 norm of the form

V =

∫ L

0

(f1(E(z, x)z)21 + f2(E(z, x)z)22)dx+

∫ L

0

(f1(E(z, x)zx)21 + f2(E(z, x)zx)22)dx

+

∫ L

0

(f1(E(z, x)zxx)21 + f2(E(z, x)zxx)22)dx,

(3.37)

where E(0, ·) = Id (see [3, Chapter 6] for more details). This is the reason why we claim that this proof is
actually the same as the proof of the exponential stability in the linearized case, and we will now see that
we can use a similar Lyapunov function but for the H2 norm.

Proof of Theorem 2.1. Let

g1 := e
2
∫ x
0

γ1(s)

λ1(s)
ds
f1, g2 := e

−2
∫ x
0

δ2(s)

λ2(s)
ds
f2,

where f1 and f2 are defined in (3.26). One can directly check that

−(QA(0, ·))′ +QM(0, x) +MT (0, x)Q =

(
e
∫ x
0

γ1(s)

λ1(s)
ds

0

0 e
−

∫ x
0

δ2(s)

λ2(s)
ds

)
I

(
e
∫ x
0

γ1(s)

λ1(s)
ds

0

0 e
−

∫ x
0

δ2(s)

λ2(s)
ds

)
with I defined as (3.20), as I is positive definite from (3.29), condition (3.35) is thus satisfied. Condition
(3.36) is satisfied from (3.28) by noticing the definition of φ given in (3.14). Thus, Theorem 3.2 applies and
Theorem 2.1 holds.

4 Optimality of the conditions on the control

In this section, we will show the optimality of the conditions on the control in the sense that no basic
quadratic Lyapunov function that would always exist for density-velocity systems satisfying (2.11) can give
strictly less restrictive boundary conditions than (2.12) and (2.14) respectively, making these conditions quite
sharp. These results are given by Theorem 4.1 and Theorem 4.2 respectively.

Theorem 4.1. Assume that S ∈ C2((0,+∞)2×[0, L];R) and P ∈ C2((0,+∞)×[0, L];R). Let a steady-state
(H∗, V ∗) ∈ C1([0, L]) of the nonlinear hyperbolic density-velocity system (2.1), (2.2), (2.6) satisfying (2.11)
with S(H∗, V ∗, x) + ∂xP (H∗, x) ≤ 0. For any ε > 0, there exists L > 0 such that, if there exists a basic
quadratic Lyapunov function for the H2 norm, then

B′1(H∗(0)) ∈
(
−ε− ∂HP (H∗(0), 0)

V ∗(0)
, ε− V ∗(0)

H∗(0)

)
,

B′2(H∗(L)) ∈ R \
[
ε− ∂HP (H∗(L), L)

V ∗(L)
,−ε− V ∗(L)

H∗(L)

]
.

(4.1)

This theorem shows therefore that the condition (2.12) given in Theorem 2.1 is quite sharp and cannot be
significantly improved. The situation is even clearer in the case of a single boundary control.

Theorem 4.2. Assume that S ∈ C2((0,+∞)3;R) and P ∈ C2((0,+∞)2;R). Let a steady-state (H∗, V ∗) ∈
C1([0, L]) of the nonlinear hyperbolic density-velocity system (2.1), (2.2), (2.13) satisfying (2.11) with
S(H∗, V ∗, x) + ∂xP (H∗, x) ≤ 0. There exists a basic quadratic Lyapunov function for the H2 norm if
and only if

B′2(H∗(L)) ∈ R \
[
−∂HP (H∗(L), L)

V ∗(L)
,−V

∗(L)

H∗(L)

]
. (4.2)
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Remark 4.1. Note that the assumption S(H∗, V ∗, x) + ∂xP (H∗, x) ≤ 0 in Theorems 4.1 and 4.2 is only to
ensure that the steady-states exist and are C1 on [0,+∞). Indeed, if S(H∗, V ∗, x) + ∂xP (H∗, x) > 0, then
from (2.1)–(2.2) the fluvial regime ends in finite length and thus regular steady-states exist only up to a
finite length.

In the following, we give the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Let us assume that along (H∗, V ∗), S(H∗, V ∗, x) + ∂xP (H∗, V ∗, x) ≤ 0. Then from
(2.1)–(2.2), the steady-state (H∗, V ∗) exists and is C1 for any length L > 0. Suppose that there exists ε1 > 0
such that for any length L > 0, there exists a basic quadratic Lyapunov function for the H2 norm with

B′1(H∗(0)) ∈ R \
(
−ε1 −

∂HP (H∗(0), 0)

V ∗(0)
, ε1 −

V ∗(0)

H∗(0)

)
,

B′2(H∗(L)) ∈
[
ε1 −

∂HP (H∗(L), L)

V ∗(L)
,−ε1 −

V ∗(L)

H∗(L)

]
.

(4.3)

We can then use the same change of variables (3.8), as in Section 3. The system (2.1)–(2.2), (2.6) becomes
(3.31) with boundary conditions (3.33). From (4.3), we have

k21 > η2(0)

or k22 >
φ2(L)

η2(L)
,

(4.4)

where φ is defined by (3.14), k1, k2 are defined by (3.34) and η = λ2φ/λ1. We define now

a = δ1φ, b = γ2φ
−1. (4.5)

As there exists a basic quadratic Lyapunov function for the H2 norm, thus from [1] (see also [24, Theorem
3.5], and [24, (24),(40)–(43)]), there exists a function η2 ∈ C1([0, L]) such that

η′2 =

∣∣∣∣ aλ1 +
b

λ2
η22

∣∣∣∣ (4.6)

on [0, L] and there exists ε1 > 0 depending only on ε such that

η2(L) ≤ η(L)− ε1,
or η2(0) ≥ η(0) + ε1.

(4.7)

Now, as L can be taken arbitrarily, η2 exists for any L, and thus on [0,+∞). We claim now that

lim
x→+∞

η2(x) ∈ R∗+. (4.8)

Indeed, let us assume that lim
x→+∞

η2(x) = +∞. When x is large enough we have (see [24, Section 4])

γ2 ≤ 0,
|b|λ1
aλ2

∈
(

1

2
, 2

)
. (4.9)

Thus

η′2 =
|b|
λ2
η22 −

a

λ1
, (4.10)

which implies that, using the estimates of [24, Section 4], there exist C > 0 and x1 > 0 such that for any
x ≥ x1,

η′2 ≥
C

x
η22 , (4.11)
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hence

η2 ≥
1

1
η2(x1)

− C ln(x/x1)
. (4.12)

And η2 exists and is positive on [x1,∞), hence the contradiction. Thus η2 converges when x goes to ∞ to a
limit η2,∞. Note that φ converges to φ∞ > 0 [24, Section 4]. Besides, using (4.9),

η′2 =
|δ1|

λ1φ(x)

∣∣∣∣φ2(x)− λ1|γ2|
λ2δ1

η22

∣∣∣∣ . (4.13)

As λ1|γ2|/λ2δ1 goes to 1 when x goes to infinity [24, Section 4], assume by contradiction that η2,∞ 6= φ∞,
there exists C3 and x3 such that for all x > x3,

η′2 ≥
C3

x
, (4.14)

which implies that lim
x→+∞

η2(x) = +∞, hence contradiction. Thus η2 converges to φ∞, just as η(L), which

implies that in any cases the condition at x = L become arbitrarily close to the one we obtain with η when
L goes to infinity and prove that the first inequality of (4.7) is impossible.
Now let us assume by contradiction that the second inequality of (4.7) is satisfied. Then η2(0) > η(0) and
from (4.6),

η′2 ≥
(
a

λ1
+

b

λ2
η22

)
, (4.15)

which implies that

(η2 − η)′ ≥ −2
|b|
λ2

(η2 − η)φ∞. (4.16)

Thus

(η2,∞ − η∞) ≥ (η2(0)− η(0)) exp

(
−φ∞

∫ +∞

0

2
|b|
λ2

dx

)
. (4.17)

But, as seen in [24, Section 4],
∫ +∞
0

2 |b|λ2
dx < +∞, which implies, using that η2(0) > η(0),

η2,∞ > η∞, (4.18)

while we know that η2,∞ = η∞, hence the contradiction. This ends the proof of Theorem 4.1.

We can now prove Theorem 4.2 in a very similar fashion.

Proof of Theorem 4.2. Let (H∗, V ∗) ∈ C1([0, L]) be a steady-state of (2.1)–(2.2). Let us assume by contra-
diction that there exists a basic quadratic Lyapunov function for the H2 norm and that

B′2(H∗(L)) ∈
[
−∂HP (H∗(L), L)

V ∗(L)
,−V

∗(L)

H∗(L)

]
. (4.19)

Then using again the change of variables (3.8), the system (2.1)–(2.2), (2.13) is again equivalent to (3.31)
with boundary conditions (3.33). From (2.13), one has

k21 := η2(0), (4.20)

where k1 is again given by (3.34) and η = λ2φ/λ1. As previously, as there exists a basic quadratic Lyapunov
function for the H2 norm, from [1] (see also [24, Theorem 3.5]) there exists a function η2 ∈ C1([0, L]) such
that

η′2 =

∣∣∣∣ aλ1 +
b

λ2
η22

∣∣∣∣ (4.21)
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on [0, L], where a and b are defined by (4.5), and there exists ε1 > 0 such that

η2(L) ≤ η(L)− ε1, ∀ L > 0,

η2(0) ≥ η(0).
(4.22)

Using (4.22) and the same argument as (4.15)–(4.18), we get that η2(L) ≥ η(L) thus

η2(L) ≥ λ2(L)φ(L)/λ1(L) (4.23)

which is in contradiction with (4.22). This ends the proof of Theorem 4.2.

A Derivation of γ1, γ2, δ1 and δ2

Looking at 3.8, we denote by

∆ =

 √
f(H∗,x)
H∗ 1

−
√

f(H∗,x)
H∗ 1


∆−1 =

1

2

(√
H∗

f(H∗,x) −
√

H∗

f(H∗,x)

1 1

)
Then, using the notations (3.3), (3.4) becomes(
z1
z2

)
t

+

(
λ1 0
0 −λ2

)(
z1
z2

)
x

+

(
λ1 0
0 −λ2

)
∆∆−1x

(
z1
z2

)
+∆

(
V ∗x H∗x

SH∗ + ∂Hf(H∗, x)H∗x SV ∗ + V ∗x

)
∆−1

(
z1
z2

)
=

(
0
0

)
,

(A.1)
where λ1 and λ2 are given by (3.10). Let us compute the coefficient of the first part of the source term,(

λ1 0
0 −λ2

)
∆∆−1x =

1

4

(
λ1(

H∗
x

H∗ −
d
dx (f(H

∗,x))

f ) −λ1(
H∗
x

H∗ −
d
dx (f(H

∗,x))

f )

λ2(
H∗
x

H∗ −
d
dx (f(H

∗,x))

f ) −λ2(
H∗
x

H∗ −
d
dx (f(H

∗,x))

f )

)
. (A.2)

The coefficient of the second part of the source term is

∆

(
V ∗x H∗x

SH∗ + ∂Hf(H∗, x)H∗x SV ∗ + V ∗x

)
∆−1

=
1

2

∂HfH∗x√H∗

f + SH∗

√
H∗

f +H∗x

√
f
H∗ + 2V ∗x + SV ∗ −∂HfH∗x

√
H∗

f −SH∗

√
H∗

f +H∗x

√
f
H∗ + SV ∗

∂HfH
∗
x

√
H∗

f + SH∗

√
H∗

f −H
∗
x

√
f
H∗ + SV ∗ −∂HfH∗x

√
H∗

f −SH∗

√
H∗

f −H
∗
x

√
f
H∗ + 2V ∗x + SV ∗

 .

(A.3)

Thus,

γ1 =
1

4

[
λ1

(
H∗x
H∗
− ∂Hf(H∗, x)H∗x + ∂xf(H∗, x)

f

)
+ 2

(
∂HfH

∗
x

√
H∗

f
+ SH∗

√
H∗

f
+H∗x

√
f

H∗
+ 2V ∗x + SV ∗

)]

=
1

4

[
2SV ∗ + 2SH∗

√
H∗

f(H∗, x)
− λ1

∂xf(H∗, x)

f(H∗, x)

+ (V ∗ +
√
fH∗)

(
H∗x
H∗
− ∂Hf(H∗, x)H∗x

f

)
+ 2∂HfH

∗
x

√
H∗

f
+ 2H∗x

√
f

H∗
+ 4V ∗x

]
=

1

4

(
2SV ∗ + 2SH∗

√
H∗

f(H∗, x)
− 3λ2

V ∗x
V ∗
− λ1

∂xf(H∗, x)

f(H∗, x)
+ λ2

∂Hf(H∗, x)H∗x
f(H∗, x)

)
,

and γ2, δ1 and δ2 can be found similarly.
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B Proof of Lemma 3.1

Differentiating λ2φ/λ1 using (3.10), (3.11) and (3.14), we have(
λ2
λ1
φ

)′
=

φ

λ21
(λ1λ

′
2 − λ′1λ2 + (λ2γ1 + λ1δ2))

=
φ

λ21

{
(V ∗ +

√
f(H∗, x)H∗)

(
−V ∗x +

(f(H∗, x)H∗)′

2
√
f(H∗, x)H∗

)

−(
√
f(H∗, x)H∗ − V ∗)

(
V ∗x +

(f(H∗, x)H∗)′

2
√
f(H∗, x)H∗

)

+
1

4

[
(λ21 − λ22)

(
3
V ∗x
V ∗
− ∂Hf(H∗, x)H∗x

f(H∗, x)

)
+ 2(λ2 − λ1)SH∗

√
H∗

f(H∗, x)
+ 2(λ2 + λ1)SV ∗

]}

=
φ

λ21

(
V ∗

√
H∗

f(H∗, x)
∂xf(H∗, x) +H∗xV

∗

√
f(H∗, x)

H∗
+ V ∗x

√
f(H∗, x)H∗

−V ∗SH∗

√
H∗

f(H∗, x)
+
√
f(H∗, x)H∗SV ∗

)
.

(B.1)

Noticing the notations (3.3) and from (2.4), (B.1) becomes(
λ2
λ1
φ

)′
=

φ

λ21

(√
f(H∗, x)H∗SV ∗ − V

√
H∗

f(H∗, x)
SH∗

)
, (B.2)

which, together with (3.23) gives (
λ2
λ1
φ

)′
=
φδ1
λ1

+
φ−1γ2
λ2

(
λ2
λ1
φ

)2

. (B.3)

C Adapting the proof of Theorem 2.2 when the control is imposed
on x = 0

When the control is imposed on x = 0 and the flow is imposed on x = L to an unknown constant, the proof
is similar as in Theorem 2.1. First note that on L this condition implies

H(t, L)V (t, L) = QL (C.1)

with QL the unknown constant inflow downstream, thus

B′1(H∗(L)) = −V
∗(L)

H∗(L)
, (C.2)

which, after the change of variables (3.8) brings the system under the form (3.31)–(3.33), with

k2 =

(
λ1(L)

λ2(L)

)2

, (C.3)

where k2 is given by (3.34), and we have for k1,

k21 <

(
λ2(0)

λ1(0)

)2

. (C.4)
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We can then do as in the proof of Theorem 2.1 but instead of defining ηε by (3.25) with ηε(0) assigned, we
define now ηε as the solution of

η′ε =

∣∣∣∣ δ1λ1φ+
γ2
λ2
φ−1η2ε

∣∣∣∣+ ε, ηε(L) =
λ2(L)

λ1(L)
φ(L)2 − ε. (C.5)

Still defining f1 and f2 as in (3.26), then one can check that there exists ε2 > 0 such that for any ε ∈ (0, ε2),
one still has (3.28) and I defined by (3.20) is still definite positive. The rest of the proof remains similar as
the proof of Proposition 3.1.
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