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Why one should use Youla-Kucera parametrization in adaptive
feeforward noise attenuation?

Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Raul Melendez, and Luc Dugard

Abstract— A crucial problem in adaptive feedforward noise
attenuation is the presence of an “internal” positive acoustical
feedback between the compensation system and the reference
source which is a cause of instabilities. Adaptive algorithms
for feedforward active compensation having an infinite impulse
response (IIR) or a finite impulse response (FIR) structure have
been developed from a stability point of view. Nevertheless, in
order to separate the problem of stabilizing the internal positive
feedback loop from the minimization of the residual noise,
the Youla–Kučera (YK) parametrization of the feedforward
compensator has been proposed and algorithms have been
developed from a stability point of view. Since the stability
of the internal loop is a key issue in practice, the present
paper using an unified presentation of the algorithms available
discusses the stability conditions associated with the various
algorithms and their properties. It is shown that the FIRYK
configuration offers, from the stability point of view, the best
option. Experimental results obtained on a relevant test-bench
will illustrate the theoretical analysis.

I. INTRODUCTION
Adaptive feedforward broad-band noise compensation is

currently used when a correlated measurement with the
disturbance (an image of the disturbance) is available. Most
of the active feedforward noise control systems feature an
internal “positive” acoustical feedback between the com-
pensation system and the reference source (a correlated
measurement with the disturbance). This internal positive
feedback loop often leads to the instability of the system
if it is not taken into account in the design stage ([1]).
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Fig. 1. Adaptive active noise feedforward compensation.

Figure 1 gives the basic block diagram of the adaptive
feedforward compensation in the presence of the internal
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positive coupling between the output of the compensator
and the measurement of the image of the incoming noise.
The incoming noise propagates through the so called primary
path and its effect is compensated through a secondary noise
source (secondary path) driven by a feedforward compen-
sator. The input to the feedforward compensator is the sum of
the image of the incoming noise and of the internal acoustical
positive feedback.

Single and multiple narrow-band disturbances can be effi-
ciently attenuated by adaptive feedback configurations ([2],
[3]). Nevertheless, the efficient use of the feedback approach
for attenuation of broad-band noise is limited by the Bode
integral. Therefore adaptive feedforward noise compensation
is particularly dedicated to the attenuation of broad-band
noise with unknown and time-varying characteristics.

Stability analysis of the adaptive feedforward compensa-
tion schemes taking into account the internal positive loop
is an important aspect (see [4], [5], [6], [7], [8]). The
stability analysis makes the assumption that there exists a
compensator N such that the internal positive loop (formed
by M and N in feedback) is stable and such that the perfect
matching of the primary path is achieved.1

Starting with [6], a new approach emerged in the area
of active noise and vibration control (ANVC), namely the
design of the adaptation algorithms starting from a stability
point of view and taking into account the internal positive
feedback from the beginning. In the field of active vibration
control (AVC), the paper [7] provides a full synthesis pro-
cedure for asymptotically stable adaptation algorithms using
infinite impulse response (IIR) feedforard compensators in
the presence of the internal feedback. These algorithms can
be used also in active noise control (ANC) as it will be shown
in this paper.

Since assuring the stability of the internal positive feed-
back loop is essential in applications, in [9] it is proposed
to separate the stabilization of the internal positive feedback
loop from the minimization of the residual noise by using a
Youla–Kučera (YK) parametrization of the feedforward com-
pensator. A tuning procedure based on system identification
has been proposed and tested on a silencer. This idea has
been used in [10] for developing direct adaptive feedforward
compensation schemes using the YK parametrization of finite
impulse response (FIR) or IIR form for the feedforward
compensator. While these algorthms have been developped
and tested in the context of AVC [8], they can be used also

1This hypothesis of perfect matching of the primary path can be relaxed
under certain conditions (see [7]).



in the field of ANC.
The various algorithms proposed for IIR or FIR compen-

sators even if they assure the stability of the full system
under some strictly positive real (SPR) conditions, they do
not guarantee that the poles of the internal positive loop
are not too close to the unit circle. One may ask if such
a situation may occur. Considering the block diagram shown
in Fig. 1. One can view this system as a Model Reference
Adaptive System. In order to achieve perfect matching,
the internal closed loop which is the effective feedforward
compensator will try to cancel all the zeros of the secondary
path which are not zeros of the primary path. This will
imply that the poles of the internal closed loop will tend
towards the zeros of the secondary path. Unfortunately, as it
will be shown in the experimental section, the model of the
secondary path in the context of noise attenuation in ducts
(typical application field) have very low damped complex
zeros. Therefore, as it will be shown, despite very good
attenuation properties, the FIR (IIR) compensators will lead
to the presence of closed-loop poles extremely close to the
unit circle. So the problem of securing a disk of radius less
than 1 is very important from a practical point of view, even
if one has to accept slightly less good performances. YK
parametrized adaptive feedforward compensators can offer
such a solution. An FIRYK configuration will allow to define
from the beginning the desired closed-loop poles (design of
the central controller) and these poles will remain unchanged
independently of the values of the parameters of the FIRYK
filter.

The FIRYK configuration offers also another advantage:
by an appropriate design of the central controller one can
remove the SPR condition for stability (or more exactly,
it will only depend on the precision of the estimation
of the reverse path M, and current techniques of system
identification extract excellent models from data).

There is also another advantage of using an FIRYK
configuration. A necessary condition for perfect matching is
that the transportation delay2 of the secondary path should be
smaller or equal than the transportation delay of the primary
path. For most applications till recently, the design of the
physical system has been done such that this constraint be
satisfied. Nevertheless, there are potential application fields
where, because of thermal constraints, this condition can not
be fulfilled. It will be shown that despite the violation of
the delay constraints the FIRYK can still operate with good
performance while all the other configurations except the FIR
are unstable (but the FIR gives poor performance).

The paper is organized as follows: in Section II, the
various structures and algorithms will be presented under an
unified form called “Generalized Youla-Kučera”. Section III
will examine comparatively various particular configurations
and algorithms proposed in terms of stability conditions.
Results obtained on an experimental test-bench (a core of
a duct silencer) will illustrate some important properties of

2The transportation delay is directly related to the speed of the sound and
the geometry of the system.

the algorithms in Section IV.

II. BASIC EQUATIONS AND NOTATIONS

The block diagram associated with an adaptive feeforward
compensator using a generalized Youla-Kučera structure for
adaptive feedforward compensators is shown in Fig. 2.
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Fig. 2. Adaptive feedforward disturbance compensation using the gener-
alized Youla–Kučera parametrization.

The primary (T ), secondary (G), and reverse (positive
coupling) (M ) paths represented in Fig. 2 are characterized
by the asymptotically stable transfer operators:

X(q−1) =
BX(q−1)

AX(q−1)
=

bX1 q
−1 + ...+ bXnBX

q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
,

(1)
with BX = q−1B∗

X for any X ∈ {D,G,M}. Ĝ = B̂G

ÂG
,

M̂ = B̂M

ÂM
, and D̂ = B̂D

ÂD
denote the identified (estimated)

models of G, M, and D.
Polynomials AZ and BZ are defined as:

AZ = aZ0 + aZ1 q
−1 + ... (2)

BZ = bZ1 q
−1 + ... (3)

The optimal feedforward compensator which will mini-
mize the residual noise can be write as:

N =
R

S
=
AQR0 −BQAZ
AQS0 −BQBZ

(4)

where the optimal filter Q(q−1) has an IIR structure

Q =
BQ
AQ

=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

(5)

and R0(q−1), S0(q−1) = 1+q−1S∗
0 (q−1) are the polynomi-

als of the central (stabilizing) filter and AZ(q−1), BZ(q−1)
are given in (2) and (3)3.

The estimated QIIR filter is denoted by Q̂(q−1) or
Q̂(θ̂, q−1) when it is a linear filter with constant coefficients
or Q̂(t, q−1) during estimation (adaptation). The vector of
parameters of the optimal QIIR filter assuring perfect match-
ing will be denoted by

θT = [bQ0 , . . . , b
Q
nBQ

, aQ1 , . . . , a
Q
nAQ

] = [θTBQ
, θTAQ

]. (6)

3The following notation for polynomials will be used throughout this
paper: A(q−1) = a0 +

∑nA
i=1 aiq

−i = a0 + q−1A∗(q−1).



The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂Q0 + b̂Q1 q

−1 + . . .+ b̂QnBQ
q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

(7)
is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (8)

The input of the feedforward filter (called also reference)
is denoted by ŷ(t) and it corresponds to the measurement
provided by the primary microphone. In the absence of the
compensation loop (open-loop operation) ŷ(t) = w(t). The
output of the feedforward compensator (which is the control
signal applied to the secondary path) is denoted by û(t+1) =
û(t+ 1/θ̂(t+ 1)) (a posteriori output).

The a priori output of the estimated feedforward compen-
sator using an IIRYK parametrization for the case of time-
varying parameter estimates is given by (using (4))

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −S∗
0 û(t) +R0ŷ(t+ 1)− ÂQ(t, q−1)∗β(t)

+B̂Q(t, q−1)α(t+ 1), (9)

and

û(t+ 1) = −S∗
0 û(t) +R0ŷ(t+ 1)− ÂQ(t+ 1, q−1)∗β(t)

+B̂Q(t+ 1, q−1)α(t+ 1), (10)

where β(t) = S0û(t)−R0ŷ(t) (see also Fig. 2).
The objective is to develop stable recursive algorithms for

adaptation of the parameters of the Q filter such that the
measured residual error (noise in ANC) be minimized in the
sense of a certain criterion. This has to be done for broad-
band disturbances w(t) (or s(t)) with unknown and variable
spectral characteristics and an unknown primary path model.

The algorithms for adaptive feedforward compensation
have been developed under the following basic hypotheses

1) (Perfect matching condition) There exists a value of
the Q parameters such that

G ·AM (R0AQ −AZBQ)

AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)
= −T.

2) The characteristic polynomial of the internal closed-
loop for AQ = 1 and BQ = 0

P0(z−1) = AM (z−1)S0(z−1)−BM (z−1)R0(z−1)

is a Hurwitz polynomial.
3) (Stability of the internal loop) The characteristic poly-

nomial of the internal closed-loop for the values of
AQ and BQ assuring perfect matching is a Hurwitz
polynomial:

P = AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)

A first step in the development of the algorithms is to es-
tablish for a fixed estimated compensator a relation between
the error on the Q-parameters (with respect to the optimal

values) and the adaptation error ν. This is summarized in the
following lemma.

Lemma 1: Under the hypothesis 1–3 for the system
described by eqs. (1)–(10) using an estimated generalized
Youla-Kučera parameterized feedforward compensator with
constant parameters, one has:

ν(t+ 1/θ̂) =
AMG

AQP0 −BQ(BZAM −BMAZ)
[θ− θ̂]Tφ(t),

(11)
with φ(t) given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1),

− β(t),−β(t− 1), . . . ,−β(t− nAQ
)]. (12)

where:

α(t+ 1) =BM û(t+ 1)−AM ŷ(t+ 1) =

=B∗
M û(t)−AM ŷ(t+ 1) (13a)

β(t) =S0û(t)−R0ŷ(t). (13b)
The proof of this lemma follows the proof given in

Appendix A of [10] with the appropriate change of notations
and is omitted.

For assuring the stability of the system one needs to filter
the observation vector φ(t). Filtering the vector φ(t) through
an asymptotically stable filter L(q−1) = BL

AL
, (11) for θ̂ =

constant becomes

ν(t+ 1/θ̂) =
AMG

(AQP0 −BQ(BZAM −BMAZ))L
·

· [θ − θ̂]Tφf (t) (14)

with

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . , βf (t− nAQ
)] (15)

where

αf (t+ 1) = L(q−1)α(t+ 1), βf (t) = L(q−1)β(t). (16)

When the parameters of Q̂ evolve over time and neglecting
the non-commutativity of the time-varying operators, (14)
transforms into4

ν(t+ 1/θ̂(t+ 1)) =
AMG

[AQP0 −BQ(BZAM −BMAZ)]L
·

· [θ − θ̂(t+ 1)]Tφf (t). (17)

Equation (17) has the standard form for an a posteriori
adaptation error ([11]), which immediately suggests to use

4Nevertheless, exact algorithms can be developed taking into account the
non-commutativity of the time varying operators - see [11].



the following parameter adaptation algorithm (PAA):

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) ; (18a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
; (18b)

F (t+ 1) =
1

λ1(t)

F (t)− F (t)ψ(t)ψT (t)F (t)
λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)

 (18c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) > 0 (18d)
ψ(t) = φf (t), (18e)

where λ1(t) and λ2(t) allow to obtain various profiles for the
matrix adaptation gain F (t) (see [11]). By taking λ2(t) ≡ 0
and λ1(t) ≡ 1, one gets a constant adaptation gain matrix.
Choosing F = γI , γ > 0 one gets a scalar adaptation
gain. The equation (18a) for updating the parameter vector
becomes:

θ̂(t+ 1) = θ̂(t) + γΦ(t)
ν◦(t+ 1)

1 + γΦT (t)Φ(t)
. (19)

III. SPECIFIC CASES

1) For AZ = −1, BZ = 0, R0 = 0, S0 = 1:
we are in the context of IIR (FIR) adaptive feedforward
compensators discusssed in [7]. In this context there are two
basic algorithms:
FUPLR (Filtered-U pseudo linear regression): L = Ĝ and
FUSBA (Filtered-U stability based algorithm): L = ÂM

P̂
Ĝ,

with P̂ = ÂM Ŝ − B̂M R̂.
The stability condition for FUPLR is: AMG

PĜ
− λ

2 = SPR
with λ = maxλ2(t) and for the FUSBA the stability
condition is: AM P̂G

ÂMPĜ
− λ

2 = SPR (λ = maxλ2(t)). For the
FUSBA algorithm, the SPR condition is milder. Note that
the FUSBA algorithm requires initialization over a certain
horizon using FUPLR. This implies that the SPR condition
for FUPLR is fulfilled at least in the average [12], [7]. Note
that the stability conditions for FUPLR is “global” while
for the FUSBA is “local” (one implicitly assumes that the
FUPLR algorithm brings the parameters in the vicinity of
the equilibrium point).

2) For AZ = AM , BZ = BM : we are in the context
of the IIRYK feedforward compensator which has been dis-
cussed in [10]. In this context one has two basic algorithms:
FUPLR: L = Ĝ and
FUSBA: L = ÂM

P̂
Ĝ, where P̂ = ÂQ(AMS0 − BMR0).

The stability condition associated to the FUPLR is that
AMG

PĜ
− λ

2 = SPR (λ = maxλ2(t)) and the stability

condition associated with th FUSBA is that: AM P̂G

ÂMPĜ
− λ

2 =

SPR (λ = maxλ2(t)).
In this case also the FUSBA algorithm requires initializa-

tion using the FUPLR algorithm.5 This implies that the SPR
condition for the FUPLR is satisfied at least on the average.
The FUPLR stability condition is “global” while the FUSBA
condition is “local”.

5Or with an approximated FUSBA algorithm (using the filter L =
AM
P0

Ĝ).

3) For AZ = AM , BZ = BM , AQ = 1: we are in the
context of the FIRYK feedforward compensator (see [10]).
One can consider two adaptation algorithms:
FUPLR: L = Ĝ and
FUSBA: L = ÂM

P̂0
Ĝ, where P̂0 = (ÂMS0 − B̂MR0).

The stability condition associated with the FUPLR is
that: AMG

P0Ĝ
− λ

2 = SPR (λ = maxλ2(t)). The stability

condition associated with the FUSBA is that: AM P̂0G

ÂMP0Ĝ
− λ

2 =

SPR (λ = maxλ2(t)). In this case for both FUPLR
and FUSBA the stability conditions are “global”. The main
difference with respect to the previous cases is twofold:

• The FUSBA algorithm can be implemented from the
beginning since P0 is known and constant and the
stability condition is global.

• The design of the central controller can be used for
fulfilling the SPR conditions.6

If the central controller is designed such that P̂0 = ÂM , then
FUPLR and FUSBA are almost the same and the fulfillment
of the SPR condition will depend only on the quality of the
estimation of the transfer M. This is a key point because not
only the stability of the internal loop will be assured for any
finite value of the parameters of the FIR Youla-Kučera filter
but in addition the system will be operated under a global
stability condition easy to fulfill and allowing to use high
values of the adaptation gain leading to fast adaptation.

A consequence of this property is that the YKFIR con-
figuration can be safely used even if the perfect matching
condition is not fulfilled. Such a situation occurs in practice
when the pure delay (propagation delay) on the secondary
path is larger than the pure delay of the primary path. This
will be illustrated in the experimental results section.

For all the configurations scalar adaptation gains can also
be used. The same filter L is used and the algorithms cor-
responding to FUPLR and FUSBA are termed: NFULMS7

and SFUSBA respectively. The stability conditions are the
same as for the matrix case except that in this case λ = 0.

Youla–Kučera Parametrization—Some Remarks

Two major observations when using the Youla–Kučera
parametrization have to be made:

• If an FIR Q filter is used, the poles of the internal
closed-loop will be defined by the central compensator
R0, S0 and they will remain unchanged independently
of the values of the parameters of the Q filter. The
stability condition for the FUSBA algorithm is global.

• If an IIR Q filter is used, the poles of the internal closed-
loop will be defined by the central compensator but
additional poles corresponding to the denominator of
the Q filter will be added. The stability condition for
the FUSBA algorithm is local and an initialization with
the FUPLR algorithm is necessary.

6The main objective of the central controller is to stabilize the internal
loop.

7For the case of FIR and IIR structures the FXLMS and respectively the
FULMS can be interpreted as approximations of the NFULMS algorithm.



IV. EXPERIMENTAL RESULTS

The core of a noise silencer is used as a test bench. Two
configurations have been considered: Configuration A shown
in Fig. 3 (the pure delay of the secondary path is smaller
than the pure delay of the primary path) and configuration
B shown in Fig. 4 (the pure delay of the secondary path is
larger than the pure delay of the primary path).

Fig. 3. Duct active noise control test-bench. Configuration A (Photo).

Fig. 4. Duct active noise control test-bench. Configuration B (Photo).

Fig. 5. Duct active noise control test-bench diagram.

Figure 5 gives the block diagram of the system. The
speaker used as the source of disturbances is labeled as
1, while the control speaker is marked as 2. At the pipe’s
open end, the microphone that measures the system’s output
(residual noise e(t)) is denoted as 3. Inside the pipe, close to
the source of disturbances, the second microphone, labeled as
4, measures the image of the incoming noise, denoted as ŷ(t).
The various paths are indicated on the figure. The system
is connected to an xPC Target computer with Simulink
Real-time R© environment. The sampling frequency is fs =
2500 Hz. The various paths have been identified by standard

experimental identification techniques which are described
in [13]. The various paths’ models are characterized by
the presence of multiple very low damped complex poles
and complex zeros. The orders for the various models are
summarized in Table I for configurations A and B.

Config. A A A B B B
Model nB nA d nB nA d

Primary (global) 20 24 7 20 27 8
Secondary 27 26 6 20 27 9

Reverse 22 25 5 33 33 4

TABLE I
ORDERS OF THE IDENTIFIED SYSTEM PATHS.CONFIGURATION A AND B.

1) Configuration A: The objective is to illustrate first the
properties of the FIRYK configuration and the importance
of the design of the central controller for the fulfillment
of the SPR condition for stability. In the first design, the
central controller introduces some attenuation in the region
of operation (70 to 270 Hz). In the second design, the
central controller was computed such that P0 = ÂM without
introducing attenuation. Table II gives the results obtained
using the two different central controllers with 60 adapted
parameters. In the case P0 6= ÂM , the FUPLR algorithm

Cl. Poles P0 6= ÂM P0 = ÂM

Adaptation algorithm Atten. [dB] Atten. [dB]
Matrix (FUSBA) 27.0 27.3
Matrix (FUPLR) unstable 27.2
Scalar (SFUSBA) 26.7 27.1
Scalar (SFUPLR) unstable 27.2

TABLE II
EXPERIMENTAL RESULTS FOR FIRYK 60/0 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND

DISTURBANCE, 180 S EXPERIMENTS).

is unstable. This can be easily understood by looking to
the phase of the estimated transfer function ÂM

P0
shown in

Fig. 6 (obtained when using the FUSBA algorithm). Since
the noise to be attenuated has an almost flat power spectral
density (PSD) between 70 and 270 Hz, it is clear that the SPR
condition is violated in a too large frequency spectrum (even
using averaging arguments). By using the second design, for
both FUPLR and FUSBA, the SPR condition will be the
same and both algorithms will be stable and will provide
identical performances as illustrated in Table II.

Figure 7 shows the PSD in open loop and in the presence
of the FIRYK compensator8. As it can be seen, there is
no significant amplification at the frequencies outside the
attenuation zone. The estimation of the output sensitivity
function of the internal loop for the FIRYK 60/0 using
the FUSBA algorithm shows a maximum below 10 dB
(modulus margin greater than 0.3). Figure 8 shows the PSD
of an FIR and of an IIR adaptive compensator. Despite
the fact that they assure a better attenuation in the region

8The number of the parameters of the compensator is denoted by nb/na
(nb for the numerator, nb for the denominator)
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for the FIRYK 60/0 adaptive compensator (70-270 Hz
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Fig. 7. PSD of the FIRYK 60/0 adaptive compensators using FUSBA
matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 8. PSD comparison of FIR 30/0 and IIR 15/15 standard adaptive
compensators using FUSBA matrix adaptation (70-270 Hz disturbance,
600 s experiments).

70-270 Hz there is a very strong amplification outside the
attenuation zone indicating the presence of a pair of very
low damped complex poles (in the region around 320 Hz).
Further analysis shows for the IIR configuration that the
estimated output sensitivity function has a maximum of 26
dB in this region corresponding to a modulus margin of less
than 0.06 (extremely close to instability).

2) Configuration B: In this configuration, all compen-
sators are unstable except the FIR and the FIRYK. Figure 9
shows the PSD of the residual noise obtained over an horizon
of 800 s for the FIR and the FIRYK compensators. Clearly
the FIRYK compensator offers much better results in terms
of attenuation (20.6 dB versus 10.4 dB for a noise covering

the range 150-350 Hz).
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Fig. 9. PSD of the FIR and the FIRYK adaptive compensators using
FUSBA (60 parameters, 150-350 Hz disturbance, 800 s experiments).

V. CONCLUDING REMARK

In summary one can say that the FIRYK adaptive feed-
forward compensator offers a robust solution (with respect
to the risk of instability of the internal loop) for adaptive
feedforward noise attenuation.
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