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SIRUS: MAKING RANDOM FORESTS INTERPRETABLE

By Clément Bénard∗,†, Gérard Biau∗, Sébastien Da
Veiga† and Erwan Scornet‡

Sorbonne Université ∗, Safran Tech † and Ecole Polytechnique ‡

State-of-the-art learning algorithms, such as random forests or
neural networks, are often qualified as “black-boxes” because of the
high number and complexity of operations involved in their predic-
tion mechanism. This lack of interpretability is a strong limitation
for applications involving critical decisions, typically the analysis of
production processes in the manufacturing industry. In such critical
contexts, models have to be interpretable, i.e., simple, stable, and
predictive. To address this issue, we design SIRUS (Stable and In-
terpretable RUle Set), a new classification algorithm based on ran-
dom forests, which takes the form of a short list of rules. While sim-
ple models are usually unstable with respect to data perturbation,
SIRUS achieves a remarkable stability improvement over cutting-edge
methods. Furthermore, SIRUS inherits a predictive accuracy close to
random forests, combined with the simplicity of decision trees. These
properties are assessed both from a theoretical and empirical point of
view, through extensive numerical experiments based on our R/C++

software implementation sirus.

1. Introduction.

Industrial context. In the manufacturing industry, production processes in-
volve complex physical and chemical phenomena, whose control and effi-
ciency are of critical importance. In practice, data is collected along the
manufacturing line, describing both the production environment and its
conformity. The retrieved information enables to infer a link between the
manufacturing conditions and the resulting quality at the end of line, and
then to increase the process efficiency. State-of-the-art supervised learning
algorithms can successfully catch patterns of such complex physical phenom-
ena, characterized by nonlinear effects and low-order interactions between
parameters. However, any decision impacting the production process has
long-term and heavy consequences, and therefore cannot simply rely on a
blind stochastic modelling. As a matter of fact, a deep physical understand-
ing of the forces in action is required, and this makes black-box algorithms
unappropriate. In a word, models have to be interpretable, i.e., provide an
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understanding of the internal mechanisms that build a relation between in-
puts and ouputs, to provide insights to guide the physical analysis. This is
for example typically the case in the aeronautics industry, where the man-
ufacturing of engine parts involves sensitive casting and forging processes.
Interpretable models allow us to gain knowledge on the behavior of such pro-
duction processes, which can lead, for instance, to identify or fine-tune crit-
ical parameters, improve measurement and control, optimize maintenance,
or deepen understanding of physical phenomena.

Interpretability. As stated in Rüping (2006), Lipton (2016), Doshi-Velez
and Kim (2017), or Murdoch et al. (2019), to date, there is no agreement in
statistics and machine learning communities about a rigorous definition of
interpretability. There are multiple concepts behind it, many different types
of methods, and a strong dependence to the area of application and the au-
dience. Here, we focus on models intrinsically interpretable, which directly
provide insights on how inputs and outputs are related. In that case, we
argue that it is possible to define minimum requirements for interpretability
through the triptych “simplicity, stability, and predictivity”, in line with the
framework recently proposed by Yu and Kumbier (2019). Indeed, in order
to grasp how inputs and outputs are related, the structure of the model has
to be simple. The notion of simplicity is implied whenever interpretability
is invoked (e.g., Rüping, 2006; Freitas, 2014; Letham, 2015; Letham et al.,
2015; Lipton, 2016; Ribeiro, Singh and Guestrin, 2016; Murdoch et al., 2019)
and essentially refers to the model size, complexity, or the number of op-
erations performed in the prediction mechanism. Yu (2013) defines stabil-
ity as another fundamental requirement for interpretability: conclusions of
a statistical analysis have to be robust to small data perturbations to be
meaningful. Finally, if the predictive accuracy of an interpretable model is
significantly lower than the one of a state-of-the-art black-box algorithm,
it clearly misses some patterns in the data and will therefore be useless, as
explained in Breiman (2001a). For example, the trivial model that outputs
the empirical mean of the observations for any input is simple, stable, but
brings in most cases no useful information. Thus, we add a good predictivity
as an essential requirement for interpretability.

Decision trees. Decision trees are a class of supervised learning algorithms
that recursively partition the input space and make local decisions in the cells
of the resulting partition (Breiman et al., 1984). Trees can model highly non-
linear patterns while having a simple structure, and are therefore good can-
didates when interpretability is required. However, as explained in Breiman
(2001a), trees are unstable to small data perturbations, which is a strong
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limitation to their practical use. In an operational context, as a new batch
of data is collected from a stationary production process, the conclusions
can drastically change, and such unstable models provide us with a partial
and arbitrary analysis of the underlying phenomena.

A widespread method to stabilize decision trees is bagging (Breiman,
1996), in which multiple trees are grown on perturbed data and aggregated
together. Random forests is an algorithm developped by Breiman (2001b)
that improves over bagging by randomizing the tree construction. Predic-
tions are stable, accuracy is increased, but the final model is unfortunately a
black-box. Thus, simplicity of trees is lost, and some post-treatment mech-
anisms are needed to understand how random forests make their decisions.
Nonetheless, even if they are useful, such treatments only provide partial in-
formation and can be difficult to operationalize for critical decisions (Rudin,
2018). For example, variable importance (Breiman, 2001b, 2003a) identifies
variables that have a strong impact on the output, but not which inputs
values are associated to output values of interest. Similarly, local approxi-
mation methods such as LIME (Ribeiro, Singh and Guestrin, 2016) do not
provide insights on the global relation.

Rule models. Another class of supervised learning methods that can model
nonlinear patterns while retaining a simple structure are the so-called rule
models. As such, a rule is defined as a conjunction of constraints on input
variables, which form a hyperrectangle in the input space where the esti-
mated output is constant. A collection of rules is combined to form a model.
Rule learning originates from the influential AQ system of Michalski (1969).
Many algorithms were subsequently developped in the 1980’s and 1990’s,
including Decision List (Rivest, 1987), CN2 (Clark and Niblett, 1989), C4.5
(Quinlan, 1992), IREP (Incremental Reduced Error Pruning, Fürnkranz and
Widmer, 1994), RIPPER (Repeated Incremental Pruning to Produce Error
Reduction, Cohen, 1995), PART (Partial Decision Trees, Frank and Witten,
1998), SLIPPER (Simple Learner with Iterative Pruning to Produce Error
Reduction, Cohen and Singer, 1999), and LRI (Leightweight Rule Induc-
tion, Weiss and Indurkhya, 2000). The last decade has seen a resurgence of
rule models, especially with RuleFit (Friedman et al., 2008), Node harvest
(Meinshausen, 2010), ENDER (Ensemble of Decision Rules, Dembczyński,
Kot lowski and S lowiński, 2010), and BRL (Bayesian Rule Lists, Letham
et al., 2015). Despite their simplicity and excellent predictive skills, these
approaches are unstable and, from this point of view, share the same limi-
tation as decision trees (Letham et al., 2015). To the best of our knowledge,
the signed iterative random forest method (s-iRF, Kumbier et al., 2018)
is the only procedure that tackles both rule learning and stability. Using
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random forests, s-IRF manages to extract stable signed interactions, i.e.,
feature interactions enriched with a thresholding behavior for each variable,
lower or higher, but without specific thresholding values. Besides, s-IRF is
designed to model biological systems, characterized by high-order interac-
tions, whereas we are more concerned with low-order interactions involved in
the analysis of industrial processes—typically main effects and second-order
interactions. In this industrial setting, the extraction of signed interactions
via s-IRF can be difficult to operationalize since it does not provide any spe-
cific input thresholds, and thus no precise information about the influence
of input variables. Therefore an explicit rule model is required to identify
input values of interest.

SIRUS. In line with the above, we design in the present paper a new super-
vised classification algorithm that we call SIRUS (Stable and Interpretable
RUle Set). SIRUS inherits the accuracy of random forests and the simplicity
of decision trees, while having a stable structure for problems with low-order
interaction effects. The core aggregation principle of random forests is kept,
but instead of aggregating predictions, SIRUS focuses on the probability
that a given hyperrectangle (i.e., a node) is contained in a randomized tree.
The nodes with the highest probability are robust to data perturbation and
represent strong patterns. They are therefore selected to form a stable rule
ensemble model.

In Section 4 we illustrate SIRUS on a real and open dataset, SECOM
(Dua and Graff, 2017), from a semi-conductor manufacturing process.
Data is collected from 590 sensors and process measurement points
(X(1), X(2), . . . , X(590)) to monitor the production. At the end of the line,
each of the 1567 produced entities is associated to a pass/fail label, with an
average failure rate of pf = 6.6%. SIRUS outputs the following simple set
of 6 rules:

Average failure rate pf = 6.6%

if X(60) < 5.51 then pf = 4.2% else pf = 16.6%

if X(104) < −0.01 then pf = 3.9% else pf = 13.0%

if X(349) < 0.04 then pf = 5.4% else pf = 17.8%

if X(206) < 12.7 then pf = 5.4% else pf = 17.8%

if X(65) < 26.1 then pf = 5.5% else pf = 17.2%

if
X(60) < 5.51

& X(349) < 0.04
then pf = 3.6% else pf = 16.4%

The model is stable: when a 10-fold cross-validation is run to simulate data
perturbation, 4 to 5 rules are consistent across two folds in average. The
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predictive accuracy of SIRUS is similar to random forests whereas CART
tree performs no better than the random classifier as we will see for this
dataset.

Section 2 is devoted to the detailed description of SIRUS. In Section 3, we
establish the consistency and the stability of the rule selection procedure.
These results allow us to derive empirical guidelines for parameter tuning,
gathered in Section 4, which is critical for good practical performance. One
of the main contributions of this work is the development of a software
implementation of SIRUS, via the R package sirus, available at https:

//gitlab.com/safrandrti/sirus, based on ranger, a high-performance
random forest implementation in R and C++ (Wright and Ziegler, 2017).
We illustrate, in Section 4, the efficiency of our procedure sirus through
numerical experiments on real datasets.

2. SIRUS description. Within the general framework of super-
vised (binary) classification, we assume to be given an i.i.d. sample
Dn = {(Xi, Yi), i = 1, . . . , n}. Each (Xi, Yi) is distributed as the generic
pair (X, Y ) independent of Dn, where X = (X(1), . . . , X(p)) is a random
vector taking values in Rp and Y ∈ {0, 1} is a binary response. Throughout
the document, the distribution of (X, Y ) is assumed to be unknown, and
is denoted by PX,Y . For x ∈ Rp, our goal is to accurately estimate the
conditional probability η(x) = P(Y = 1|X = x) with few simple and stable
rules.

To tackle this problem, SIRUS first builds a (slightly modified) random
forest with trees of depth 2 (i.e., interactions of order 2). Next, each hyper-
rectangle of each tree of the forest is turned into a simple decision rule, and
the collection of these elementary rules is ranked based on their frequency
of appearance in the forest. Finally, the most significant rules are retained
and are averaged together to form an ensemble model. To present SIRUS,
we first describe how individual rules are created in Subsection 2.1, and
then show how to select and aggregate the individual rules to obtain a more
robust classifier in Subsection 2.2.

2.1. Basic elements.

Random forests. SIRUS uses at its core the random forest method
(Breiman, 2001b), slightly modified for our purpose. As in the original
procedure, each single tree in the forest is grown with a greedy heuristic
that recursively partitions the input space using a random variable Θ.
The essential difference between our approach and Breiman’s one is that,
prior to all tree constructions, the empirical q-quantiles of the marginal

https://gitlab.com/safrandrti/sirus
https://gitlab.com/safrandrti/sirus
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distributions over the whole dataset are computed: in each node of each
tree, the best split can be selected among these empirical quantiles only.
This constraint helps to stabilize the forest structure while keeping almost
intact the predictive accuracy, provided q is not too small (typically of
the order of 10—see the experimental Subsection 4.2). Also, because
the targeted applications involve low-order interactions, the depth of the
individual trees is limited to d = 2 (so, each tree has at most four terminal
leaves). This produces shallow and simple trees, unlike traditional forests
which use trees of maximal depth. Apart from these differences, the tree
growing is similar to Breiman’s original procedure. The tree randomization
Θ is independent of the sample and has two independent components,
denoted by Θ(S) and Θ(V ), which are respectively used for the subsampling
mechanism and randomization of the split direction. More precisely, we
let Θ(S) ⊂ {1, . . . , n}an be the indexes of the observations in Dn sampled
with replacement to build the tree, where an ∈ {1, . . . , n} is the number of
sampled observations (it is a parameter of SIRUS). As for Θ(V ), since the
tree depth is limited to 2, it takes the form

Θ(V ) =
(
Θ

(V )
0 ,Θ

(V )
L ,Θ

(V )
R

)
,

where Θ
(V )
0 (resp., Θ

(V )
L and Θ

(V )
R ) is the set of coordinates selected to split

the root node (resp., its left and right children). As in the original forests,

Θ
(V )
0 , Θ

(V )
L , and Θ

(V )
R are of cardinality mtry ∈ {1, . . . , p}, an additional

parameter of SIRUS.
Throughout the manuscript, for a given integer q ≥ 2 and r ∈ {1, . . . , q−

1}, we let q̂
(j)
n,r be the empirical r-th q-quantile of {X(j)

1 , . . . , X
(j)
n }, i.e.,

q̂(j)
n,r = inf

{
x ∈ R :

1

n

n∑
i=1

1
X

(j)
i ≤x

≥ r

q

}
.(2.1)

The construction of the individual trees is summarized in the table below
and is illustrated in Figure 1.

In our context of binary classification, where the output Y ∈ {0, 1}, maxi-
mizing the so-called empirical CART-splitting criterion is equivalent to max-
imizing the criterion based on Gini impurity (see, e.g., Biau and Scornet,
2016). More precisely, at node H and for a cut performed along the j-th
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Algorithm 1 Tree construction
1: Parameters: Number of quantiles q, number of subsampled observations an, number

of eligible directions for splitting mtry.
2: Compute the empirical q-quantiles for each marginal distribution over the whole

dataset.
3: Subsample with replacement an observations, indexed by Θ(S). Only these observa-

tions are used to build the tree.
4: Initialize s = 0 (the root of the tree).

5: Draw uniformly at random a subset Θ
(V )
s ⊂ {1, . . . , p} of cardinality mtry.

6: For all j ∈ Θ
(V )
s , compute the CART-splitting criterion at all empirical q-quantiles of

X(j) that split the cell s into two non-empty cells.
7: Choose the split that maximizes the CART-splitting criterion.
8: Repeat lines 5− 7 for the two resulting cells (i.e., s = L and s = R).

coordinate at the empirical r-th q-quantile q̂
(j)
n,r, this criterion reads:

Ln(H, q̂(j)
n,r)

def
=

1

Nn(H)

n∑
i=1

(Yi − Y H)21Xi∈H

− 1

Nn(H)

n∑
i=1

(
Yi − Y HL1X(j)

i <q̂
(j)
n,r
− Y HR1X(j)

i ≥q̂
(j)
n,r

)2
1Xi∈H ,

(2.2)

where Y H is the average of the Yi’s such that Xi ∈ H, Nn(H) is the number
of data points Xi falling into H, and

HL
def
= {x ∈ H : x(j) < q̂(j)

n,r} and HR
def
= {x ∈ H : x(j) ≥ q̂(j)

n,r}.

Note that, for the ease of reading, (2.2) is defined for a tree built with the
entire dataset Dn without resampling.

Following the construction of Algorithm 1, SIRUS grows M randomized
trees, where the extra randomness used to build the `-th tree is denoted
by Θ`. The random variables Θ1, . . . ,ΘM are generated as i.i.d. copies of

the generic variable Θ = (Θ(S),Θ
(V )
0 ,Θ

(V )
L ,Θ

(V )
R ), so that tree structures are

independent conditional on the dataset Dn.

Path representation. In order to go further in the presentation of SIRUS,
we still need to introduce a useful notation, which describes the paths that go
from the root of the tree to a given node. To this aim, we follow the example
shown in Figure 2 with a tree of depth 2 partitioning the input space R2,
as we will only consider trees of depth 2 throughout the document. For
instance, let us consider the node P6 defined by the sequence of two splits

X
(2)
i ≥ q̂

(2)
n,4 and X

(1)
i ≥ q̂

(1)
n,7. The first split is symbolized by the triplet
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i ∈ Θ(S)
j1 ∈ Θ

(V )
0

X
(j1)
i < q̂

(j1)
n,r1 X

(j1)
i ≥ q̂

(j1)
n,r1

j2 ∈ Θ
(V )
L

X
(j2)
i < q̂

(j2)
n,r2 X

(j2)
i ≥ q̂

(j2)
n,r2

j′
2 ∈ Θ

(V )
R

X
(j′2)
i < q̂

(j′2)
n,r′2

X
(j′2)
i ≥ q̂

(j′2)
n,r′2

Fig 1. Schematic view of a randomized tree of depth 2. Θ
(V )
0 (resp., Θ

(V )
L and Θ

(V )
R ) is

the set of coordinates selected to split the root node (resp., its left and right children).

(2, 4, R), whose components respectively stand for the variable index 2, the
quantile index 4, and the right side R of the split. Similarly, for the second
split we cut coordinate 1 at quantile index 7, and pass to the right. Thus,
the path to the considered node is defined by P6 = {(2, 4, R), (1, 7, R)}. Of
course, this generalizes to each path P of length d = 1 or d = 2 under the
symbolic compact form

P = {(jk, rk, sk), k = 1, . . . , d},

where, for k ∈ {1, . . . , d} (d ∈ {1, 2}), the triplet (jk, rk, sk) describes how
to move from level (k − 1) to level k, with a split using the coordinate
jk ∈ {1, . . . , p}, the index rk ∈ {1, . . . , q − 1} of the corresponding quantile,
and a side sk = L if we go the the left and sk = R if we go to the right. The
set of all possible such paths is denoted by Π. It is important to note that Π
is in fact a deterministic (that is, non random) quantity, which only depends
upon the dimension p and the order q of the quantiles—an easy calculation
shows that Π is a finite set of cardinality 2p(q − 1) + p(4p− 1)(q − 1)2. On
the other hand, a Θ-random tree of depth 2 generates (at most) 6 paths in
Π, one for each internal and terminal nodes. In the sequel, we let T (Θ,Dn)
be the list of such extracted paths, which is therefore a random subset of Π.
Note that, in very specific cases, we can have less than 6 paths in T (Θ,Dn),
typically if one of the two child nodes does not have any possible splits in
the selected directions.
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x(1)

x(2)

q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

P5 = {(2, 4, R),
(1, 7, L)}

P6 = {(2, 4, R),
(1, 7, R)}

P3 = {(2, 4, L),
(1, 5, L)}

P4 = {(2, 4, L),
(1, 5, R)}

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂

(2)
n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂

(1)
n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂

(1)
n,5

P3 P4

Fig 2. Example of a root node R2 partitionned by a randomized tree of depth 2: the tree
on the right side, the associated paths and hyperrectangles of length d = 2 on the left side.

Elementary rule. Of course, given a path P ∈ Π one can recover the
hyperrectangle (i.e., the tree node) Ĥn associated with P and the entire
dataset Dn via the correspondence

Ĥn(P) =

{
x ∈ Rp :

{
x(jk) < q̂

(jk)
n,rk if sk = L

x(jk) ≥ q̂(jk)
n,rk if sk = R

, k = 1, . . . , d

}
.(2.3)

Thus, for each path P ∈ Π, we logically define the companion elementary
rule ĝn,P by

∀x ∈ Rp, ĝn,P(x) =


1

Nn(Ĥn(P))

∑n
i=1 Yi1Xi∈Ĥn(P) if x ∈ Ĥn(P)

1
n−Nn(Ĥn(P))

∑n
i=1 Yi1Xi /∈Ĥn(P) otherwise,

with the convention 0/0 = 0. For x ∈ Rp, the elementary rule ĝn,P(x) is an
estimate of the probability that x is of class 1, depending whether x falls in
Ĥn(P) or not. We note that such a rule depends on the dataset Dn and the
particular path P. One small word of caution: here, the term “rule” does
not stand for “classification rule” but, as is traditional in the rule learning
literature, to a piecewise constant estimate that can take two different values
and simply reads “if conditions on x, then response, else default response”.

The elementary rules ĝn,P will serve as building blocks for SIRUS, which
will learn from a collection of such rules. Since each Θ-random tree generates
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(at most) 6 rules through the path extraction, we can then generate a wide
collection of rules using our modified random forest. The next subsection
describes how we select and aggregate the most important rules of the forest
to form a compact, stable, and predictive rule ensemble model.

2.2. SIRUS.

Rule selection. Using our modified random forest algorithm, we are able
to generate a large number M of trees (typically M = 10 000), randomized
by Θ1, . . . ,ΘM . Since we are interested in selecting the most important
rules, i.e., those which represent strong patterns between the inputs and
the output, we select rules that are shared by a large portion of trees. As
described above, for each Θ`-random tree, we extract 6 rules through the
associated paths. To make this selection procedure explicit, we let pn(P)
be the probability that a Θ-random tree of the forest contains a particular
path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn).

The Monte-Carlo estimate p̂M,n(P) of pn(P), which can be directly com-
puted using the random forest, takes the form

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn).

Clearly, p̂M,n(P) is a good estimate of pn(P) when M is large since, by the
law of large numbers, conditional on Dn,

lim
M→∞

p̂M,n(P) = pn(P) a.s.

We also see that p̂M,n(P) is unbiased since E[p̂M,n(P)|Dn] = pn(P).
Now, let p0 ∈ (0, 1) be a fixed parameter to be selected later on. As a

general strategy, once the modified random forest has been built, we draw
the list of all paths that appear in the forest and only retain those that occur
with a frequency larger than p0. We are thus interested in the set

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}.(2.4)

We see that if M is large enough, then P̂M,n,p0 is a good estimate of

Pn,p0 = {P ∈ Π : pn(P) > p0}.

By construction, there is some redundancy in the list of rules generated by
the set of distinct paths P̂M,n,p0 . The hyperrectangles associated with the
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6 paths extracted from a Θ-random tree overlap, and so the corresponding
rules are linearly dependent. Therefore a post-treatment to filter P̂M,n,p0 is
needed to make the method operational. The general idea is straightforward:
if the rule associated with the path P ∈ P̂M,n,p0 is a linear combination of
rules associated with paths with a higher frequency in the forest, then P is
removed from P̂M,n,p0 . The post-treatment mechanism is fully described and
illustrated in Appendix A. Note that the theoretical properties of SIRUS will
only be stated for P̂M,n,p0 without post-treatment. However, since the post-

treatment is deterministic, all subsequent results still hold when P̂M,n,p0 is
post-treated (except the second part of Theorem 2—see Remark 1).

Rule aggregation. Recall that our objective is to estimate the conditional
probability η(x) = P(Y = 1|X = x) with a few simple and stable rules. To
reach this goal, we propose to simply average the set of elementary rules
{ĝn,P : P ∈ P̂M,n,p0} that have been selected in the first step of SIRUS.
The aggregated estimate η̂M,n,p0(x) of η(x) is thus defined by

η̂M,n,p0(x) =
1

|P̂M,n,p0 |

∑
P∈P̂M,n,p0

ĝn,P(x).(2.5)

Finally, the classification procedure assigns class 1 to an input x if the aggre-
gated estimate η̂M,n,p0(x) is above a given threshold, and class 0 otherwise.
In the introduction, we presented an example of a list of 6 rules for the
SECOM dataset. In this case, for a new input x, η̂M,n,p0(x) is simply the
average of the output pf over the 6 selected rules.

In past works on rule ensemble models, such as RuleFit (Friedman et al.,
2008) and Node harvest (Meinshausen, 2010), rules are also extracted from
a tree ensemble, and then combined together through a regularized linear
model. In our case, it happens that the parameter p0 alone is enough to
control sparsity. Indeed, in our experiments, we observe that adding such
linear model in our aggregation method hardly increases the accuracy and
hardly reduces the size of the final rule set, while it can significantly reduce
stability, add a set of coefficients that makes the model less straightforward
to interpret, and requires more intensive computations. We refer to the ex-
periments in Appendix A for a comparison between η̂M,n,p0 defined as simple
average (2.5) and defined with a logistic regression.

3. Theoretical properties. The construction of the rule ensemble
model essentially relies on the path selection and on the estimates p̂M,n(P),
P ∈ Π. Therefore, our theoretical analysis first focuses on the asymptotic
properties of those estimates in Theorem 1. Among the three minimum



12 C. BÉNARD, G. BIAU, S. DA VEIGA, E. SCORNET

requirements for interpretability defined in Section 1, simplicity and
predictivity are quite easily met for rule models (Cohen and Singer, 1999;
Meinshausen, 2010; Letham et al., 2015). On the other hand, as Letham
et al. (2015) recall, building a stable rule ensemble is challenging. In the
second part of the section, we provide a definition of stability in the context
of rule models, introduce relevant metrics, and prove the asymptotic
stability of SIRUS.

Let us start by defining all theoretical counterparts of the empirical quan-
tities involved in SIRUS, which do not depend on Dn but only on the un-
known distribution PX,Y of (X, Y ). For a given integer q ≥ 2 and r ∈
{1, . . . , q − 1}, the theoretical q-quantiles are defined by

q?(j)r = inf
{
x ∈ R : P(X(j) ≤ x) ≥ r

q

}
,

i.e., the population version of q̂
(j)
n,r defined in (2.1). Similarly, for a given

hyperrectangle H ⊆ Rp, we let the theoretical CART-splitting criterion be

L?(H, q?(j)r ) = V[Y |X ∈ H]

− P(X(j) < q?(j)r |X ∈ H)× V[Y |X(j) < q?(j)r ,X ∈ H]

− P(X(j) ≥ q?(j)r |X ∈ H)× V[Y |X(j) ≥ q?(j)r ,X ∈ H].

Based on this criterion, we denote by T ?(Θ) the list of all paths contained
in the theoretical tree built with randomness Θ, where splits are chosen
to maximize the theoretical criterion L? instead of the empirical one Ln,
defined in (2.2). We stress again that the list T ?(Θ) does not depend upon
Dn but only upon the unknown distribution of (X, Y ). Next, we let p?(P)
be the theoretical counterpart of pn(P), that is

p?(P) = P(P ∈ T ?(Θ)),

and finally define the theoretical set of selected paths P?
p0 by {P ∈ Π :

p?(P) > p0} (with the same post-treatment as for the empirical procedure—
see Section 2). Notice that, in the case where multiple splits have the same
value of the theoretical CART-splitting criterion, one is randomly selected.

As it is often the case in the theoretical analysis of random forests, we
assume throughout this section that the subsampling of an observations to
build each tree is done without replacement to alleviate the mathematical
analysis. Note however that Theorem 2 is valid for subsampling with or
without replacement.
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3.1. Consistency of the path selection. Our consistency results hold un-
der conditions on the subsampling rate an and the number of trees Mn,
together with some assumptions on the distribution of the random vector
X. They are given below.

(A1) The subsampling rate an satisfies lim
n→∞

an =∞ and lim
n→∞

an
n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn =∞.

(A3) X has a strictly positive density f with respect to the Lebesgue mea-
sure. Furthermore, for all j ∈ {1, . . . , p}, the marginal density f (j) of
X(j) is continuous, bounded, and strictly positive.

We are now in a position to state the main result of this section.

Theorem 1. If Assumptions (A1)-(A3) are satisfied, then, for all P ∈
Π, we have

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

The proof of Theorem 1 is to be found in the Supplementary Material A.
It is however interesting to give a sketch of the proof here. The consistency
is obtained by showing that p̂Mn,n(P) is asymptotically unbiased with a
null variance. The result for the variance is quite straightforward since the
variance of p̂Mn,n(P) can be broken into two terms: the variance generated
by the Monte-Carlo randomization, which goes to 0 as the number of trees
increases (Assumption (A2)), and the variance of pn(P). Following Mentch
and Hooker (2016), since pn(P) is a bagged estimate it can be seen as an
infinite-order U-statistic, and a classic bound on the variance of U-statistics
gives that V[pn(P)] converges to 0 if lim

n→∞
an
n = 0, which is true by Assump-

tion (A1). Next, proving that p̂Mn,n(P) is asymptotically unbiased requires
to dive into the internal mechanisms of the random forest algorithm. To
do this, we have to show that the CART-splitting criterion is consistent
(Lemma 3) and asymptotically normal (Lemma 4) when cuts are limited to
empirical quantiles (estimated on the same dataset) and the number of trees
grows with n. When cuts are performed on the theoretical quantiles, the law
of large numbers and the central limit theorem can be directly applied, so
that the proof of Lemmas 3 and 4 boils down to showing that the difference
between the empirical CART-splitting criterion evaluated at empirical and
theoretical quantiles converges to 0 in probability fast enough. This is done
in Lemma 2 thanks to Assumption (A3).

The only source of randomness in the selection of the rules lies in the
estimates p̂Mn,n(P). Since Theorem 1 states the consistency of such an
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estimation, the path selection consistency follows, as formalized in Corol-
lary 1, for all threshold values p0 that do not belong to the finite set
U? = {p?(P) : P ∈ Π} of all theoretical probabilities of appearance for each
path P. Indeed, if p0 = p?(P) for some P ∈ Π, then P(p̂Mn,n(P) > p0)
does not necessarily converge to 0 and the path selection can be inconsistent.

Corollary 1. Assume that Assumptions (A1)-(A3) are satisfied.
Then, provided p0 ∈ [0, 1] \ U?, we have

lim
n→∞

P(P̂Mn,n,p0 6= P?
p0) = 0.

Proof of Corollary 1. The result is a consequence of Theorem 1
since

P
(
P̂Mn,n,p0 6= P?

p0

)
≤
∑
P∈Π

P(p̂Mn,n(P) > p0)1p?(P)≤p0 + P(p̂Mn,n(P) ≤ p0)1p?(P)>p0 .

Corollary 1 is a stability result, and thus a first step towards our objective
of designing a stable rule ensemble algorithm. However, such an asymptotic
result does not guarantee stability for finite samples. Metrics to quantify
stability in that case are introduced in the next subsection.

3.2. Stability. In the statistical learning theory, stability refers to the sta-
bility of predictions (e.g., Vapnik, 1998). In particular, Rogers and Wagner
(1978), Devroye and Wagner (1979), and Bousquet and Elisseeff (2002) show
that stability and predictive accuracy are closely connected. In our case, we
are more concerned by the stability of the internal structure of the model,
and, to our knowledge, no general definition exists. So, we state the following
tentative definition: a rule learning algorithm is stable if two independent
estimations based on two independent samples result in two similar lists of
rules. Thus, given a new sample D ′n independent of Dn, we define p̂′M,n(P)

and the corresponding set of paths P̂ ′
M,n,p0

based on a modified random
forest drawn with a parameter Θ′ independent of Θ. We take advantage of
a dissimilarity measure between two sets, the so-called Dice-Sorensen index,
often used to assess the stability of variable selection methods (Chao et al.,
2006; Zucknick, Richardson and Stronach, 2008; Boulesteix and Slawski,
2009; He and Yu, 2010; Alelyani, Zhao and Liu, 2011). This index is defined
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by

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣(3.1)

with the convention 0
0 = 1. This is a measure of stability taking values be-

tween 0 and 1: if the intersection between P̂M,n,p0 and P̂ ′
M,n,p0

is empty,

then ŜM,n,p0 = 0, while if P̂M,n,p0 = P̂ ′
M,n,p0

, then ŜM,n,p0 = 1. We also de-

fine Sn,p0 , the population counterpart of ŜM,n,p0 based on Pn,p0 and P ′
n,p0 ,

as

Sn,p0 =
2
∣∣Pn,p0 ∩P ′

n,p0

∣∣∣∣Pn,p0

∣∣+
∣∣P ′

n,p0

∣∣ .(3.2)

SIRUS is stable regarding the metrics (3.1) and (3.2), as stated in the fol-
lowing corollary.

Corollary 2. Assume that Assumptions (A1)-(A3) are satisfied.
Then, provided p0 ∈ [0, 1] \ U?, we have

lim
n→∞

ŜMn,n,p0 = 1 in probability.

The same limiting result holds for Sn,p0.

Proof of Corollary 2. We have

ŜMn,n,p0 =

2
∑

P∈Π

1p̂Mn,n(P)>p0∩p̂′Mn,n(P)>p0∑
P∈Π

1p̂Mn,n(P)>p0 + 1p̂′Mn,n(P)>p0

.

Since p0 /∈ U?, we deduce from Theorem 1 and the continuous mapping
theorem that, for all P ∈ Π,

lim
n→∞

1p̂Mn,n(P)>p0 = 1p?(P)>p0 in probability.

Therefore, lim
n→∞

ŜMn,n,p0 = 1 in probability. The case Sn,p0 is similar.

Corollary 2 shows that the rule ensemble is asymptotically stable for
both the infinite and finite forests, respectively corresponding to Sn,p0 and
ŜMn,n,p0 . Of course, the latter case is of greater interest since only a finite
forest is grown in practice. Nevertheless, an important stability requirement
for SIRUS is to output the same set of rules when fitted multiple times on
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the same dataset Dn, for a fixed sample size n and a given p0. This means
that, conditionally on Dn and with D ′n = Dn, ŜM,n,p0 should be close to 1.
The first statement of Theorem 2 below shows that this is indeed the case.
Theorem 2 also provides an asymptotic approximation of E[ŜM,n,p0 |Dn] for
large values of the number of trees M , which quantifies the influence of M

on the mean stability, conditional on Dn. We let Un
def
= {pn(P) : P ∈ Π}

be the empirical counterpart of U?.

Theorem 2. If p0 ∈ [0, 1] \ Un and D ′n = Dn, then, conditional on Dn,
we have

lim
M→∞

ŜM,n,p0 = 1 in probability.(3.3)

In addition, for all p0 < max Un,

1−E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1− Φ
(
Mp0,M, pn(P)))

1
2

∑
P′∈Π 1pn(P′)>p0 + 1

pn(P′)>p0−ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter
pn(P), M trials, evaluated at Mp0, and, for all P,P ′ ∈ Π,

σn(P) =
√
pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ,Dn),1P′∈T (Θ,Dn)|Dn)

σn(P)σn(P ′)
.

The proof of Theorem 2 is to be found in the Supplementary Material
A. Despite its apparent complexity, the asymptotic approximation of 1 −
E[ŜM,n,p0 |Dn] can be easily estimated, and plays an essential role to stop
the growing of the forest at an optimal number of trees M , as illustrated in
the next section.

Remark 1. As mentioned in Section 2, the equivalent provided in The-
orem 2 is defined when the sets of rules P̂M,n,p0 and P̂ ′

M,n,p0
are not post-

treated. It considerably simplifies the analysis of the asymptotic behavior
of E[ŜM,n,p0 |Dn]. Since the post-treatment is deterministic, this operation is
not an additional source of instability. Then, if the estimation of the rule set
without post-treatment is stable, it is also the case when the post-treatment
is added. Therefore an efficient stopping criterion for the number of trees
can be derived from Theorem 2.
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4. Tuning and experiments. We recall that our objective is to design
simple, stable, and predictive rule models, with an acceptable computational
cost. In practice, for a finite sample Dn, SIRUS relies on two hyperparam-
eters: the number of trees M and the selection threshold p0. This section
provides a procedure to set optimal values for M and p0, and illustrates the
good performance of SIRUS on real datasets.

4.1. Tuning of SIRUS. Throughout this section, we should keep in mind
that in SIRUS, the random forest is only involved in the selection of the
paths. Conditionally on Dn, the set of selected paths P̂M,n,p0 = {P ∈ Π :
p̂M,n(P) > p0} is a good estimate of its population counterpart Pn,p0 when
M is large.

Tuning of M to maximize stability. As explained in Section 3, an important
stability requirement is that SIRUS outputs the same set of rules when fitted
multiple times on a given dataset Dn. This is quantified by the mean stability
E[ŜM,n,p0 |Dn], which measures the expected proportion of rules shared by
two fits of SIRUS on Dn, for fixed n (sample size), p0 (threshold), and M
(number of trees). Since the computational cost increases linearly with M ,
we propose to stop the growing of the forest when the mean stability is close
enough to 1, with typically a gap smaller than α = 0.05. Thus, the stopping
criterion takes the form 1− E[ŜM,n,p0 |Dn] < α.

There are two obstacles to operationalize this stopping criterion: its esti-
mation and its dependence to p0. We make two approximations to overcome
these limitations and give empirical evidence of their good practical behav-
ior. First, Theorem 2 provides an asymptotic equivalent of 1−E[ŜM,n,p0 |Dn],
that we simply estimate by

εM,n,p0 =

∑
P∈Π Φ(Mp0,M, p̂M,n(P))(1− Φ(Mp0,M, p̂M,n(P)))∑

P∈Π(1− Φ(Mp0,M, p̂M,n(P)))
.

Secondly, εM,n,p0 depends on p0, whose optimal value is unknown in the first
step of SIRUS, when trees are grown. It turns out however that εM,n,p0 is not
very sensitive to p0, as shown by the experiments of Figure 7 in Appendix
A. Consequently, our strategy is to simply average εM,n,p0 over a set V̂M,n of
many possible values of p0 (see Appendix A for a precise definition) and use
the resulting average as a gauge. Thus, in the experiments, we utilize the
following criterion to stop the growing of the forest, with typically α = 0.05:

argmin
M

{ 1

|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α
}
.(4.1)



18 C. BÉNARD, G. BIAU, S. DA VEIGA, E. SCORNET

Experiments showing the good empirical performance of this criterion are
presented in Appendix A.

Remark 2. We emphasize that growing more trees does not improve
predictive accuracy or stability with respect to data perturbation for a fixed
sample size n. Indeed, the instability of the rule selection is generated by the
variance of the estimates p̂M,n(P),P ∈ Π. Upon noting that we have two
sources of randomness—Θ and Dn—, the law of total variance shows that
V[p̂M,n(P)] can be broken down into two terms: the variance generated by
the Monte Carlo randomness Θ on the one hand, and the sampling vari-
ance on the other hand. In fact, equation (1.3) in the proof of Theorem 1
(Supplementary Material A) reveals that

V[p̂M,n(P)] =
1

M
E[pn(P)](1− E[pn(P)]) + (1− 1

M
)V[pn(P)].

The stopping criterion (4.1) ensures that the first term becomes negligible as
M → ∞, so that V[p̂M,n(P)] reduces to the sampling variance V[pn(P)],
which is independent of M . Therefore, stability with respect to data pertur-
bation cannot be further improved by increasing the number of trees. Ad-
ditionally, the trees are only involved in the selection of the paths. For a
given set of paths P̂M,n,p0, the construction of the final aggregated estimate
η̂M,n,p0 (see (2.5)) is independent of the forest. Thus, if further increasing
the number of trees does not impact the path selection, neither it improves
the predictive accuracy.

Tuning of p0 to maximize accuracy. The parameter p0 is a threshold in-
volved in the definition of P̂M,n,p0 to filter the most important rules, and
therefore determines the complexity of the model. The parameter p0 should
be set to optimize a tradeoff between the number of rules, stability, and ac-
curacy. In practice, it is difficult to settle such a criterion, and we choose to
optimize p0 to maximize the predictive accuracy with the smallest possible
set of rules. To achieve this goal, we proceed as follows. The 1-AUC is es-
timated by 10-fold cross-validation for a fine grid of p0 values, defined such
that |P̂M,n,p0 | varies from 1 to 25 rules. (We let 25 be an arbitrary upper
bound on the maximum number of rules, considering that a bigger set is
not readable anymore.) The randomization introduced by the partition of
the dataset in the 10 folds of the cross-validation process has a significant
impact on the variability of the size of the final model. Therefore, in order to
get a robust estimation of p0, the cross-validation is repeated multiple times
(typically 30) and results are averaged. The standard deviation of the mean
of 1-AUC is computed over these repetitions for each p0 of the grid search.
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We consider that all models within 2 standard deviations of the minimum
of 1-AUC are not significantly less predictive than the optimal one. Thus,
among these models, the one with the smallest number of rules is selected,
i.e., the optimal p0 is shifted towards higher values to reduce the model size
without decreasing predictivity—see Figures 3 and 4 for examples.

4.2. Experiments. We have conducted experiments on 9 diverse public
datasets from the UCI repository (Dua and Graff, 2017; data is described in
Table 1), as well as on the SECOM data, collected from a semi-conductor
manufacturing process. The first batch of experiments aims at illustrating
the good behavior of SIRUS in various settings. Especially, we observe that
the restrictions in the forest growing (cut values on quantiles and a tree depth
of two) are not strong limitations, and that SIRUS provides a substantial
improvement of stability compared to state-of-the-art rule algorithms. On
the other hand, the SECOM dataset is an example of a manufacturing pro-
cess problem. Typically, data is unbalanced (since most of the production is
valid), hundreds of parameters are collected along the production line, with
many noisy ones, and the order of interaction between these parameters is
low.

Dataset Sample size
Total number
of variables

Number of
categorical variables

Haberman 306 3 0
Diabetes 768 8 0

Heart Statlog 270 13 6
Liver Disorders 345 6 0

Heart C2 303 13 8
Heart H2 294 13 7

Credit German 1000 20 13
Credit Approval 690 15 9

Ionosphere 351 33 0

Table 1
Description of UCI datasets

We use the R/C++ software implementation sirus (https://gitlab.com/
safrandrti/sirus), adapted from ranger, a fast random forest implemen-
tation (Wright and Ziegler, 2017). The hyperparameters M and p0 are tuned
as explained earlier, we set mtry = bp3c and q = 10 quantiles. Bootstrap is
used for the resampling mechanism, i.e., resampling is done with replace-
ment and an = n. Finally, categorical variables are transformed in multiple
binary variables.

https://gitlab.com/safrandrti/sirus
https://gitlab.com/safrandrti/sirus


20 C. BÉNARD, G. BIAU, S. DA VEIGA, E. SCORNET

Performance metrics. As we have seen several times, an interpretable clas-
sifier is based on three essential features: simplicity, stability, and predictive
accuracy. We introduce relevant metrics to assess those properties in the
experiments. By definition, the size (i.e., the simplicity) of the rule ensem-
ble is the number of selected rules, i.e., |P̂M,n,p0 |. To measure the predictive
accuracy, 1-AUC is used and estimated by 10-fold cross-validation (repeated
30 times for robustness). With respect to stability, an independent dataset
is not available for real data to compute ŜM,n,p0 as defined in Corollary 2 in
Subsection 3.2. Nonetheless, we can take advantage of the cross-validation
process to compute a stability metric: the proportion of rules shared by two
models built during the cross-validation, averaged over all possible pairs.

UCI datasets. Now, SIRUS is run on the 9 selected UCI datasets. Figure
3 provides an example for the dataset “Credit German” of the dependence
between predictivity and the number of rules when p0 varies. In that case,
the minimum of 1-AUC is about 0.26 for SIRUS, 0.21 for Breiman’s forests,
and 0.31 for CART tree. For the chosen p0, SIRUS returns a compact set of
18 rules and its stability is 0.66, i.e., about 12 rules are consistent between
two different models built in a 10-fold cross-validation. Thus, the final model
is simple (a set of only 18 rules), is quite robust to data perturbation, and
has a predictive accuracy close to random forests. Figure 4 provides another
example of the good practical performance of SIRUS with the “Heart Stat-
log” dataset. Here, the predictivity of random forests is reached with 11
rules, with a stability of 0.69.

We also evaluated main competitors: CART, RuleFit, Node harvest, and
BRL, using available R implementations, respectively rpart (Therneau
et al., 2018), pre (Fokkema, 2017), nodeharvest (Meinshausen, 2015),
and sbrl (Yang, Rudin and Seltzer, 2017). All algorithms were run with
their default settings (CART trees are pruned, RuleFit is limited to rule
predictors). To compare stability of the different methods, data is binned
with 10-quantiles, so that the possible rules are the same for all algorithms,
and the same stability metric is used. Experimental results are gathered
in Table 2 for model size, Table 3 for stability, and Table 4 for predictive
accuracy.

Clearly, SIRUS is more stable than its competitors. We see that BRL
exhibits a comparable stability for a few datasets and generates shorter set
of rules, but at the price of a weaker predictive accuracy. RuleFit and Node
harvest have a slightly better predictive accuracy than SIRUS, but they are
unstable and generate longer sets of rules. Overall, the general conclusion
of this first batch of experiments is that SIRUS improves stability with a
predictive accuracy comparable to state-of-the-art methods.
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Fig 3. For the UCI dataset “Credit German”, 1-AUC (on the left) and stability (on the
right) versus the number of rules when p0 varies, estimated via 10-fold cross-validation
(results are averaged over 30 repetitions).

Fig 4. For the UCI dataset “Heart Statlog”, 1-AUC (on the left) and stability (on the
right) versus the number of rules when p0 varies, estimated via 10-fold cross-validation
(results are averaged over 30 repetitions).
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Dataset RuleFit Node Harvest BRL SIRUS

Haberman 1.6 25.5 2.7 3.3
Diabetes 26.1 37.0 5.9 7.9

Heart Statlog 18.2 36.8 3.3 10.7
Liver Disorders 17.3 29.5 2.8 18.5

Heart C2 22.6 32.9 3.1 22.5
Heart H2 11.31 28.4 2.8 12.6

Credit German 30.4 32.1 3.2 17.8
Credit Approval 15.4 24.8 3.0 19.7

Ionosphere 18.3 38.0 4.3 21.4

Table 2
Mean model size over a 10-fold cross-validation for UCI datasets. Results are averaged
over 30 repetitions of the cross-validation. (Standard deviations are negligible, they are

not displayed to increase readability.)

Dataset RuleFit Node Harvest BRL SIRUS

Haberman 0.57 0.35 0.71 0.65
Diabetes 0.21 0.38 0.80 0.79

Heart Statlog 0.18 0.31 0.34 0.69
Liver Disorders 0.19 0.31 0.48 0.57

Heart C2 0.28 0.53 0.66 0.66
Heart H2 0.23 0.37 0.61 0.65

Credit German 0.12 0.46 0.33 0.66
Credit Approval 0.17 0.26 0.32 0.66

Ionosphere 0.06 0.25 0.78 0.63

Table 3
Mean stability over a 10-fold cross-validation for UCI datasets. Results are averaged over

30 repetitions of the cross-validation. (Standard deviations are negligible, they are not
displayed to increase readability. Values within 10% of the maximum are displayed in

bold.)

Dataset
Random
Forest

CART RuleFit
Node

Harvest
BRL SIRUS

Haberman 0.32 0.42 0.35 0.35 0.36 0.36
Diabetes 0.17 0.21 0.19 0.20 0.25 0.20

Heart Statlog 0.10 0.17 0.13 0.15 0.23 0.12
Liver Disorders 0.23 0.40 0.27 0.31 0.44 0.36

Heart C2 0.10 0.19 0.11 0.11 0.24 0.12
Heart H2 0.12 0.17 0.11 0.11 0.17 0.12

Credit German 0.21 0.31 0.23 0.25 0.34 0.26
Credit Approval 0.07 0.10 0.07 0.07 0.11 0.10

Ionosphere 0.03 0.10 0.04 0.07 0.11 0.06

Table 4
Model error (1-AUC) over a 10-fold cross-validation for UCI datasets. Results are

averaged over 30 repetitions of the cross-validation. (Standard deviations are negligible,
they are not displayed to increase readability. Values within 10% of the maximum are

displayed in bold.)
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Fig 5. For the SECOM dataset, accuracy versus the number of rules when p0 varies,
estimated via 10-fold cross-validation (averaged over 30 repetitions of the cross-validation).

Manufacturing process data. In this second batch of experiments, SIRUS
is run on a real manufacturing process of semi-conductors, the SECOM
dataset (Dua and Graff, 2017). Data is collected from sensors and process
measurement points to monitor the production line, resulting in 590 numeric
variables. Each of the 1567 data points represents a single production entity
associated with a label pass/fail (0/1) for in-house line testing. As it is always
the case for a production process, the dataset is unbalanced and contains 104
fails, i.e., a failure rate pf of 6.6%. We proceed to a simple pre-processing of
the data: missing values (about 5% of the total) are replaced by the median.
The threshold p0 and the number of trees are tuned as previously explained.

Figure 5 displays predictivity versus the number of rules when p0 varies.
The 1-AUC value is 0.30 for SIRUS (for the optimal p0 = 0.04), 0.29 for
Breiman’s random forests, and 0.48 for a pruned CART tree. Thus, in that
case, CART tree predicts no better than the random classifier, whereas
SIRUS has a similar accuracy to random forests. The final model has 6
rules and a stability of 0.74, i.e., in average 4 to 5 rules are shared by 2
models built in a 10-fold cross-validation process, simulating data perturba-
tion. By comparison, Node harvest outputs 34 rules with a value of 0.31 for
1-AUC.
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Fig 6. List of rules output by our software sirus in the R console for the SECOM dataset.

Finally, the output of SIRUS may be displayed in the simple and inter-
pretable form of Figure 6. Such a rule model enables to catch immediately
how the most relevant variables impact failures. Among the 590 variables,
5 are enough to build a model as predictive as random forests, and such a
selection is quite robust. Other rules alone may also be informative, but they
do not add additional information to the model, since predictive accuracy is
already minimal with the 6 selected rules. Then, production engineers should
first focus on those 6 rules to investigate an improved parameter setting.

APPENDIX A: ADDITIONAL EXPERIMENTS AND SETTINGS

This appendix specifies computational settings and provides additional
experiments on the nine UCI datasets used in Section 4—see Table 1.

Rule set post-treatment. As explained in Section 2, there is some redun-
dancy in the list of rules generated by the set of distinct paths P̂M,n,p0 ,

and a post-treatment to filter P̂M,n,p0 is needed to make the method oper-
ational. The general principle is straightforward: if the rule associated with
the path P ∈ P̂M,n,p0 is a linear combination of rules associated to paths

with a higher frequency in the forest, then P is removed from P̂M,n,p0 .
To illustrate the post-treatment, let the tree of Figure 2 be the Θ1-random

tree grown in the forest. Since the paths of the first level of the tree, P1

and P2, always occur in the same trees, we have p̂M,n(P1) = p̂M,n(P2). If
we assume these quantities to be greater than p0, then P1 and P2 belong
to P̂M,n,p0 . However, by construction, P1 and P2 are associated with the

same rule, and we therefore enforce SIRUS to keep only P1 in P̂M,n,p0 .
Each of the paths of the second level of the tree, P3, P4, P5, and P6, can
occur in many different trees, and their associated p̂M,n are distinct (except
in very specific cases). Assume for example that p̂M,n(P1) > p̂M,n(P4) >
p̂M,n(P5) > p̂M,n(P3) > p̂M,n(P6) > p0. Since ĝn,P3 is a linear combination
of ĝn,P4 and ĝn,P1 , P3 is removed. Similarly P6 is redundant with P1 and
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P5, and it is therefore removed. Finally, among the six paths of the tree,
only P1, P4, and P5 are kept in the list P̂M,n,p0 .

Random forest accuracy. As described in Section 2, in the forest construc-
tion of SIRUS, the splits at each node of each tree are limited to the empirical
q-quantiles of each component of X. We then first check that this modifica-
tion alone of the forest has little impact on its accuracy. Using the R package
ranger, 1-AUC is estimated for each dataset with 10 fold-cross-validation for
q = 10. Results are averaged over 10 repetitions of the cross-validation—the
standard deviation is displayed in parentheses in Table 5.

Definition of V̂M,n. To design the stopping criterion (4.1) of the number

of trees, εM,n,p0 is averaged across a set V̂M,n of diverse p0 values. These

p0 values are chosen to scan all possible path sets P̂M,n,p0 , of size ranging
from 1 to 50 paths. When a set of 50 paths is post-treated, its size reduces
to around 25 paths. Thus, as explained in Section 4, 25 is an arbitrarily
threshold on the maximum number of rules above which a rule model is not
readable anymore. In order to generate path sets of such sizes, p0 values are
chosen halfway between two distinct consecutive p̂M,n(P),P ∈ Π, restricted
to the highest 50 values.

Number of trees. We run experiments on the UCI datasets to assess the
quality of the stopping criterion (4.1). Recall that the goal of this criterion is
to determine the minimum number of treesM ensuring that two independent
fits of SIRUS on the same dataset result on two lists of rules with an overlap
of 95% in average. This is checked with a first batch of experiments—see
next paragraph. Secondly, the stopping criterion (4.1) does not consider the
optimal p0, unknown when trees are grown in the first step of SIRUS. Then,
another batch of experiments is run to show that the stability approximation

Dataset Breiman’s RF RF - limited splits (q = 10)

haberman 0.32 (0.006) 0.33 (0.01)
diabetes 0.17 (0.003) 0.18 (0.003)

heart statlog 0.10 (0.006) 0.10 (0.006)
liver disorders 0.22 (0.01) 0.25 (0.007)

heart C2 0.10 (0.003) 0.10 (0.004)
heart H2 0.12 (0.005) 0.12 (0.004)

credit german 0.21 (0.003) 0.21 (0.004)
credit approval 0.070 (0.002) 0.071 (0.002)

ionosphere 0.025 (0.002) 0.027 (0.002)

Table 5
Accuracy, measured by 1-AUC (standard deviation) on UCI datasets, for two algorithms:

Breiman’s random forests and random forests with splits limited to 10-quantiles.
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Dataset Mean stability

Haberman 0.950 (0.01)
Diabetes 0.950 (0.007)

Heart Statlog 0.954 (0.007)
Liver Disorders 0.951 (0.006)

Heart C2 0.955 (0.009)
Heart H2 0.952 (0.009)

Credit German 0.950 (0.008)
Credit Approval 0.941 (0.02)

Ionosphere 0.950 (0.009)

Table 6
Values of ŜM,n,p0 averaged over p0 ∈ V̂M,n when the stopping criterion (4.1) is used to

set M , for UCI datasets. Results are averaged over 10 repetitions and standard
deviations are displayed in parentheses.

1 − εM,n,p0 is quite insensitive to p0. Finally, a last batch of experiments
provides examples of the number of trees grown when SIRUS is fit.

Experiments 1. For each dataset, the following procedure is applied. SIRUS
is run a first time using criterion (4.1) to stop the number of trees. This initial
run provides the optimal number of treesM as well as the set V̂M,n of possible
p0. Then, SIRUS is fit twice independently using the precomputed number
of trees M . For each p0 ∈ V̂M,n, the stability metric ŜM,n,p0 (with D ′n = Dn)

is computed over the two resulting lists of rules. Finally ŜM,n,p0 is averaged

across all p0 values in V̂M,n. This procedure is repeated 10 times: results are
averaged and presented in Table 6, with standard deviations in parentheses.
Across the considered datasets, resulting values range from 0.941 to 0.955,
and are thus close to 0.95 as expected by construction of criterion (4.1).

Experiments 2. The second type of experiments illustrates that εM,n,p0 is
quite insensitive to p0 when M is set with criterion (4.1). For the “Credit
German” dataset, we fit SIRUS and then compute 1− εM,n,p0 for each p0 ∈
V̂M,n. Results are displayed in Figure 7. 1 − εM,n,p0 ranges from 0.90 to 1,
where the extreme values are reached for p0 corresponding to very small
number of rules, which are not of interest when p0 is selected to maximize
predictive accuracy. Thus, 1−εM,n,p0 is quite concentrated around 0.95 when
p0 varies.

Experiments 3. Finally, we display in Table 7 the optimal number of trees
when the growing of SIRUS is stopped using criterion (4.1). It ranges from
4220 to 20 650 trees. In Breiman’s forests, the number of trees above which
the accuracy cannot be significantly improved is typically 10 times lower.
However SIRUS grows shallow trees, and is thus not computationally more
demanding than random forests overall.
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Fig 7. For the UCI dataset “Credit German”, 1 − εM,n,p0 for a sequence of p0 ∈ V̂M,p0
corresponding to final models ranging from 1 to about 25 rules.

Dataset Nb of trees (sd)

Haberman 10 920 (877)
Diabetes 18 830 (1538)

Heart Statlog 7840 (994)
Liver Disorders 14 650 (1242)

Heart C2 6840 (1270)
Heart H2 4220 (529)

Credit German 7940 (672)
Credit Approval 20 650 (8460)

Ionosphere 7320 (487)

Table 7
Number of trees M determined by the stopping criterion (4.1) for UCI datasets. Results

are averaged over 10 repetitions and standard deviations are displayed in parentheses.
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Fig 8. For the UCI dataset “Credit German”, 1-AUC versus the number of rules when p0
varies, estimated via 10-fold cross-validation (repeated 30 times) for two different methods
of rule aggregation: the rule average (A.1) in red and a logistic regression (A.2) in blue.

Logistic regression. In Section 2, η̂M,n,p0(x) (2.5) is a simple average of the
set of rules, defined as

η̂M,n,p0(x) =
1

|P̂M,n,p0 |

∑
P∈P̂M,n,p0

ĝn,P(x).(A.1)

To tackle our binary classification problem, a natural approach would be to
use a logistic regression and define

ln
( η̂M,n,p0(x)

1− η̂M,n,p0(x)

)
=

∑
P∈P̂M,n,p0

βP ĝn,P(x),(A.2)

where the coefficients βP have to be estimated. To illustrate the performance
of the logistic regression (A.2), we consider again the UCI dataset, “Credit
German”. We augment the previous results from Figure 3 (in Section 4) with
the logistic regression error in Figure 8. One can observe that the predictive
accuracy is slightly improved but it comes at the price of an additional set
of coefficients that can be hard to interpret (some can be negative), and an
increased computational cost.
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SUPPLEMENTARY MATERIAL

Supplementary Material for: SIRUS: Making random forests in-
terpretable
(). Proofs of Theorems 1 and 2.
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