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Suppressive Traveling Waves Shape Representations of
Illusory Motion in Primary Visual Cortex of Awake Primate
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and 3European Institute for Theoretical Neuroscience, 75012 Paris, France

How does the brain link visual stimuli across space and time? Visual illusions provide an experimental paradigm to study these processes.
When two stationary dots are flashed in close spatial and temporal succession, human observers experience a percept of apparent motion.
Large spatiotemporal separation challenges the visual system to keep track of object identity along the apparent motion path, the
so-called “correspondence problem.” Here, we use voltage-sensitive dye imaging in primary visual cortex (V1) of awake monkeys to show
that intracortical connections within V1 can solve this issue by shaping cortical dynamics to represent the illusory motion. We find that
the appearance of the second stimulus in V1 creates a systematic suppressive wave traveling toward the retinotopic representation of the
first. Using a computational model, we show that the suppressive wave is the emergent property of a recurrent gain control fed by the
intracortical network. This suppressive wave acts to explain away ambiguous correspondence problems and contributes to precisely
encode the expected motion velocity at the surface of V1. Together, these results demonstrate that the nonlinear dynamics within
retinotopic maps can shape cortical representations of illusory motion. Understanding these dynamics will shed light on how the brain
links sensory stimuli across space and time, by preformatting population responses for a straightforward read-out by downstream areas.
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Introduction
When two stationary stimuli are successively flashed in spatially
separated positions, it generates the so-called “apparent motion”

illusion (Wertheimer, 1912; Burr and Thompson, 2011). The il-
lusion depends on the spatiotemporal (ST) characteristics of the
stimulus, being called “short-range” versus “long-range” appar-
ent motion (lrAM) depending on spatial and temporal separations
(Braddick, 1980), possibly underlined by different processes (Ca-
vanagh and Mather, 1989). In physiology, we have a clear idea on
the neuronal processing involved in short-range apparent mo-
tion (Mikami et al., 1986a), but not for lrAM. In the latter case, it
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Significance Statement

Traveling waves have recently been observed in different animal species, brain areas, and behavioral states. However, it is still
unclear what are their functional roles. In the case of cortical visual processing, waves propagate across retinotopic maps and can
hereby generate interactions between spatially and temporally separated instances of feedforward driven activity. Such interac-
tions could participate in processing long-range apparent motion stimuli, an illusion for which no clear neuronal mechanisms
have yet been proposed. Using this paradigm in awake monkeys, we show that suppressive traveling waves produce a spatiotem-
poral normalization of apparent motion stimuli. Our study suggests that cortical waves shape the representation of illusory
moving stimulus within retinotopic maps for a straightforward read-out by downstream areas.
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has been proposed that a “reviewing process” (Kahneman et al.,
1992) is necessary to link the transient apparitions of stimuli in
different spatial and temporal positions. This process will allow
for a coherent motion percept of a single object, hereby solving
the “correspondence problem” (Ternus, 1926; Ullman, 1978).
Downstream areas with large receptive fields are the expected
integration unit for such extended ST input. Indeed, it has been
recently shown in human that the feedback from MT to V1 plays
an important role in the processing of lrAM (Muckli et al., 2002;
Wibral et al., 2009; Vetter et al., 2015), as well as evidence of
downstream activation along the ventral stream (Zhuo et al.,
2003). However, it is still unclear whether and how the “review-
ing process,” needed to keep track of the object identity along the
motion trajectory, can be achieved within these large receptive
fields.

It has been suggested that the population activity within V1
could participate upstream in the processing of lrAM (Muckli et
al., 2005). The extended precise retinotopic map in V1 makes it
indeed an ideal platform for representing the trajectory of the
apparent motion to be read-out by downstream areas (Mumford,
1991; Lee et al., 1998). In particular, V1 has the highest resolution
to achieve the interactions in space and time needed to link the
individual strokes of the apparent motion (Adelson and Bergen,
1985; Lee et al., 1998). In such context, intracortical and intercor-
tical connectivity are the natural substrate to underlie the needed
ST interactions (Deco and Roland, 2010; Muller et al., 2018).
Importantly, these two networks have intrinsically different ST
properties, the intercortical network operates over very large
extent but with poor resolution (Angelucci et al., 2002; Stetter,
2002), and the intracortical network has a more limited extent
but with high resolution (Bringuier et al., 1999; Bullier, 2001;
Muller et al., 2014). They also constitute the vast majority of
synaptic contacts in the cortex (Markov et al., 2011). Such
connectivity is therefore a good candidate to link transient ST
events (Jancke et al., 2004; Gerard-Mercier et al., 2016; Muller
et al., 2018). However, it is still unclear whether and how the
corticocortical interactions could participate to shape the rep-
resentation of lrAM within V1 retinotopic map in the awake
monkey.

To answer this question, we used optical imaging of voltage-
sensitive dyes (VSDI) in the awake fixating monkey, to measure
how V1 neuronal population integrates a two-stroke lrAM. In
response to a single stroke, activity in V1 propagates in space and
time (Grinvald et al., 1994; Bringuier et al., 1999; Slovin et al.,
2002; Sato et al., 2012; Muller et al., 2014), with spatial and tem-
poral constants that cover �3 mm and 80 ms. In response to
lrAM of various ST separations that were chosen to encompass
several V1 receptive fields, we observed the emergence of a
direction-selective representation of the lrAM in V1. This is the
result of a systematic wave of suppression triggered by the second
stimulus, propagating in the opposite direction of the lrAM. Us-
ing a mean-field computational model, we show that the ob-
served suppressive waves can result from a gain control fed by
intracortical interactions. We further demonstrate that the sup-
pression waves explain away ambiguous representation of stim-
ulus position along the apparent motion trajectory. As a result,
the observed ST pattern encodes the actual stimulus velocity for a
straightforward read-out by downstream areas.

Materials and Methods
The experiments were conducted on 2 male rhesus macaque monkeys
(Macaca mulatta, aged 14 and 11 years old, respectively, for Monkey WA
and Monkey BR) over a period of 3 years. The experimental protocols

had been previously approved by the local Ethical Committee for Animal
Research (approval A10/01/13, official national registration 71-French
Ministry of Research), and all procedures complied with the French and
European regulations for Animal Research as well as the Guidelines from
the Society for Neuroscience.

Surgical preparation and VSDI protocol. The monkeys were chronically
implanted with a head-holder and a recording chamber located above the
V1 and V2 cortical areas of the right hemisphere. After full recovery, the
monkeys were trained to perform foveal fixation of a small red target
presented over different static and moving backgrounds for up to 2–3 s,
with their head fixed. Once a good fixation behavior was achieved, a third
surgery was performed. The dura was removed surgically over the re-
cording aperture (18-mm-diameter) and a silicon-made artificial dura
was inserted under aseptic conditions to allow for a good optical access to
the cortex over the whole period of weekly recordings. Before each re-
cording session conducted in awake animal, the cortical surface was
stained with the voltage-sensitive dye (VSD) RH-1691 (Optical Imaging)
with the following procedure: The optical chamber was open, artificial
dura mater was removed, and the cortical surface was cleaned under
strict sterile conditions. The dye solution was prepared in aCSF at a
concentration of 0.2 mg/ml, and filtered through a 0.2 �m filter. The
recording chamber was filled with this solution and closed for 3 h, cor-
responding to the time lapse needed for a correct cortical staining. The
chamber was then rinsed thoroughly with filtered aCSF to remove any
supernatant dye. Before imaging, the artificial dura was placed back in
position and the chamber was closed with transparent agar and cover
glass. Experimental control, data collection, and eye position and fixa-
tional behavior monitoring (sampling rate: 1 kHz, ISCAN ETL-200 Eye
tracking system) were performed by the ReX software (National Eye
Institute, National Institutes of Health) running under the QNX operat-
ing system (Hays et al., 1982). During each trial, the cortex was illumi-
nated at 630 nm using epi-illumination, and we recorded optical signals
high-pass filtered at 665 nm with a Dalstar camera (512 � 512 pixels
resolution, frame rate of 110 Hz) driven by the Imager 3001 system
(Optical Imaging). The beginning of both online behavioral control and
image acquisition was heartbeat-triggered. The surgical preparation and
VSD imaging protocol have been described previously (Reynaud et al.,
2012; Muller et al., 2014).

Behavioral task and visual stimulation. Monkeys were trained for a
simple fixation task. For each experimental trial, the monkeys were re-
quired to fixate a central red dot within a precision window of 1° � 1°.
When correct fixation was achieved, the next heartbeat, detected with a
pulse oximeter (Nonin 8600V), triggered the beginning of the acquisi-
tion window. A visual stimulus appeared 100 ms after this trigger, after
which a blank screen was presented, ending the trial. Each trial ran for
699 –999 ms. If the monkey had maintained fixation up to the end of the
acquisition period, a reward (fruit compote drop) was given. Otherwise,
the trial was canceled, an alert sound was delivered, and the procedure
was reinitiated. The visual stimuli were computed online using VSG2/5
libraries and were displayed on a 22 inch CRT monitor at a resolution of
1024 � 768 pixels. Refresh rate was set to 100 Hz. Viewing distance was of
57 cm. Luminance values were linearized by mean of a look-up table. We
used Gaussian blobs with SD (controlling the spatial width) of 0.5°. They
were presented at different positions, located at 0.5° or 2° on the left of the
vertical meridian, respectively, for Monkey WA and Monkey BR (retino-
topic map variability across monkeys), and between 1.5° and 4.5° below
the horizontal meridian. We used different stimulus durations, 10 ms (1
frame), 50 ms or 100 ms and different interstimulus intervals (ISIs) for
the two-stroke apparent motion stimuli (from 20 to 100 ms, except
where stated otherwise). During a single session (i.e., 1 d of recordings),
stimuli conditions (single blobs of different durations, lrAM sequences,
and two blank conditions, i.e., where no visual stimulus is presented)
were randomly interleaved with an intertrial interval of 8 s for dye bleach-
ing prevention. We usually recorded and averaged 50 trials per condition.

Data analysis. Stacks of images were stored on hard-drives for offline
analysis. The analysis was carried on with MATLAB R2014a (The Math-
Works) using the Optimization, Statistics and Signal Processing Tool-
boxes. VSD-evoked responses to each stimulus were computed in three
successive basic steps. First, the recorded value at each pixel was divided
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by the average value before stimulus onset (“frame 0 division”) to remove
slow stimulus-independent fluctuations in illumination and background
fluorescence levels. Second, this value was subsequently subtracted by the
value obtained for the blank condition (“blank subtraction”) to eliminate
most of the noise due to heartbeat and respiration. Third, a linear de-
trending of the time series was applied to remove residual slow drifts
induced by dye bleaching.

ST representation (ST data). For each time frame, activity was averaged
across the x dimension within the apparent-motion trajectory (see, e.g.,
Fig. 1C–G, dotted rectangle at frame 216 ms) to provide a unique spatial
cortical dimension as a function of time.

Latency estimation. Response latency was defined as the point in time
at which the signal derivative crossed a threshold set to 2.57 times (99%
confidence) the SD of its baseline computed during a 100-ms-long win-
dow right before stimulus onset.

Speed estimation. Within the ST representation, the speed of activity
propagation was estimated by computing the slope of the linear regres-
sion between each latency estimate as a function of the cortical distance in
the ST representation

Data fitting. For extracting the space and time constants of the VSD
responses, we fitted the ST data in space (for each time frame) to a
Gaussian function of the following form:

F� x� � ke�
� x���2

2�2 (1)

where �, �, and �, respectively, denote the width (as the SD), amplitude,
and spatial position of the Gaussian. We use the slope of the linear re-
gression of �(t) for quantifying the displacement of the response peak
(see Fig. 4E).

In time (for each spatial point), the data was fitted to the combination
of two halve Gaussian functions as follows:

F�t� � F11�t� � F12�t� (2)

F11�t� � k1e
�

�t�tc�2

2�on
2 � �t � tc� and F12�t� � k2e�

�t�tc�2

2�off
2 � �t 	 tc� (3)

where �on and �off denote the time constants of each half Gaussian,
whereas k1, k2, and tc are, respectively, their peak to peak amplitudes and
the time of their common center.

Statistical procedure. We used a two-sample t test procedure to test
whether or not the distributions of the VSD response properties (i.e.,
space constant, time constants, latencies, and cortical speed) were inde-
pendent of stimulus duration or lrAM speed. p � 0.01 is considered
significant.

Mean-field computational model. We consider a spatially extended ring
model where every node of the ring represents the network activity of a
large population of excitatory regular spiking (RS) and inhibitory fast
spiking (FS) cells (see Fig. 5A). We consider Adaptive Exponential inte-
grate and fire (AdExp) neurons evolving according to the following dif-
ferential equations:

cm

dv

dt
� gL�EL 
 v� � �e� v�vth

� � 
 w � Isyn (4)

dw

dt
� 


w

�w
� a�v 
 EL� � b�

k

��t 
 tk� (5)

where cm 	 100 pF is the membrane capacity, v is the voltage of the
neuron and, whenever v 
 vth 	 �50 mV at times tk, v is reset to its
resting value vrest 	 �50 mV. The leak term has a conductance gL 	 10 nS
and a reversal potential EL 	 �65 mV. The exponential term has a
different strength for RS and FS cells, that is, � 	 2 mV (resp.� 	 0.5 mV)
for excitatory (resp. inhibitory) cells. Inhibitory neurons do not have
adaptation (a 	 b 	 0) whereas excitatory neurons have an adaptive
dynamics with a 	 4 nS, b 	 40 nS, and �w 	 500 ms. The synaptic
current can be expressed as follows:

Isyn � QE�EE 
 v�SE � QI�EI 
 v�SI (6)

where SE

I
� �pre��t 
 tpre,

E

I
�e

t�tpre,
E

I

�E,I is the postsynaptic current due to all

presynaptic excitatory/inhibitory neurons spiking at time tpre,
E

I
and � is

the Heaviside function. The reversal potentials are EE 	 0 mV and EI 	
�80 mV, the synaptic decays are equal for excitatory and inhibitory cells,

�E,I 	 5 ms. The quantal conductances are QE 	 1 nS and QI 	 5 nS.
We then consider a random network with p 	 5% of connectivity and
80% of excitatory neurons.

The activity of the network is simulated using a mean-field model of
recurrent dynamics (for review, see Renart et al., 2003). The mean-field
approach reduces the complex recurrent dynamics resulting from the single-
cell integration and synaptic interactions within the network (Eqs. 4–6) to
the temporal evolution of the firing rates of the populations. Briefly, to per-
form such a reduction, we hypothesize that spike trains follow the statistics of
Poisson point processes (and can therefore be statistically described by their
underlying rate of events) and that all neurons receive an average synaptic
input derived from the connectivity property of the network and the mean
firing rate (the “mean-field” hypothesis) of their input populations. From
those hypotheses, it results that the firing rate of a population follows the
behavior of a prototypical neuron whose dynamics are captured by a single
function (the transfer function) that translates the set of input rates to an
output firing rate. For the model presented here, such a derivation has been
shown capable of quantitatively predicting the stationary activity of the net-
work and its response to external stimuli (Zerlaut et al., 2018; di Volo et al.,
2019). Together, the dynamical system describing the temporal evolution of
the excitatory and inhibitory populations of the spatially extended ring
model read as follows:

T

rE� x,t�


t
� 
rE� x,t�

� FE� rdrive � raff� x,t� � �
R

d yGE� x 
 y�rE�y,t



�x 
 y�

vc � ,�
R

d yGI� x 
 y�rI�y,t 

�x 
 y�

vc �� (7)

T

rI� x,t�


t
� 
 rI� x,t�

� FI� rdrive � raff� x,t� � �
R

d yGE� x 
 y�rE�y,t



�x 
 y�

vc � ,�
R

d yGI� x 
 y�rI�y,t 

�x 
 y�

vc �� (8)

where rE/I(x,t) is the population rate of excitatory/inhibitory cells at the
space-time position (x,t), raff(x,t) is the excitatory afferent input targeting
both excitatory and inhibitory populations, and GE/I is the spatial connectiv-
ity in between subpopulations that we chose as Gaussian of width lexc 	 5
mm (excitation) and linh 	 2.5 mm (inhibition). We consider a higher lateral
extent of the excitatory connectivity with respect to the inhibitory one, in
accordance to anatomical data (Buzás st al., 2006). Moreover, vc 	 300 mm/s
is the axonal conduction speed, rdrive is the time/space constant average rate
of Poissonian excitatory spikes that every neuron receives, and T 	 5 ms is
the decay time of population rate. The functions FE,I are the transfer func-
tions of excitatory/inhibitory neurons and are calculated according to a
semianalytical tool as in Zerlaut et al. (2018) through an expansion in func-
tion of the three statistics of neurons voltage, that is, its average �v, its SD �v,
and its autocorrelation time �v as follows:

F �
1

�V
Erfc�vthr

eff 
 �V

�V
� (9)

where Erfc is the error function and the effective threshold vthr
eff is ex-

pressed as a first-order expansion with some fitting coefficients in func-
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tion of (�v, �v, �v). More details on this procedure can be found in
Zerlaut et al. (2018) and di Volo et al. (2019). The values (�v, �v, �v) are
calculated from shot-noise theory (Daley and Vere-Jones, 2007). Intro-
ducing the following quantities:

�GE
� rEKE�EQE (10)

�GE
� QE �rEKE�E

2
(11)

�GI
� rIKI�IQI (12)

�GI
� QI �rIKI�I

2
(13)

�G � �GE
� �GI

� gL (14)

�m �
cm

�G
(15)

Us �
Qs

�G�Es 
 �V�
(16)

where KE/I is the amount synapses related to presynaptic excitatory/in-
hibitory neurons (we consider a network of N 	 10,000 neurons inside
each node of the ring), we obtain the following equations for the voltage
moments:

�V �
�GeEe � �GiEI � gLEL 
 W

�G
(17)

�V � ��
s

Ksrs

�Us�s�
2

2��m � �s�
(18)

�V �
�sKsrs�Us�s�

2

�sKsrs

�Us�s�
2

�m � �s

(19)

In a static version of this mean-field model (Zerlaut et al., 2018), the
adaptation W is considered as a function of the excitatory firing rate (i.e.,
W 	 �w � b � rE). Now if we take into account the time evolution of
adaptation (see Eq. 5), W obeys the following dynamical equation (di
Volo et al., 2019):

dW

dt
� 


W

�w
� a��V 
 EL� � brE (20)

In this article, we use mainly the static version of the mean-field model,
but we compare with its dynamical version to investigate the role of
adaptation (see Fig. 6).

The afferent input has the following form:

raff� x,t� � A �
1

2��inp

e�� x�x0

�2�inp
� 2

�

�H�t 
 t0�e
�� t�t0

�2�1
� 2

� H�t0 
 t�e�� t�t0

�2�2
� 2� (21)

where A is the input amplitude, (x0, t0) the stimulus location, and H is the
Heaviside function. The spatial extension of the stimuli is �inp 	 3.5 mm,
the time rise �1 	 15 ms, and the decay time �2 	 90 ms.

The time delay in between stimulus 1 and stimulus 2 is �t 	 100 ms (if
not stated differently) and the spatial distance �x 	 7 mm. The VSDI
signal is calculated as follows:

�V

V
�

�V 
 �V
0

�V
0 (22)

where �V
0 is the average voltage prestimuli.

Current-based (CUBA) model. The CUBA is obtained by considering
the following synaptic coupling:

Isyn � QE
CUSe � QI

CUSI (23)

where QE
CU � 0.03 pA and QI

CU � 
 0.15 pA are the coupling with
excitatory and inhibitory neurons. The rest of the parameters are the
same. The voltage of the neurons is calculated as follows:

�V �
reKe�eQe

CU � reKe�eQI
CU � EL

GL
(24)

Also in this case, we use the same methodology to estimate the neurons
transfer function as done for the conductance-based (COBA) model.

Different FS gain. To modify the gain of FS cells, we manually
change the transfer function FI(rE, rI). In practice, for any rI, we
calculate the value rE

� for which FI changes convexity. This gives us

the slope �r �
dF�rE, rI�

drE
� �rE

�, rI� and the maximal value Fmax that

we estimate calculating F for very high rates (typically rE 	 200 Hz).
We then use the following function:

FI�rE, rI� � 2Fmax �
1

1 � e�� rE�rE
�

�r
� (25)

where we recall that rE
� and �r change in function of rI. This permits us to

have a sigmoidal form of the transfer function F. To change its slope, we
use a factor � that scales the slope, which becomes then ��r. In Figure 4,
we use � equal to 1.2 or 0.8.

Decoding model. The algorithm for the decoding model used in Figures
7 and 8 is detailed here. First, the ST data (i.e., space-time matrix) were
whitened by applying a ZCA transformation, such that, on average, the
dimensions are statistically decorrelated and the variance along each di-
mension is equal to 1. This transformation is necessary to satisfy the
hypothesis underlying the decoding model, which computes joint prob-
abilities in multiple dimensions. The whitening matrix was computed
from the eigen-decomposition of the covariance matrix of the blank data.
Next, the four spatial profiles (blank, stimulus 1, stimulus 2, and joint
stimulus 1 and 2) were computed by averaging the corresponding ST
response in a 50 ms window around the time of maximum response and
then normalized. The decoding of any ST data (e.g., the observed activity
evoked by a 6.6 °/s two stroke apparent motion stimulus “obs” or its
linearly predicted pattern “pred”) thus consisted of evaluating the likeli-
hood that the spatial profile observed at one point in time of the data
A(x,t) was best correlated with one of the four spatial profiles Sj with j �
{1:4}. This comes down to calculating the four probability Pj(t) of the
following form:

Pj�t� � e�
1

2�j �
j

x� A� x,t�

�A� x,t�� �
Sj� x�

�Sj� x��� 2 (26)

where �j is the averaged SD of the residual activity between A(x, t) and
Sj(x).

Then, we defined the explaining away index as the probability of de-
tecting joint S1 and S2 in the observed P4

obs or Ps1&s2
obs minus the probability

of detecting joint S1 and S2 in the linear prediction P4
pred or Ps1&s2

pred as
follows:

IE. A. � Ps1&s2
obs 
 Ps1&s2

pred (27)

Opponent motion energy (OME) model. To extract motion information
from the population responses, we used the OME model developed by
Adelson and Bergen (1985). Briefly, this model consists of combining
quadrature pairs of spatial and temporal filters to obtain oriented ST
filters (i.e., Gabors) tuned in spatial frequency. The ranges of spatial and
temporal frequencies were chosen so that the speed (i.e., FT/FS) of the
resulting ST filters varies from 2 to 70°/s and the scale (i.e., 1/FS) from 0.2
to 6 mm. It resulted in 64 (FS, FT) couples representing 8 different speeds
and scales. For each couple, we obtained two filters tuned for upward
motion and two filters tuned for downward motion. The outputs of
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quadrature pairs of such filters are then squared and summed to give a
phase-independent measure of local motion energy for both directions
(i.e., MEu and MEd values). Last, the opponent motion stage computes
the difference between the oriented opposite energies (i.e., OME values).
Before applying the OME model, the ST data were first normalized and
passed through a nonlinearity to account for the VSD to spike rate trans-
formation as proposed by Chen et al. (2012) as follows:

RSU � k�RVSDI)
N (28)

where RSU and RVSDI are, respectively, the average firing rate and the
average normalized VSDI response, k is a constant and N is an exponent.
Here, we took k 	 10 and N 	 3.8.

Finally, for each ST position on the map, we could extract the velocity
of the filter that generated the strongest OME and provide a ST velocity
map representation (see Fig. 9 B, C) with velocity and amplitude as color
hue and color intensity, respectively. We then averaged the encoded
velocity within a ST ROI, spatially between S1 and S2 center positions
and in time from 10 to 200 ms after stimulus 2 onset, to report a single
value of filter speed for each apparent motion speed condition (Fig.
9 D, E). The direction-selectivity index is given by the following:

DI �
VOME 
 min(VOME)

max(VOME)
(29)

where VOME is the amplitude of the OME.

Results
Characterizing the mesoscopic ST impulse response function
Two-step apparent motion sequences of various ST characteris-
tics (Fig. 1A,B) were presented to 2 behaving monkeys involved
in a fixation task. The primary visual cortical response was mea-
sured at the level of the population using VSDI (Grinvald and
Hildesheim, 2004; Chemla and Chavane, 2010a). In response to a
local stimulus (0.25° in diameter) presented for 100 ms in two
different visual positions (separated vertically by 1°), activity
arises at the retinotopic representation of these two positions and
then spreads laterally over millimeters of cortical surface (Fig. 1C,
lower position; Fig. 1D, upper position) as already reported in the
literature (Grinvald et al., 1994; Reynaud et al., 2012; Muller et al.,
2014). V1 activity is hereby reaching positions in space and time
well beyond 1° and 50 ms. As a consequence, the evoked spread
covers a large cortical extent that can reach the representation of
the other stimulus in space and beyond the interstimulus interval
in time. The space and time constants of our responses were
systematically quantified on the 2 monkeys and for the three
stimulus durations we used (10, 50 and 100 ms) on a 2D ST (ST)
map (Fig. 2A). To produce these ST maps, cortical activity was
averaged within the apparent-motion trajectory (Fig. 1C–G, dot-
ted rectangle at frame 216 ms) to provide a unique spatial cortical
dimension (Fig. 2A, ordinate). First, we extracted the space con-
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Figure 1. Experimental protocol and time sequence of the cortical response to the lrAM. A, Two-step lrAM stimuli were presented to 2 awake fixating monkeys in their bottom left visual field,
while recording in their right visual cortex using VSDI. B, ST characteristics of lrAM stimuli, that is, duration (DUR), Inter Stimulus Interval (ISI), and Spatial Interval (SI), were varied to cover a range
of speed (5°/s– 66.6°/s), computed using stimulus onset asynchrony (SOA 	 DUR � ISI). C–E, Cortical representation of evoked VSDI activity as a function of time, in response to, respectively, a 100
ms local stimulus in the down position (C), another one in the up position (D), and the sequence (E) of these two stimuli (ISI 	 50 ms and SI 	 1°) for 1 monkey. Top left in C, The cortical area imaged.
The edge of the image color codes the retinotopic borders as represented in A, such as the vertical meridian (magenta) and eccentricities (green and blue). Scale bar, 2 mm. A, Anterior; P, posterior;
M, medial; L, lateral. Top, Time in milliseconds after stimulus onset. Bottom, Black lines indicate stimulation time. F, Activity pattern predicted by the linear combination in space and time of the
response to stimulus 1 (row C) and the response to stimulus 2 (row D). G, Suppression pattern obtained by subtracting the observed apparent motion response (row E) and the linear prediction (row
F). Red contours delimit amplitude activity above a certain threshold: C–F, 1‰; G, �0.5‰.
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stant of a Gaussian spatial fit for all time points (Fig. 2A, right side
of the maps). In both monkeys and across 19 sessions overall (11
for Monkey WA and 8 for Monkey BR), the space constant in-
creased from 1.6 � 0.5 mm at response onset to reach a maxi-
mum of 3.3 � 0.2 mm, independent of the stimulus duration and
monkeys (Fig. 2B; no significant difference observed between all
stimuli durations, n 	 62 conditions, t test with p 
 0.01). The
time constants of the response time course at the central repre-
sentation of the stimulus were measured using two halve Gauss-
ian functions fits (Fig. 2A, below the maps). In both monkeys, the
time constant at response onset was on average 23.6 � 17.2 ms for
all stimuli durations, except for Monkey BR with a mean value of
44.5 � 14.5 ms for 100 ms stimuli (n 	 12 conditions; Fig. 2E,
blue histogram), and 80 � 43.6 ms for response offset (Fig. 2F; no
significant difference observed between all stimuli durations, t
test with p 
 0.01). Last, we also extracted the speed at which the
response spreads across the cortical surface (Fig. 2A, slanting

lines) and obtained a distribution with peak values of �0.26 �
0.14 m/s, similar across monkeys and stimulus durations (t test
with p 
 0.01), and similar to what has been observed in different
species and states (Bringuier et al., 1999; Slovin et al., 2002;
Reynaud et al., 2012; Sato et al., 2012; Muller et al., 2014). This
analysis showed that the ST integrative properties of the primary
visual cortex are mostly independent of stimulus duration and
are able to cover a large spatial (3 mm) and temporal (100 ms)
extent, bridging the cortical representation between our individ-
ual stimuli in space and time.

The evoked response to the lrAM is shaped by a
suppressive wave
We next asked whether such lateral interactions contribute to
shape the evoked population response to the temporal succession
of these two stimuli. For that purpose, we measured the cortical
population response to a two-stroke upward apparent motion

GFED

CBA

Figure 2. ST characteristics of cortical responses to local stimuli. A–C, ST representations of the evoked cortical response to, 10 ms (A, red), 50 ms (B, purple), and 100 ms (C, blue) local stimuli.
To produce the ST representation, we averaged spatial data along the stimulus trajectory (Fig. 1C–G, rectangle in frame 216 ms). For each spatial point, the temporal data were fitted to a combination
of two half Gaussians, as illustrated for one specific point in space (horizontal white line on the ST diagram) below the ST maps. Similarly, for each time frame, the spatial data were fitted to a Gaussian
function as shown on the right side of each ST map for one specific point in time (vertical white line). D, Space constant of the Gaussian spatial fit (� parameter) plotted as a function of time for the
three considered durations (10 ms in red, 50 ms in magenta, and 100 ms in blue) and for the 2 monkeys (top: Monkey WA; bottom: Monkey BR). Error bars indicate SEs across sessions (n 	 8 for each
of the three duration conditions). E, Histograms of time constant at response onset (�on) estimated from the temporal fit of the response for the three considered durations and the 2 monkeys. F,
Histograms of time constant at response offset (�off) estimated from the temporal fit of the response for the three considered durations and the 2 monkeys. G, Histograms of cortical speed of
propagation estimated by linear regression on response latency (stairs-step contours, slanting lines, and slope of the linear regression in Fig. 2A–C) for the three considered durations and the 2 monkeys.
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sequence (Fig. 1E). Such temporal sequence generates a propaga-
tion of activity starting at the cortical representation of the first
stimulus (S1) and moving to the cortical representation of the
second stimulus (S2), a cortical correlate of the illusory motion
(Jancke et al., 2004). The observed pattern of activity departs
from the pattern predicted by a simple linear summation of the
lower and upper stimuli (Fig. 1F). If we subtract the observed
(Fig. 1E) and the linear predicted responses (Fig. 1F), two devia-
tions from linearities are observed. First, a suppression emerges at
response onset and at the cortical representation of S2 (compare
1D and 1G at frame 216 ms). The suppression then gradually
propagates over the cortical surface toward the representation of
S1 (Fig. 1G). We can hypothesize that the evoked activities by the
two stimuli composing the lrAM sequence interact together to
generate this dynamic pattern of suppression. Because the sup-
pression is observed at the onset time of the response to S2, it has
to be due to the activity dynamics generated by S1 interacting
with the integration of S2. However, the propagation of suppres-
sion from the representation of S2 toward the representation of
S1 is probably due to the activity dynamics evoked by S2 inter-
acting with the residual activity evoked by S1. Therefore, the
suppression wave could likely be the result of multiple interac-
tions (e.g., bidirectional) between the activities evoked by the
stimulus sequence.

The suppressive wave is systematically observed
To better investigate how spreads of evoked activity and suppres-
sion shape the representation of lrAM, we first show ST represen-
tations of examples taken for both monkeys and three stimuli
speeds. The example of Figure 1 is shown in Figure 3A (6.6°/s). In
these ST representations, we can observe a clear propagation of
activity in response to a local stimulus (Fig. 3A,B, slanting lines)
that is qualitatively remarkably similar across both monkeys (Fig.
3A,B, first rows) and speeds (three columns, respectively, for 6.6,
10, and 33.3°/s), as shown in Figure 2G. The ST representation of
nonlinearities (lower rows), recentered on S2 onset, shows that
suppression first appears at the cortical representation of S2 and
at S2 response onset, and then propagates toward the represen-
tation of S1, at a similar speed than the one observed for the
evoked activity to the first stimulus (Fig. 3A,B, second rows,
slanting lines). In both monkeys and the three examples shown,
this suppression propagates in a direction opposite to the appar-
ent motion sequence, from S2 to S1 representations. Function-
ally, we propose that it results in dampening the residual activity
generated by S1.

The suppressive wave propagates at the same speed and with
the same extent as the evoked spread
This suppressive wave was systematically observed for all two-
stroke lrAM conditions tested (Fig. 1B). This can be seen in the
ST-evoked response (centered on the onset of S1) and nonlin-
earities (centered on the onset of S2) averaged across all condi-
tions and sessions for both monkeys (Fig. 4A, left: n 	 30
conditions for Monkey WA, right: n 	 32 conditions for Monkey
BR). To better understand the origin of the suppression dynamics
and its dependence on stimulus conditions, we characterized its
ST properties. First, we measured the onset of the appearance of
the suppression at S2 position. The latency of the observed sup-
pression was the same as the latency of the activity evoked by S2
alone (Fig. 4B; the values of mean � SE across conditions are,
respectively, 39.5 � 2.0 ms vs 38.6 � 1.6 ms for Monkey WA and
36.6 � 1.8 ms vs 36.9 � 2.1 ms for Monkey BR, nonsignificantly
different, t test with p 	 0.77 and p 	 0.35, respectively, for

Monkeys WA and BR). However, the suppression resulted in
significantly delaying the response onset evoked by S2 when pre-
sented within the apparent motion sequence (54.2 � 2.0 ms and
68.3 � 5.3 ms for Monkeys WA and BR, respectively; Fig. 4B).
Then, we quantified the spatial extent of the suppression (� of a
Gaussian fit; Fig. 4C). In all conditions, the spatial extent of the
suppression was of �2.8 mm (2.49 � 0.14 mm for Monkey WA
and 3.08 � 0.18 mm for Monkey BR), similar and nonsignifi-
cantly different from the spatial extent of the evoked response
(2.99 � 0.11 mm and 2.41 � 0.17 mm for Monkeys WA and BR,
respectively). Thus, the suppressive wave starts at similar latency
and covers similar spatial extent as the evoked activity. We next
characterized the speed of propagation of activity (Fig. 4D, black)
and suppression (Fig. 4D, blue), plotted as a function of stimulus
speed. Remarkably, on both monkeys, the observed cortical
speeds were identical for both the propagation of activity and the
suppression and completely independent of the lrAM speed
(0.28 � 0.26 and 0.27 � 0.4 m/s, respectively, for Monkey WA
and 0.21 � 0.15 and 0.27 � 0.2 m/s, respectively, for Monkey
BR). However, from the individual ST plots in Figure 3, we no-
ticed that the suppression does not seem to spread but rather
propagates as a wave (Muller et al., 2014, 2018). To probe for this
hypothesis, we thus compared the dynamics of the response peak
position (� of a Gaussian fit). In a spread, typically, the response
peak will not move in space, as observed for the evoked response
(Fig. 4E; the peak spatial position is not changing with time, slope
of �1.3 � 10�5 � 1.1 � 10�4 m/s and 1.6 � 10�4 � 3.4 � 10�4

m/s for Monkeys WA and BR, respectively), whereas in a wave it
will follow the onset spatial displacement, which is what we found
for the suppression (Fig. 4E; the peak moves from position 2 to
position 1, negative slope of �0.05 � 0.007 m/s and �0.034 �
0.005 m/s for Monkeys WA and BR, respectively). However, in
contrast to what we previously showed (i.e., the evoked activities
are waves hidden by spatial averaging) (Muller et al., 2014), the
suppression is still seen as a wave in the averaged data. This is
likely to be due to the anisotropy of the suppressive wave traveling
from stimulus 2 to stimulus 1, which makes it more resistant to
averaging than the evoked propagation of activity, which is iso-
tropic. Together, our results show that the suppression is initiated
right at response onset and has similar spatial extent and propa-
gation speed as the activity evoked response. This strongly sug-
gests that the dynamics of the evoked activity and the suppression
are mediated by the same general network subtending the ob-
served propagation of evoked activity: the intracortical horizon-
tal network (Muller et al., 2014). If the suppression is generated
along the propagation of activity, one prediction is that it should
decrease in strength with spatial and temporal separation be-
tween the two stimuli composing the lrAM. This is indeed what is
observed: the suppression strength decreases as a function of
stimulus onset asynchrony and spatial separation (Fig. 4F; t sta-
tistics on the slope of the linear regression gives t 	 �0.92 with
p 	 0.18 and t 	 �6.3 with p 	 3.6 � 10�6, respectively, for a
spatial interval (SI) of 1° and 2° (Monkey WA); t 	 �1.2 with p 	
0.12 and t 	 �1.6 with p 	 0.05 (Monkey BR)). This suggests
that, beyond some spatial and temporal offsets (2° and 200 ms),
the suppressive wave will disappear.

The suppressive wave can be the result of a dynamic
gain control
What can be the origin of such suppressive wave? Because inhib-
itory intracortical axons have more limited spatial extent (Buzás
et al., 2001), and that feedback from higher areas are excitatory
(Salin and Bullier, 1995), we can hypothesize that it does not
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result from a simple net inhibition, but rather as a byproduct of
the excitatory/inhibitory balance (Tsodyks et al., 1997; Ozeki et
al., 2009). Indeed, as demonstrated using center-surround stim-
ulations, the suppressive wave can be the result of a simple dy-
namic input normalization fed by propagation along the
horizontal network (Reynaud et al., 2012). To determine the pos-
sible mechanisms generating the observed suppression, we used a
mean-field model designed to reproduce accurately VSDI (Zer-
laut et al., 2018). In this model, it was assumed that each pixel of
the VSDI represents the average Vm of two populations of inter-
acting neurons: excitatory RS neurons and inhibitory FS neurons
(Chemla and Chavane, 2010b). Arranging this model into a spa-
tially extended interconnected population of RS-FS cells (Fig. 5A;

see Materials and Methods) allows to simulate the propagating
waves observed in awake monkey under VSDI. The great advan-
tage of such model is to explicitly take into account COBA inter-
actions as well as a different gain between excitation and
inhibition. These ingredients are often neglected as they intro-
duce difficulties in mathematical tractability of mean-field mod-
els (Vogels et al., 2005; Landau et al., 2016). Nevertheless, these
features are biologically relevant and, as we show here, are actu-
ally the main elements determining wave suppression. Examples
of two independent waves are shown in Figure 5B (top row).
When the two stimuli are presented in succession (Fig. 5B, bot-
tom left), the observed response shows a suppression (Fig. 5B,
bottom right), whose values are quantitatively similar to those of

B

A

Figure 3. The apparent motion stimulus induces a systematic suppression wave. ST representation of VSDI responses to two-stroke apparent motion stimuli for three different speeds (6.6, 10,
and 33.3°/s separated in 3 columns) and 2 animals: A, Monkey WA; B, Monkey BR. A, B, Top rows represent the observed response. Bottom rows represent the nonlinearities of the response
(observed� linear prediction). Estimates of speed propagation are reported on each ST diagram. Black stairs step represents contours at threshold level. Slanting lines indicate the slopes of the linear
regressions. Similar speeds are observed for both the observed activity and the nonlinearities.
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experimental data (suppression of �50% of the response max).
Such suppressive effect was robustly observed across a wide range
of parameter space. The first parameter that was found to
strongly affect the suppression is the ongoing spontaneous activ-
ity of the system before stimulus. As we report in Figure 5C
(COBA model, red dots), the suppression decreases when the
spontaneous activity of the system increases (Fig. 5D, example
marked by circle). Moreover, two further mechanisms were nec-
essary to explain this suppressive effect. First, inhibitory cells
need to have a higher gain than excitatory cells. When the gain of
FS cells was reduced (Fig. 5C, inset) to have a gain closer to the
one of RS cells, the suppression effect was strongly affected (Fig.
5C, blue dots; Fig. 5D, example marked by square). Accordingly,
increasing FS cell gain (Fig. 5C, cyan dots; Fig. 5D, example
marked by pentagon) increases the suppression strength. Second,
the interaction between excitatory and inhibitory inputs needed
to occur through conductance-based mechanisms. Indeed, when
using a CUBA model (see Materials and Methods), we mostly
observed facilitation (Fig. 5C, black triangles) that do not appear
to propagate (Fig. 5D, example marked by triangle). While we do
not exclude that such suppression may be observed with current-
based synapses, it is clear from these data that the nonlinearity of
conductance-based synapses induces a strong suppression in the
VSDI signal. The suppression can thus be explained by the meso-

scopic combination of the nonlinearity of conductance interac-
tions and the differential gain of excitatory and inhibitory cells.
Even if the fundamental mechanisms yielding the suppressive
wave are linked to voltage-dependent synapses and a higher gain
for inhibition than excitation, the intensity of the suppression
wave can be affected by additional nonlinearities. By comparing
with a recently developed mean-field model (di Volo et al., 2019)
where spike-frequency adaptation evolves dynamically, we ob-
served that the intensity of the suppressive wave is affected by
adaptation (Fig. 6, red squares). Moreover, by increasing adapta-
tion strength, we report an increase in the intensity of suppres-
sion (Fig. 6D,E) together with a decrease in the spontaneous
firing activity of the network (Fig. 6A, red arrow). Nevertheless,
the suppression wave appears before the hyperpolarization due to
adaptation (Fig. 6E, dotted green line), thus indicating that the
observed phenomenon is mainly due to conductance changes
and not related to cell repolarization after the appearance of the
first stimulus. The presence of an asynchronous irregular spon-
taneous dynamic is necessary for observing such phenomena, as
in our model a pathological synchronous regular state does not
show any responsiveness to external stimuli (Zerlaut and
Destexhe, 2017). Furthermore, such dynamical regimen of spon-
taneous activity is present for a large portion of parameters (ex-
ternal drive, synaptic time scale, and quantal coupling) and is an

FE

D

CB

A

Figure 4. The suppressive wave has the same properties as the evoked intracortical propagation. A, ST VSDI activity (top row) and nonlinearities (bottom row) averaged across all lrAM speed
conditions (n 	 30 for Monkey WA and n 	 34 for Monkey BR) and centered on stimulus 1 (S1, top row) or stimulus 2 (S2, bottom row) onset, for both monkeys (columns). B, Boxplot of latency
estimates comparing the onset of activity evoked by S2 alone (“evoked” condition), the response onset evoked by S2 when embedded in the lrAM sequence (“AM” condition), and the onset of the
suppression at S2 position (“suppr” condition). Boxplots represent median, 25% and 75% quartiles, and minimum and maximum of the distributions across all lrAM speed conditions, for the 2
monkeys (black represents Monkey WA; gray represents Monkey BR). C, Boxplot of space constants (parameter � of a Gaussian spatial fit) comparing the evoked response and the suppression, for
the 2 monkeys. D, For each condition in both monkeys (columns), we estimated the speed of propagation of the VSDI (black) and the nonlinearity (blue). Top row represents frequency histograms,
values are positive when the direction of the propagation is the same as the direction of the apparent motion, negative otherwise. Bottom row represents these speeds as a function of the speed of
the lrAM stimulus. E, Boxplot of the response peak propagation speed (slope of the linear regression on the parameter � of a Gaussian spatial fit) comparing the evoked response and the suppression,
for both monkeys. F, Suppression strength (normalized to the maximal response activity) as a function of stimulus onset asynchrony and SI (open circle represents SI 	 1°; open square represents
SI 	 2°), for both monkeys: black represents Monkey WA; gray represents Monkey BR. Linear regressions are also plotted: solid lines indicate SI 	 1°; dashed lines indicate SI 	 2°.
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emergent property of the network and not a consequence of an ad
hoc parameter choice (Tsodyks and Sejnowski, 1995; van
Vreeswijk and Sompolinsky, 1996). By increasing the ratio be-
tween excitatory and inhibitory synaptic time scale (spanning
over a range of �E/�I between 0.8 and 1.6), we observe an in-
creased suppression in the propagating wave (Fig. 6A, blue dots).
Accordingly, even if its intensity may vary, the suppressive nature
of wave interaction is robustly observed over the whole range of
parameters corresponding to an asynchronous irregular sponta-
neous regimen (Fig. 6B,C). Moreover, the connectivity profile
(excitatory vs inhibitory connectivity length) can affect the over-
all dynamics, even though we verified that the stability of the
asynchronous irregular state is robust with respect to relatively
small variations of these parameters. In addition, excitatory and

inhibitory connectivity distances have been inferred by a mini-
mization procedure to match model results with VSDI data and
are in agreement with anatomical information (Zerlaut et al.,
2018).

The function of the suppressive wave is to explain away
ambiguous representations
What can be the function of the suppressive wave? Here we pro-
pose that it will shape an unambiguous representation of motion
along the apparent-motion trajectory. Indeed, dampening the
cortical representation of the initial stimulus when the second
stimulus is being processed will have as a consequence to repre-
sent only one stimulus at a time, hereby improving motion
representation by explaining away ambiguous position represen-

BA

DC

Figure 5. A computational model to investigate the possible origin of the suppressive wave. A, Mean-field model of excitatory and inhibitory neurons distributed on the cortical trajectory of the
stimulus with horizontal connectivity (longer for excitatory than inhibitory neurons). B, Model ST response to the first stimulus (top left), the second (top right), the apparent motion sequence
(bottom left), and the nonlinearities normalized to the maximal response over space and time of the response to single stimuli (bottom right). The input has an amplitude �0 	 20 Hz. C, Amount
of suppression/facilitation as a function of the spontaneous excitatory firing rate. Colored dot represents different interneuron gain (see inset). Black triangles represent the CUBA model, which
shows little suppression but facilitation. The input has an amplitude �0 	 10 Hz. D, Representative ST suppressive/facilitative patterns as marked in C by different geometric shapes (circle, square,
pentagon, triangle). C, Star represents the model parameters used for obtaining the suppressive pattern shown in B.
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tation (problem of “phenomenal identity”) (Ternus, 1926). To
test such a hypothesis, we developed a simple algorithm to de-
code, at every instant, what is the most probable stimulus posi-
tion that evoked the observed cortical spatial profile out of four
categories: no stimulus, S1, S2, or joint S1 and S2. We used the ST
representations of the evoked activity to the apparent motion
sequence (Fig. 7A) and used the linear prediction (Fig. 7B) as a
control. The decoding was computed using the joint probability
that the spatial profile observed at one point in time (white pro-
file) is drawn from the spatial profile observed during blank (first
row, black), S1 (second row, red), S2 (third row, blue), or the
joint S1 and S2 (last row, green). In the example shown in Figure
7, we apply this decoding method to the activity evoked by a 6.6°/s
two stroke apparent motion stimulus (Fig. 7A). When S1 is pre-
sented (red), the probability that the spatial profile of the evoked
response will be similar to the blank distribution is quickly drop-
ping from 1 to 0 and the probability that the evoked response will
be decoded as being evoked by S1 alone is jumping from 0 to 1
very rapidly (in 10 ms). When S2 is presented (at time 50 ms),
there is a sharp and rapid transition from the evoked activity
being decoded as S1 to S2 (blue) in �50 ms. In contrast, the
probability that the evoked activity is evoked by S1 and S2 at the
same time (green) increases moderately (peaking at 0.5) and
transiently. In contrast, when we apply the same approach to the
linear prediction (Fig. 7B), while the beginning of the decoding is
the same (two first rows), as expected, when S2 appears, the
evoked activity is ambiguously decoded as being attributed to S2
or S1 and S2 conjointly with similar probability (�0.5) and sus-
tained over the response duration.

We applied this approach to all speeds and sessions in both
monkeys (Fig. 8A,B), for SI of 1°, differentiated across the differ-
ent ISIs. We separated these conditions because, when S2 ap-
pears, the residual activity in response to S1 will be less important
for long ISI (the offset time constant being of the order of 80 ms).
In both monkeys and for ISI � 50 ms, the averaged results con-

firm the individual example shown in Figure 7: the evoked activ-
ity results in a sharp and clear transition from the representation
of S1 to the representation of S2, with only transient and moder-
ate increase of the representation of S1 and S2 conjointly. In
comparison, the linear prediction always leads to an ambiguous rep-
resentation that cannot tease apart the probability that the evoked
activity is coming from S2 alone or S1 and S2 together (blue and
green curves merging together). For an ISI � 100 ms, in contrast, the
evoked activity resembles more the linear prediction, as expected
given the reduction of the suppression strength (Fig. 4F).

To quantify the effect of explaining away ambiguous posi-
tional representations during lrAM stimulations, we calculated
an index by subtracting the probability of detecting joint S1 and
S2 in the observed and the linear prediction for both monkeys,
IE. A. � Ps1&s2

obs 
 Ps1&s2
pred (Fig. 8C,D), and both stimuli SIs of 1° and

2° (first and second rows, respectively). In all conditions but the
long SI and long ISI, a systematic decrease of the index was ob-
served. This reveals a dynamic effect of explaining away the am-
biguous representation of S1 and S2. Importantly, in both
monkeys and practically all conditions (ISIs and stimulus sepa-
rations), we observed two peaks in the index decrease. They cor-
respond to the bidirectional interactions occurring for each of the
two evoked waves. The first peak corresponds to the effect of
delaying response onset to S2 (by propagating activity from S1 to
S2), and the second peak corresponds to a shortening of the
representation of S1 (by propagating activity from S2 to S1).
Importantly, this calculation revealed two further phenomena
that are expected because of the propagation delay and spatial
extent. First, the timing of the second peak is delayed when going
from 1° to 2° spatial separation. Second, the general amplitude of
the decrease diminishes from short to longer ISI and from short
to larger spatial separation, as expected from the observed reduc-
tion in the suppression strength with spatial and temporal offsets
(Fig. 4F).

ED

CBA

Figure 6. The effect of spike-frequency adaptation on the suppressive wave. A, Maximum of wave suppression (across space and time) for different values of adaptation strength b (dynamic
adaptation model, red squares) and ratio between excitatory and inhibitory synaptic time scales (static adaptation model, blue dots). The values of b range from 0 to 100 pA, and the values of �E

range from 3 to 9 ms (while �I 	 5 ms); both arrows point to an increase in the values of b and �E. On the x axes, we report the corresponding value of spontaneous excitatory firing rate. B–E,
Suppressive wave for four parameter values (see associated symbols in A). E, Dashed green line indicates the beginning of the hyperpolarization period of the model response due to adaptation. The
excitatory external drive is rdrive 	3.5 Hz for blue dots (b	80 pA) and rdrive 	1.2 Hz for red squares (�E 	�I 	5 ms), and the amplitude of the input is A	10 Hz for both blue dots and red squares.
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Figure 7. A dynamic decoding of stimulus position: principle. The decoding of stimulus position on ST maps, here taking the example of the activity evoked by a 6.6°/s lrAM stimulus
shown in A or the activity pattern predicted by the linear combination in space and time of the responses to both individual stimuli in B. The decoding consists of evaluating the
probabilities that the spatial profile observed at each point in time (A,B, white contours) is similar to one of the four spatial profiles shown on the left column: Blank (first row, black
profile), S1 (second row, red profile), S2 (third row, blue profile), and the joint S1 and S2 (last row, green profile). Each profile was computed by averaging the corresponding ST response
in a 50 ms window around the time of maximum response and normalized. The four color-coded probabilities are, respectively, plotted as a function of time: time 0 corresponds to the
onset of S2 for the lrAM response (column A) and for the linear prediction (column B). Compared with the linear prediction, the actual signal is more rapidly decoded, revealing a likely
function of the suppressive wave: shaping stimulus position representation.
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Unambiguous representation for encoding the stimulus
velocity in V1
Shaping the cortical population representation of the lrAM could
promote an accurate encoding of direction-selective motion sig-
nals for a straightforward read-out by downstream area. Indeed,
keeping the representation of only one stimulus at a time on the
cortex will automatically detect motion signal. Actually, the re-
sidual transient ambiguous representation often observed be-
tween stimulus 1 and stimulus 2 could also participate in shaping
the motion energy signal by providing an intermediary activity in
space and time. To test whether the measured cortical response
encodes an accurate direction-selective signal, we applied OME
filters directly to V1 population responses (Adelson and Bergen,
1985). Indeed, direction selectivity in MT is well described and
captured by motion energy models (Adelson and Bergen, 1985;
Rust et al., 2006). Such an approach is generally developed to
model MT receptive field from an ST input image. The rationale
here is to apply the same processing directly to V1 population
responses that feed downstream areas, such as MT or V4. This is
justified by the fact that the cortical extent imaged here (�9 mm,
corresponding to 3°) (Dow et al., 1981; Van Essen et al., 1984)
actually corresponds to the V1 cortical extent converging to a MT
or V4 neuron at our recorded eccentricity (3°) (Albright and
Desimone, 1987; Gattass et al., 1988). Because we record VSD
responses that represent both subthreshold and suprathreshold
activities (Chemla and Chavane, 2010b), we first processed our
ST maps through a nonlinearity to account, as a first approxima-
tion, for the VSD to spike rate transformation (Chen et al., 2012)
(Fig. 9A; see Materials and Methods). The resulting ST maps were
convolved with a set of ST filters covering a wide range of speeds
and scales. For a given value of filter speed and scale, we squared
and summed the convolution from filters in quadrature, and
subtracted the resulting phase-independent measure of local mo-
tion energy for opposite directions (i.e., MEu � MEd) to obtain

the OME response (Fig. 9A). We thereby obtained the OME for
all speeds, scales, and directions. For each position on the ST
map, we could hence extract the filter velocity for which the OME
is maximal, that we represented for both monkeys, and different
velocities (10°/s upward in Monkey WA, Fig. 9B; and �33°/s
downward in Monkey BR, Fig. 9C). In this representation, the
color hue represents the velocity of the filter yielding a maximal
OME, and the color intensity its amplitude (as a fraction of the
maximum evoked fluorescence response). The contour of
the evoked response is overlaid in white to ease comparison. The
same analysis on the corresponding linear predictions serves as a
control (Fig. 9B,C, bottom). For all the conditions we explored,
we then extracted the values of the encoded velocity averaged
within a ST ROI (between S1 and S2 centers and from 10 to 200
ms after stimulus 2 onset) and represented them as a function of
the AM speed for both monkeys (Fig. 9D,E). Our results show
that the ST response, shaped through the suppressive wave, is
indeed generating a direction selective motion energy for a speed
that is well correlated with the stimulus speed (R 2 of the regres-
sion lines, in red, shown in Fig. 9D,E; R 2 	 0.80 and R 2 	 0.65
for Monkeys WA and BR, respectively). In other words, intracor-
tical nonlinear interactions in V1 promote an unambiguous en-
coding of velocity-selective motion signal along the apparent
motion path.

Discussion
We have shown that intracortical interactions play a key role in
shaping the sensory representation of the lrAM within the reti-
notopic map of V1 in awake monkeys. Our results demonstrate
that intracortical propagation encompasses large spatial and tem-
poral distances allowing to link information separated by 1°–2°
and �100 ms. Importantly, above these values, the apparent mo-
tion illusion gradually fades out (Kolers, 1972; Cavanagh and
Mather, 1989). In response to the lrAM sequence, we observe a

CA

DB

Figure 8. A dynamic decoding of stimulus position: Application to all lrAM speeds and sessions. A, Color-coded probabilities (same as Fig. 7) for the observed lrAM response (first row) and its
corresponding linear prediction (second row) for Monkey WA, averaged across three ISI categories: ISI � 25 ms (left column, n 	 2), ISI 	 50 (central column, n 	 6), and ISI � 100 ms (right
column, n 	 4). Shaded areas represent SEs across sessions. B, Application of the decoding algorithm to all the data of Monkey BR (n 	 4, n 	 4, and n 	 5 sessions for the three ISIs, respectively).
C, Explaining away index (see Materials and Methods) computed as the probability of detecting joint S1 and S2 in the observed response minus the probability of detecting joint S1 and S2 in the linear
prediction, from Monkey WA data shown in A. D, Explaining away index from Monkey BR data shown in B.
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clear displacement of activity on the cortical surface that deviates
from the linear prediction in two aspects. First, the initial stimu-
lus suppresses and delays the response to the second stimulus.
Second, a suppressive wave is evoked by the second stimulus that
attenuates the residual activity evoked by the first stimulus. The
ST characteristics of the suppression show similar spatial con-
stant and propagation speed as for the evoked activity, indepen-
dent of the speed of the stimulus. We propose that the
suppression arises from a simple gain-control mechanism pool-
ing feedforward and horizontal inputs (Reynaud et al., 2012). To
demonstrate this, we used a conductance-based mean-field
model developed to account for VSD dynamics (Zerlaut et al.,
2018). This model shows that the observed suppression can be
explained by nonlinear conductance interactions, combined with
the different gain of excitatory and inhibitory cells. We further
demonstrate that the suppressive wave acts as explaining away the
ambiguous representation allowing to represent only one stimu-
lus at a time in the cortex. Likewise, such unambiguous represen-
tation allows V1 to encode accurately the velocity signal of the
lrAM.

Suppression and normalization as generic operations in the
visual system
The dynamics of the suppression is seen here as a central and key
mechanism by which the input is shaped and normalized by V1

population. When more than one stimulus is present in a visual
scene, suppressive interactions between the feedforward-driven
activities is what is traditionally reported, such as the surround
suppression (Blakemore and Tobin, 1972; Angelucci et al., 2002;
Cavanaugh et al., 2002). This suppression is generally attributed
to be an emergent property of the divisive normalization compu-
tation (Carandini and Heeger, 2011), that is dynamic and prop-
agates from the stimulus surround toward the center (Reynaud et
al., 2012). Adding a new lateral input, which presumably contains
excitatory and inhibitory synapses, therefore results in a net sup-
pression, the so-called paradoxical inhibitory effect (Tsodyks et
al., 1997; Ozeki et al., 2009). It is noteworthy that similar suppres-
sion was also seen in response to line-motion stimuli (Jancke et
al., 2004), temporal sequence of dark and bright stimuli eliciting
motion percepts (Rekauzke et al., 2016) and apparent motion
presentation with 
2 strokes (data not shown). We believe that
dynamic nonlinear interactions subtended by intracortical net-
work acts as a canonical gain control shaping the representation
of visual stimulus in space and in time.

Modeling the suppressive waves
Possible mechanisms underlying the observed suppressive effects
were investigated using a mean-field computational model
(Markounikau et al., 2010), that has been spatially extended. Ear-
lier studies also suggested the importance of inhibition to shape

B D

C E

A

Figure 9. Encoding of direction-selective motion signal. A, Application of the OME model (Adelson and Bergen, 1985) to the ST representation of cortical response to an upward 10°/s AM
sequence shown at the top (Monkey WA). The first step consists of convolving the ST data with a set of oriented ST filters. Phase independency is obtained by squaring and summing the outputs of
quadrature pair of filters, whereas motion opponency is obtained by subtracting the two oriented motion energies (OME 	 Meu � MEd). The maximal energy values for each ST filter are plotted
as a function of speed (in °/s) and scale (in mm). The energy values resulting from the same computation applied on the linear prediction and the nonlinearities for this AM sequence are shown at
the bottom left and right, respectively. B, ST representation of the opponent motion energies computed in A. For each ST position, the filter velocity for which the energy was maximal is represented
as color hue. The actual speed of the stimulus (here 10°/s) is marked on the color code as a landmark. The amplitude of the energy is coded as color intensity. For comparison, the result for the
corresponding linear prediction is shown below. Nonlinearities correspond to observed AM minus the linear prediction. C, Same as in B for Monkey BR, for another AM sequence condition (33.3°/s
downward motion). D, For each AM condition (n 	 30), the filter speed that generated the strongest OME within an ST ROI (see Materials and Methods) is plotted as a function of the actual lrAM
speed for Monkey WA. The color and size of the dots (upward motion conditions) and squares (downward motion conditions) code for the value of the direction-selectivity index (DI). Red line
indicates the linear regression fit between OME speed and stimulus speed. Black line indicates the exact linear relationship. E, Same as in D for Monkey BR (n 	 32).
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the time course of the evoked response (Ozeki et al., 2009; Jancke
and Erlangen, 2010). We found that the model can reproduce the
observed suppression, provided two mechanisms are present:
excitatory and inhibitory cells have a different gain and excitatory
and inhibitory synaptic inputs must combine through
conductance-based interactions. Although these two mecha-
nisms are well known, they are usually neglected in mean-field
models because they represent a mathematical difficulty. The
classic mean-field models with linear (current-based) interac-
tions and uniform gain in all cells fail to reproduce the suppres-
sive effect of propagating waves, and thus the present model can
be considered as a step toward biologically more realistic mean-
field models. Hereby, we could demonstrate that this suppressive
wave is an expected byproduct of the known anatomy and does
not need to be expressed solely by pure inhibition.

Backward suppression to keep track of object identity along
the apparent motion path
This suppression can help to represent unambiguously one ob-
ject at a time on the cortical surface, as our decoding model
suggests. This means that the lateral interactions can link the
transient ST events while keeping track of the object moving
along the trajectory. This could be one mechanism involved in
solving the correspondence problem (Ullman, 1978). This prob-
lem, first introduced by Ternus (1926; see also Ullman, 1978),
shows that we need to keep track of the identity of an object in
movement to resolve the problem of correspondence. Moreover,
ST coherence seems to be more important than shape or color
consistency through a backward “reviewing” mechanism (Kah-
neman et al., 1992). We believe that the mechanism of suppres-
sion we unveil here, also moving backwards, is an elementary and
preliminary form of this reviewing process, explaining away un-
desired motion signal in the representation of the object trajec-
tory. This could explain the ability of our visual system to detect
objects based solely on the coherence of their ST trajectory
(Watamaniuk et al., 1995). Furthermore, computational studies
suggested that this ability to detect coherent trajectories necessi-
tates propagation of information in retinotopic reference frames
(Perrinet and Masson, 2012), in full accordance with our results.

Local versus global motion processing
The processing that we describe here clearly departs from classi-
cal motion integration documented in short-range apparent mo-
tion (Mikami et al., 1986a,b) In these stimuli, motion occurs and
is evenly distributed within a stationary aperture typically cover-
ing a receptive field, and motion is extracted locally through mo-
tion energy detectors (Pack et al., 2006; Majaj et al., 2007). Simple
L-NL hierarchical models account very well for the selective
properties of neurons in V1 and MT in response to such kind of
drifting or RDK stimuli (Carandini et al., 2005; Rust et al., 2006).
However, there should be intrinsic differences in the processes
involved in integrating local drifting motion versus global trajec-
tory motion of a single object. Indeed, Hedges et al. (2011) have
shown that MT receptive fields are only sensitive to local motion
presented within stationary aperture, totally independent of the
direction of long-range trajectory simulation in which these local
motion stimuli are embedded. What are the neuronal processing
involved to extract motion information along a trajectory? The
experiments of Watamaniuk et al. (1995) show that this process-
ing cannot be simply integrated from large receptive field of
downstream areas. Our experiment here strongly reinforces the
idea that the visual system encodes motion trajectory at meso-
scopic level within retinotopic map (Jancke et al., 1999, 2004;

Chavane et al., 2000; Roland et al., 2006; Zhang et al., 2012;
Muller et al., 2014, 2018; Rekauzke et al., 2016).

Encoding the motion trajectory in the retinotopic map for
read-out by downstream areas
The suppressive wave we documented decreases the residual ac-
tivity evoked by the first stimulus, hereby shaping the dynamic
response within the retinotopic map of V1 that could be read out
as motion information by a downstream area. V4 or MT neurons
have receptive fields whose retinotopic size encompasses the cor-
tical region we imaged in this study. As shown by our read-out
analysis (Fig. 9), those neurons will be able to simply detect this
population-encoded direction selective motion information
through motion energy detectors (Adelson and Bergen, 1985).
This signifies that V1 intracortical interactions would preformat
the population representation of lrAM for read-out by down-
stream areas (Adelson and Bergen, 1985; Mumford, 1991, 1992).
These results are in accordance with human fMRI experiments
that showed that V1 is actively involved in the network that pro-
cesses the perceived illusory lrAM (Muckli et al., 2005).

lrAM along ventral and dorsal streams, feedback versus
horizontal propagation
In the visual cortex of the ferret, it was shown, using VSDI, that
lrAM induces feedback propagation of differential activity from
area 21 (Ahmed et al., 2008). Similarly, using stimuli that could
span a much larger visual scale (16.5° spatial separation) and
systematically larger cortical separations, it was suggested that
human MT complex feedbacks on early visual cortices to process
lrAM (Wibral et al., 2009; Vetter et al., 2015). However, Hedges et
al. (2011) suggested that MT may not be the most appropriate
area for extracting motion along an lrAM trajectory. Areas on the
ventral stream seems to be also implicated in processing such
stimuli (Zhuo et al., 2003). Ventral stream areas may actually be
well suited because they will process the information about object
through strong feedback interactions with V1 (Poort et al., 2012)
and are as well strongly involved in motion processing (Ferrera et
al., 1994; Roe et al., 2012).

In conclusion, as recently proposed by Muller et al. (2018),
traveling waves within and between cortical areas can provide an
advantageous framework for dynamic computations that will in-
fluence neuronal processing. However, in this review, it was also
noted that clear functional roles of these waves have yet to be
discovered. Here we show that two discrete stimuli composing
the lrAM illusion induce multiple wave interactions, resulting in
propagation of suppression in a direction opposite to that of the
AM stimulation. This suppression shapes the stimulus response
and allows to keep track of the stimulus position along the mo-
tion trajectory. We believe that our work has revealed a first ele-
mentary step in how the brain links visual stimuli in space and
time. Further work will be needed to understand which areas, if
any, are reading out the population representation of motion
trajectory on V1 retinotopic map and the relative role of intra and
intercortical interactions.
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