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Abstract

In order to explain the Hubble diagram for quasars,
an alternative to ΛCDM is proposed, namely, a sim-
ple Newtonian cosmological model where the loss of
photons along the line-of-sight mimics the cosmic
distance-duality relation, up to z ≈ 0.2. According
to this model, after ≈ 3 Gyr of travel, half of the
photons emitted by a galaxy have been lost.
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Introduction

According to ΛCDM, the nowadays standard cos-
mological model, the dimming of supernovae of
type Ia is due to an accelerated expansion of the
space-time metric [1, 2]. However, the redshift of
the farthest observed type Ia supernova is ≈ 1.4 [3]
and it has recently been shown that, at higher red-
shifts, the Hubble diagram for quasars can not be
handled by ΛCDM, with a statistical significance
of 4σ [4]. Of course, these latter data can be ac-
commodated by extended versions of the model,
through the adjustment of additional free parame-
ters, like the equation of state parameter w [4].

Hereafter, it is shown that the loss of photons
along the line-of-sight is a possible alternative for
explaining the Hubble diagram for quasars, at least
in the context of a pair of Newtonian cosmological
models. It is then shown that the cosmic distance
duality relation [5] can be used to single out one of
them.
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Cosmological model

Let us assume that τ(z), the age of the Universe at
redshift z, is approximately given by:

τ(z) =
1

H0(1 + z)
(1)

where H0 is the Hubble constant. Eqn 1, which
is for instance a consequence of the linear-coasting
cosmological model [6, 7, 8], has noteworthy proved
able to cope with the age of objects that, according
to ΛCDM, seem significantly older than the Uni-
verse itself [9, 10, 11].

Let us also assume that, during its travel, a pho-
ton ages as the Universe does, namely:

∆t = τ(0) − τ(z) (2)

where ∆t is the time taken by the photon to fly
from a source at redshift z to an observer on Earth.
Since the speed of light, c0, is constant, with eqn 1
and 2, Dc, the light-travel distance, is so that [12]:

Dc =
c0
H0

z

1 + z
(3)

Moreover, let us assume that DL, the luminosity
distance, has the following, rather general form:

DL = Dc(1 + z)ne
1
2

∆t
τp (4)

where n is a half-integer, τp being the photon life-
time along the line-of-sight.

In the context of Newtonian cosmological mod-
els, as a consequence of the energy loss of photons
during their travel, n = 1

2 . However, if, as pre-
dicted by metric theories of gravity like ΛCDM,
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time-dilation of remote events is a general phe-
nomenon [13, 14, 15], then n = 1. Both cases are
considered hereafter.

Observables

Distance modulus

With eqn 2, 3 and 4, µ, the distance modulus:

µ = 5 log10(DL) + 25

becomes:

µ = 5 log10 z(1 + z)n−1 + α
TH
τp

z

1 + z
+ µ0 (5)

where TH = H−1
0 is the Hubble time, with µ0 =

5 log10(c0TH) + 25 and α = 2.5 log10 e.

Distance duality

If there is no photon loss along the path between
a source at redshift z and an observer on Earth,
metric theories of gravity predict that [5, 16]:

DL = DA(1 + z)2

where DA is the angular distance. Deviations from
this so-called cosmic distance duality relation can
be quantified using the following quantity [17]:

η(z) =
DL

DA(1 + z)2
(6)

In practice, such deviations have been measured
using single-parameter functional forms [16, 17]
like, as considered herein:

η(z) = 1 + η0z (7)

In the context of Newtonian cosmological mod-
els, DA = Dc. Thus, with eqn 1, 2 and 4, eqn 6
becomes:

η(z) = (1 + z)n−2e
1
2

TH
τp

z
1+z (8)

Datasets

Quasars

A homogeneous sample of 1598 quasars [4] with
luminosity-distances determined using their rest-
frame X-ray and UV fluxes [18, 19] was considered.

Since such luminosity-distances are rather noisy,
the dataset was sorted by increasing values of the
redshift and 16 subsamples of 101 quasars1 were an-
alyzed, using the median redshift and luminosity-
distance of each subsample.

Galaxy clusters

η0 (eqn 7) has been determined by several groups,
using various datasets [20]. The following two mea-
sures are considered hereafter:

• η0 = −0.15 ± 0.07 [21]. This measure was ob-
tained with a cosmological model-independent
approach, using the gas mass fraction, from
the Sunyaev-Zeldovich effect, and X-ray sur-
face brightness observations of 38 massive
galaxy clusters spanning redshifts between
0.14 and 0.89.

• η0 = −0.08 ± 0.10 [22]. This measure was ob-
tained using the gas mass fraction, from the
Sunyaev-Zeldovich effect, of 91 massive galaxy
clusters spanning redshifts between 0.1 and
1.4, luminosity distances coming from super-
novae of the Union 2.1 compilation [3] with
similar redshifts.

Results

Quasars

With eqn 5, when n = 1
2 , a least-square fit of the

median distance modulus of the 16 subsamples of
quasars yields:

TH
τp

= 3.2 ± 0.4

with µ0 = 18.0 ± 0.2.

On the other hand, when n = 1, TH
τp

= 1.0 ±
0.4, µ0 = 18.4 ± 0.2. As illustrated in Figure 1,
in both cases, the fit matches the data nicely, with
a root-mean-square of the residuals of 0.2. Note
that several other simple cosmological models have
already proven able to pass this test [23].
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Figure 1: The distance modulus of quasars, as a
function of redshift. Each point (filled circle) is
the median of 101 values, the error bars showing
the corresponding interquartiles. Plain line: least-
square fit of these 16 median values, when n = 1

2 .
Dashed line: when n = 1.

Distance duality

With the TH
τp

values determined above, eqn 8 can

be plotted as a function of redshift. As shown in
Figure 2, n = 1 is not found consistent with ob-
servational data, since it yields values more than
2σ away from both measurements, on the whole
redshift range considered.

On the other hand, n = 1
2 matches the data

comfortably. Interestingly, while ΛCDM predicts
η(z) ≥ 1 [5], it has been noticed that mea-
surements of η(z) tend to yield values below one
[17, 20, 21, 24], like when n = 1

2 .

Discussion

How are photons lost ?
TH
τp

= 3.2 means that half of the photons are lost

after ≈ 3 Gyr of travel (assuming TH = 13.3 Gyr
[25]). As briefly detailed below, their loss along the
line-of-sight can for instance be due to absorption.
It could also have a less mundane origin.

Absorbers

Photons can be absorbed along the line-of-sight.
Indeed, it has been suggested that gray intergalac-

1With only 83 quasars in the highest-redshift subsample.

Figure 2: Compatibility with the cosmic distance
duality relation, as a function of redshift. Grey and
hatched sectors: measurements obtained using the
gas mass fraction of 38 or 91 globular clusters, re-
spectively, the lower and upper limits of each sector
being 2σ away from the average value. Horizon-
tal dotted line: minimum value expected within
the frame of metric theories of gravity like ΛCDM.
Plain and dashed lines: values expected if pho-
tons are lost along the line-of-sight, when n = 1

2
or n = 1, respectively.

tic dust could account for the dimming of type Ia
supernovae [26]. However, in particular because the
luminosity-distances of quasars considered herein
have been determined by comparing their X-ray
and UV fluxes [4], to be relevant, such absorption
would have to exhibit little dependence upon pho-
ton frequency.

Photon decay

It has also been suggested that photons could have
a finite lifetime [27, 28], e.g. by decaying into
lighter particles like massive neutrinos [29], thus
reducing their flux along the line-of-sight.

Is time-dilation universal ?

In the context of the Newtonian cosmological mod-
els considered herein, the fact that observations
support n = 1

2 likely means that X-ray and UV
fluxes from quasars have not experienced time-
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dilation. As a matter of fact, while it has been
found that light-curves of type Ia supernovae are
dilated by a (1+z) factor [30, 31, 32], no such time-
dilation was observed in the light curves of quasars
[33, 34].

Conclusion

As shown in Figure 2, when a loss of photons along
the line-of-sight is taken into account, η(z) ≈ 1 is
also expected within the frame of a simple Newto-
nian cosmological model (n = 1

2 ), up to z ≈ 0.2.
However, above this value, η(z) is predicted to be
significantly lower than one, while metric theories
of gravity like ΛCDM predict η(z) ≥ 1 [5].

In any case, the present study shows that the
combination of the Hubble diagram for quasars
with the cosmic distance duality relation is a pow-
erful test for cosmological models.

Nevertheless, as Figure 2 suggests, more accu-
rate data, over a wider range of redshifts, would
be welcome. They could for instance be obtained
using the Sunyaev-Zeldovich effect for galaxy clus-
ters and luminosity-distances of samples of quasars
with similar redshifts.
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