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Introduction

We study the monotonicity and uniqueness of a non-cooperative system coming from the physics of two-component Bose-Einstein condensates which displays partial phase transition. We are able to use the moving plane device in a case where a priori bounds do not come from standard techniques. The particularity of this system with respect to classical two-component segregated Bose-Einstein condensates is to couple both linearly and nonlinearly the two equations due to spin coupling of the hyperfine states added to the intercomponent coupling. Our system for the functions u and v is the following:

∆u = -u(1 -u 2 -v 2 ) -v(ω -αuv) =: P (u, v) in R N , ∆v = -v(1 -u 2 -v 2 ) -u(ω -αuv) =: Q(u, v) in R N , (1.1) 
where u and v are the wave functions for each component, α is a positive parameter such that 1 + α is the intercomponent coupling, and ω is a positive parameter, which is the Rabi frequency of the one body coupling between the two internal states.

We would like to study the phase transition solutions, so we will impose boundary conditions at infinity in one direction, namely:

u(x ′ , x N ) → b, v(x ′ , x N ) → a, as x N → +∞, u(x ′ , x N ) → a, v(x ′ , x N ) → b, as x N → -∞, (1.2) 
the limit being uniform in x ′ ∈ R N -1 , where (a, b) is the solution to

a 2 + b 2 = 1, ab = ω α , 0 < a < b. (1.3) 
The existence of such solutions requires, in addition to the positivity of α and ω, the condition ω α < 1 2 .

(1.4)

The study of domain wall solutions in coupled Gross-Pitaevskii equations or segregation patterns has been the subject of many papers concerning existence, uniqueness, monotonicity of asymptotic behaviour [START_REF] Aftalion | Interface layer of a two-component Bose-Einstein condensate[END_REF][START_REF] Alama | Domain walls in the coupled Gross-Pitaevskii equations[END_REF][START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF][START_REF] Sourdis | On the weak separation limit of a two-component bose-einstein condensate[END_REF]. It corresponds to the case ω = 0 and α > 0.

Here, we would like to address a different physical background, that of a twocomponent Bose-Einstein condensates representing two different hyperfine states, and coupled by their spin, to take into account a one body coherent Rabi coupling, which corresponds to ω > 0. In this case, segregation is not complete and this leads to what is called Rabi oscillations which have been experimentally observed in [START_REF] Matthews | Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose-Einstein condensate[END_REF]. The ground states and excited states have been studied in [START_REF] Aftalion | Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates[END_REF][START_REF] Dror | Domain walls and vortices in linearly coupled systems[END_REF][START_REF] Lellouch | Twocomponent Bose gases with one-body and two-body couplings[END_REF][START_REF] Qu | Magnetic solitons in Rabi-coupled Bose-Einstein condensates[END_REF][START_REF] Usui | Rabi-coupled countersuperflow in binary Bose-Einstein condensates[END_REF]. The system (1.1)-(1.2) for N = 1 has been analyzed in [START_REF]Phase transition in a Rabi coupled two-component Bose-Einstein condensate[END_REF] where the existence and asymptotic properties of one dimensional domain wall solutions are derived in the case ω/α of order 1 and α large and small. The properties and structures found in [START_REF]Phase transition in a Rabi coupled two-component Bose-Einstein condensate[END_REF] have led us to investigate the monotonicity and uniqueness of solutions. Let us point out that this system has a heteroclinic structure and derives from the minimization of the Gross-Pitaevskii energy. Understanding the solutions of (1.1)-(1.2) is a first step in a future mathematical analysis of the specific vortex patterns appearing in the Rabi coupled condensates called multidimer bound states [START_REF] Aftalion | Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates[END_REF][START_REF] Cipriani | Crossover between integer and fractional vortex lattices in coherently coupled two-component bose-einstein condensates[END_REF][START_REF] Kobayashi | Vortex polygons and their stabilities in boseeinstein condensates and field theory[END_REF]: this is a state where a pair of vortices of different components binds together as a molecule. These molecules then interact in a nontrivial manner with other molecules, with the result that a rich hierarchy of patterns, such as honeycombed, triangular, and square, is formed. It is the possibility to have non segregation at infinity with these positive limits which is at the origin of this specific pattern.

Here is our main result:

Theorem 1.1. Assume α > 0, ω > 0, and (1.4) holds. Then all positive solutions to (1.1)-(1.2) depend only on x N , satisfy ∂ N u > 0 and ∂ N v < 0 and are translations of one another along the x N direction.

The proof relies on the moving plane device of [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF][START_REF] Berestycki | Inequalities for second-order elliptic equations with applications to unbounded domains i[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF]Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF][START_REF] Serrin | A symmetry problem in potential theory[END_REF] to prove monotonicity and one-dimensionality of the phase transition solutions and the sliding method [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF][START_REF] Berestycki | Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] to prove uniqueness. We point out that it is not clear a priori that these methods can be applied as our system does not satisfy the usual monotonicity known for cooperative systems. Therefore, as a first step, we need to prove key estimates that will allow us to perform these methods and provide a structure to the system. These estimates also hold for solutions of the system without any conditions at infinity: Proposition 1.2. Assume α > 0, ω > 0, and (1.4) holds. Let (u, v) be a positive regular solution of (1.1), then

u 2 + v 2 ≤ 1 and uv ≥ ω α . (1.5) Moreover, either (u, v) ≡ (a, b) or (u, v) ≡ (b, a) or a < u, v < b. (1.6) 
The bounds (1.5) provide a special structure to the problem and come at various stages in our proof. In the case ω = 0, the bound is only u 2 + v 2 ≤ 1 and is obtained by Kato's inequality. Indeed, the lower bound is reduced to uv ≥ 0. In this paper, it becomes uv ≥ ω/α, and the upper and lower bounds have to be proved together in a way which is similar to an attractor set. It is not a simple application of comparison principles or Maximum Principle. Proving these bounds requires some non-trivial extra-work, to which we devote the most part of Section 2.

In order to start the moving plane method, we need a sign for the difference between the solution and its reflection with respect to a hyperplane close to infinity in one direction. Since for our non-cooperative system, we do not have asymptotic estimates of solutions at infinity, we show that the moving plane procedure can be started by obtaining decrease estimates of the L 2 norm of the gradients of these differences on large balls. This is inspired by [START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF] and relies on a Lemma in [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆ p u = f (u) in half-spaces[END_REF]. In our case, we need in a crucial way a lower bound on uv and the proof is not a mere adaptation of previous works since the estimates are more involved.

To continue the moving plane procedure, or to apply the sliding method, we need to be able to apply the strong Maximum Principle and the Hopf lemma. This relies again on our lower bound for uv and the special structure it provides to the system. Let us point out that once the bounds (1.5) are known, the equations lead to (1.6), but without a strict sign. Therefore, this provides signs to the right hand side of the system (1.1), namely the system gets a structure of the type

-∆u = uf 1 (u, v) + vf 2 (u, v) in R N , -∆v = vf 1 (v, u) + uf 2 (v, u) in R N , (1.7) 
with f 1 positive, symmetric, decreasing in both variables and f 2 negative, symmetric, decreasing in both variables. This structure of the system allows to apply the Strong Maximum Principle and the Hopf Lemma. One has to point out that this structure is not assumed from the beginning but is a consequences of our bounds. What our analysis emphasizes is that in order to obtain Maximum Principle or moving planes for non-cooperative systems, it requires both bounds from above for

u 2 + v 2 or -f 1 (u, v)
and below for uv or -f 2 (u, v).

The uniqueness proof for one dimensional solutions is based on the sliding method [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF][START_REF] Berestycki | Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] and first requires an asymptotic behaviour for the ode's. Then the strong Maximum Principle relying on our lower bounds allows to apply the device and get uniqueness. We also refer to [START_REF] Ignat | Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals[END_REF][START_REF]Instability of point defects in a two-dimensional nematic liquid crystal model[END_REF][START_REF]Stability of point defects of degree ± 1 2 in a two-dimensional nematic liquid crystal model[END_REF] where some related discussions on uniqueness of 1D solutions are made for a related system arising in the Landau-de Gennes theory for nematic liquid crystals.

We note that the existence of solutions to (1.1)-(1.2) can be obtained by approximation by solutions on finite intervals as proved in Proposition 4.1.

In the case ω = 0, then the solution to (1.3) is given by a = 0 and b = 1, and therefore domain wall solutions stay between 0 and 1. In the one-dimensional case the existence of a monotone solution has been derived in [START_REF] Alama | Domain walls in the coupled Gross-Pitaevskii equations[END_REF] while uniqueness has been derived in [START_REF] Aftalion | Interface layer of a two-component Bose-Einstein condensate[END_REF], based on a continuation argument and estimates of the linearized operator, under the assumption that either u ′ > 0 or v ′ < 0. Asymptotic estimates in the large α limit, still in one dimension, have been also obtained in [START_REF] Aftalion | Interface layer of a two-component Bose-Einstein condensate[END_REF], and rely on properties for a simpler outer system studied by many authors and for instance by [START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF][START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF][START_REF]Some symmetry results for entire solutions of an elliptic system arising in phase separation[END_REF][START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation[END_REF]. The other limit, that of weak segregation where α tends to 0 has been analyzed in [START_REF] Sourdis | On the weak separation limit of a two-component bose-einstein condensate[END_REF]. The proof that N-dimensional solutions are in fact onedimensional and monotone is made in [START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF] and relies on the moving plane device. The combination of the results of [START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF] and [START_REF] Aftalion | Interface layer of a two-component Bose-Einstein condensate[END_REF] then leads to the uniqueness of the solution, up to translations.

We also get interesting results using similar estimates in the case where (1.4) does not hold. We prove that solutions to (1.1) are constant without any boundary condition at infinity. Theorem 1.3. Assume α > 0, and

ω α ≥ 1 2 (1.8)
holds. Let (u, v) be a positive regular solution of (1.1). Then (u, v) is identically equal

to (c, c) with c = 1+ω 2+α .
The paper is organized as follows: firstly, we prove our key a priori bounds, rough upper and lower bounds as well as the refined bounds of Proposition 1.2. Then we make the moving plane device work to get monotonicity and the one dimensional property. Lastly, we study the properties of the one-dimensional solutions: existence, uniqueness up to translations and exponential decay to constant at infinity. The proofs of Proposition 1.2 and Theorem 1.3 follow from the same treatment. Note that the conclusion that u ≡ v ≡ c in Theorem 1.3 is equivalent to the pair of inequalities that u 2 + v 2 ≤ 2c 2 and uv ≥ c 2 , which resembles (1.5).

The rough idea of the proof is to bound the supremum of u 2 + v 2 in terms of the infimum of uv and vice versa in such a way that the bounds self-bootstrap to the desired bounds.

A non-degeneracy estimate

We start with a result which gives positive lower and upper bounds for u + v for positive solutions to (1.1). Lemma 2.1. Let (u, v) be a positive regular solution of (1.1). Then 

1 + ω max( 2+α 4 , 1) 1/2 ≤ u + v ≤ 1 + ω min( 2+α 4 , 1) 1/2 in R N . In particular u, v ∈ L ∞ (R N ). Proof. Let w = u + v. Then ∆w = w(u 2 + v 2 + αuv -1 -ω). ( 2 
and thus the rescaled function w(x) = max( (2+α) 1/2 2 , 1)(1 + ω) -1/2 w((1 + ω) -1/2 x) is a positive supersolution of the Allen-Cahn equation, i.e., it satisfies

-∆ w ≥ w 1 -w2 in R N . (2.5)
To proceed, we need the following lemma.

Lemma 2.2. There exists R 0 > 0 such that, for R ≥ R 0 , the functional

I[ϕ] = B R 1 2 |∇ϕ| 2 + 1 4 (1 -ϕ 2 ) 2 dx admits a non-trivial minimizer ψ in H 1 0 (B R ). Furthermore, ψ is a smooth function in B R satisfying 0 < ψ < 1 in B R .
Let us assume the above lemma for the moment and continue with the proof of Lemma 2.1. Let R 0 be the constant in Lemma 2.2 and m := min B R 0 w > 0 then, for every ε ∈ (0, min{m, 1}), the function ψ ε := εψ satisfies

-∆ψ ε ≤ ψ ε (1 -ψ 2 ε ) in R N ,
and

ψ ε ≤ w in B R 0 , ψ ε = 0 on ∂B R 0 .
The sliding method (see [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF]Lemma 3.1]), then gives that w ≥ ε in R N and so w ≥ δ in R N , for some δ > 0. Now, from (2.4) we get

-∆w ≥ w 1 + ω -max( 2 + α 4 , 1)w 2 ≥ δ max( 2 + α 4 , 1)(ϑ 2 -w 2 ) (2.6)
where ϑ = 1+ω max( 2+α 4 ,1)

1/2
. Hence, by Kato's inequality we have

∆(ϑ -w) + ≥ δ max( 2 + α 4 , 1)[(ϑ -w) + ] 2 (2.7)
which implies (ϑw) + ≡ 0 (see [START_REF] Brezis | Semilinear equations in R n without condition at infinity[END_REF]Lemma 2]), i.e.

w ≥ 1 + ω max( 2+α 4 , 1) 1/2 in R N . (2.8)
Proof of Lemma 2.2. We have that

I[0] = 1 4 |B R |.
Suppose that R > 1 and consider the function ϕ(x) = min(R -|x|, 1) for x ∈ B R .

We have

I[ϕ] = B R \B R-1 1 2 |∇ϕ| 2 + 1 4 (1 -ϕ 2 ) 2 dx ≤ 3 4 |B R \ B R-1 |.
Clearly, for R sufficiently large, I[ϕ] < I[0] and so I posseses a non-trivial minimizer ψ in H 1 0 (B R ). Replacing ψ by min{|ψ|, 1}, if necessary, we may assume that 0 ≤ ψ ≤ 1 in B R . Therefore ψ is a weak solution of the Allen-Cahn equation in B R and the remaining part of the claim follows by standard elliptic regularity and by the strong maximum principle.

Proof of Proposition 1.2

Proof. We have u, v > 0, and, by Lemma 2.1, there is some p > 1 such that 1. We prove that

u + v ≥ 1 p . ( 2 
m ≤ 1 2 (1 + √ 1 -8s * ) where s * = min t≥e -n * (αt 2 -ωt). (2.11)
In particular, as s * ≥ -ω 2 4α , we have

m ≤ 1 2 1 + 1 + 2ω 2 α < ∞.
(2.12)

We have

∆A ≥ 2uP (u, v) + 2vQ(u, v) = 2u 4 + 2v 4 + 4(α + 1)u 2 v 2 -2u 2 -2v 2 -4ωuv = 2A 2 -2A + 4αe -2B -4ωe -B .
Note that αe -2Bωe -B ≥ s * , and, as

n * ≥ -ln ω α , s * ≤ 0. It follows that ∆A ≥ 2A 2 -2A + 4s * = 2 A - 1 2 (1 + √ 1 -8s * ) A - 1 2 (1 - √ 1 -8s * ) ,
and so, by Kato's inequality,

∆ A - 1 2 (1 + √ 1 -8s * ) + ≥ 2A 2 -2A + 4s * = 2 A - 1 2 (1 + √ 1 -8s * ) 2 + . Estimate (2.11) follows from [12, Lemma 2]. 2. We prove that n ≤ -ln ω α + 2 -2 m * . (2.13) Equivalently, uv ≥ ω α + 2 -2 m * .
(2.14)

We have ∆B ≥ -

1 u P (u, v) - 1 v Q(u, v) = -(α + 2)(u 2 + v 2 ) + 2 + ω(u 2 + v 2 ) uv = -(α + 2)A + 2 + ωAe B = 2(1 - A m * ) + (α + 2 - 2 m * )A( ω α + 2 -2 m * e B -1).
Using Kato's inequality, the inequality e x -1 ≥ 1 2 x 2 for x ≥ 0 and recalling (2.9), we get

∆(B -ln α + 2 -2 m * ω ) + ≥ α + 2 -2 m * 4p 2 (B -ln α + 2 -2 m * ω ) 2 + .
We deduce that (Bln

α+2-2 m * ω
) + ≡ 0, again thanks to [START_REF] Brezis | Semilinear equations in R n without condition at infinity[END_REF]Lemma 2]. This proves (2.13).

3. We prove that m * = 1 or n * =ln ω α . Assume by contradiction that the above does not hold. Then m = m * > 1 and

n = n * > -ln ω α . Let h 1 (t) = 1 2 1 + √ 1 -8αt 2 + 8ωt , (2.15) 
h 2 (t) = ωt (α + 2)t -2 . (2.16) We claim that m ≤ h 1 (h 2 (m)).
(2.17)

Case (i): α ≥ 2. From (2.13), we have n ≤ -ln ω α+2 ≤ -ln ω 2α . It follows that s * = min t≥e -n (αt 2 -ωt) = αe -2n -ωe -n .
Plugging this into (2.11) yields

m ≤ 1 2 (1 + √ 1 -8αe -2n + 8ωe -n ) = h 1 (e -n ).
Since h 1 is decreasing in [ ω 2α , ∞), this together with (2.13) implies (2.17). Case (ii): α < 2. As α < 2, ω < α 2 < 2α 2-α and so, by (2.12),

m ≤ 1 2 1 + 1 + 2ω 2 α < 1 2 1 + 1 + 8α (2 -α) 2 = 2 2 -α .
Inserting this into (2.13) yields n ≤ln ω 2α . We can now repeat the proof of Case (i) to reach (2.17).

We now compute

d dt h 1 (h 2 (t)) = h ′ 1 (h 2 (t))h ′ 2 (t) = 2(2αh 2 (t) -ω) 1 -8αh 2 (t) 2 + 8ωh 2 (t) 2ω [(α + 2)t -2] 2 = 1 1 -8αh 2 (t) 2 + 8ωh 2 (t) 4ω 2 (αt -2t + 2) (αt + 2t -2) 3 . (2.18) Note that h 2 is decreasing in ( 2 2+α , ∞) and so h 2 (t) < ω α for t > 1. Hence, for t > 1, we have 1 -8αh 2 (t) 2 + 8ωh 2 (t) > 1, αt -2t + 2 < αt + 2t -2 and 4ω 2 < α 2 < (αt + 2t -2) 2 and so d dt h 1 (h 2 (t)) < 1 for all t > 1.
As h 1 (h 2 (1)) = 1, this implies that the inequality equation t ≤ h 1 (h 2 (t)) has no solution in (1, ∞). Therefore, (2.17) implies that m = 1. This finishes Step 3.

We prove (1.5). By

Step 3, we have m * = 1 or n * =ln ω α . If m * = 1, then, in view of (2.13), n ≤ln ω α , and so A ≤ 1 and B ≥ln ω α , which give (1.5).

On the other hand, if n * =ln ω α , then, by (2.11), m ≤ 1. Again we obtain A ≤ 1 and B ≥ln ω α , which also give (1.5) as desired. 5. Finally, we prove the trichotomy that either (u, v) ≡ (a, b) or (u, v) ≡ (b, a) or (1.6) holds.

Suppose that (u, v) ≡ (a, b) and (u, v) ≡ (b, a). From (1.5), we have

a ≤ u, v ≤ b. (2.19)
We note that

P (b, v) = b(b 2 + v 2 -1) + v(αbv -ω) (2.19) ≥ b(b 2 + a 2 -1) + v(αba -ω) = 0.
Hence the constant function b satisfies ∆b = 0 ≤ P (b, v).

Since u ≤ b, and ∆u = P (u, v), the strong maximum principle implies either u < b or u ≡ b. If the latter case holds, the second equation of (1.1) implies that v ≡ a, which contradicts our assumption that (u, v) ≡ (b, a). We thus have u < b.

The remaining inequalites in (1.6) are shown similarly using

P (a, v) = a(a 2 + v 2 -1) + v(αav -ω) (2.19) ≤ a(a 2 + b 2 -1) + v(αab -ω) = 0, Q(u, a) = a(u 2 + a 2 -1) + u(αua -ω) (2.19) ≤ a(b 2 + a 2 2 -1) + u(αba -ω) = 0, Q(u, b) = b(u 2 + b 2 -1) + u(αub -ω) (2.19) ≥ b(a 2 + a 2 2 -1) + u(αab -ω) = 0. 10 
We omit the details.

Proof of Theorem 1.3

Proof. We adapt the proof of Proposition 1.2, as the conclusion is equivalent to the following pair of inequalities:

u 2 + v 2 ≤ 2(1 + ω) 2 + α and uv ≥ 1 + ω 2 + α .
By Lemma 2.1, (2.9) holds.

Let A = u 2 + v 2 , B = -ln(uv) and m = sup A, m * = max(m, 2(1 + ω) 2 + α ), n = sup B, and ñ * = max(n, -ln 1 + ω 2 + α ).
(Note the difference between the definition of m * and ñ * and that of m * and n * in the proof of Proposition 1.2.) 1. We prove that

m ≤ 1 2 min 1 + √ 1 -8s 1 , 1 + ω + (1 + ω) 2 -8αs 2 , (2.20) 
where s 1 = min t≥e -ñ * (αt 2ωt) ≤ 0 and

s 2 = e -2ñ * ≤ (1+ω) 2 8α . As ñ * ≥ -ln 1+ω 2+α ≥ -ln ω α (due to ω ≥ 1 2 α), s 1 ≤ 0. Also s 2 ≤ (1+ω) 2 (2+α) 2 ≤ (1+ω) 2 8α . The proof of the inequality m ≤ 1 2 (1 + √ 1 -8s 1 ) follows from the differential inequality ∆A ≥ 2A 2 -2A + 4αu 2 v 2 -4ωuv,
exactly as in the proof of (2.11). To obtain m ≤

1 2 (1 + ω + (1 + ω) 2 -8αs 2 ), we use the inequality v 1 v 2 ≤ 1 2 A in the above differential inequality: ∆A ≥ 2A 2 -2(1 + ω)A + 4αe -2B ≥ 2A 2 -2(1 + ω)A + 4αs 2 = 2 A - 1 2 (1 + ω + (1 + ω) 2 -8αs 2 ) A - 1 2 (1 + ω -(1 + ω) 2 -8αs 2 ) .
By Kato's inequality, this leads to

∆ A - 1 2 (1 + ω + (1 + ω) 2 -8αs 2 ) + ≥ 2 A - 1 2 (1 + ω + (1 + ω) 2 -8αs 2 ) 2 +
and so, by [START_REF] Brezis | Semilinear equations in R n without condition at infinity[END_REF]Lemma 2],

A ≤ 1 2 (1 + ω + (1 + ω) 2 -8αs 2 ).
We have thus proved (2.20).

2. As in the proof of Proposition 1.2, we have

n ≤ -ln ω α + 2 -2 m * .
(2.21)

3. We show that m * = 2(1+ω) 2+α or ñ * =ln 1+ω 2+α . Assume by contradiction that this does not hold, so that m = m * > 2(1+ω) 2+α and n = ñ * >ln 1+ω 2+α . Case (a): 1+ω 2+α ≥ ω 2α (i.e. either α ≥ 2 or 0 < α < 2 and ω ≤ 2α 2-α ). In this case, the argument in Step 3 of the proof of Proposition 1.2 gives

m ≤ h 1 (h 2 (m)), (2.22) 
where h 1 and h 2 are defined in (2.15)-(2. [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF])

Now note that h 1 (h 2 ( 2(1+ω) 2+α )) = 2(1+ω) 2+α .
Thus in order to obtain a contradiction, it suffices to show that

d dt h 1 (h 2 (t)) < 1 for all t > 2(1 + ω) 2 + α . (2.23)
To see this, recall formula (2.18) for the derivative of h 1 • h 2 :

d dt h 1 (h 2 (t)) = 1 1 -8αh 2 (t) 2 + 8ωh 2 (t) 4ω 2 (αt -2t + 2) [(α + 2)t -2] 3 . Now if t > 2(1+ω) 2+α , then as h 2 is decreasing in ( 2 2+α , ∞), we have ω 2+α = h 2 (∞) < h 2 (t) < h 2 ( 2(1+ω) 2+α ) = 1+ω 2+α < ω α (thanks to α < 2ω), and so 1 -8αh 2 (t) 2 + 8ωh 2 (t) > 1.
Also, for t > where h 2 is defined in (2.16) and h1 is defined by

h1 (t) = 1 2 (1 + ω + (1 + ω) 2 -8αt 2 ).
Indeed, By (2.21), n ≤ln h 2 (m). Plugging this into (2.20), we get m ≤ h1 (e -n ) ≤ h1 (h 2 (m)), as h1 is decreasing in (0, ∞).

Next, a direct computation gives h1 (h 2 ( 2(1+ω) 2+α )) = 2(1+ω) 2+α . Thus, as in Case (a), it suffices to show that

d dt h1 (h 2 (t)) < 1 for all t > 2(1 + ω) 2 + α . (2.25)
We compute

d dt h 1 (h 2 (t)) = h ′ 1 (h 2 (t))h ′ 2 (t) = 4αh 2 (t) (1 + ω) 2 -8αh 2 (t) 2 2ω [(α + 2)t -2] 2 = 1 (1 + ω) 2 -8αh 2 (t) 2 8αωh 2 (t) [(α + 2)t -2] 2 . Now for t > 2(1+ω)
2+α , we have ω 2+α < h 2 (t) < 1+ω 2+α as in the previous case thanks to the monotonicity of h 2 . It follows that

d dt h 1 (h 2 (t)) < 1 (1 + ω) 2 -8α (1+ω) 2 (2+α) 2 8αω 1+ω 2+α 4ω 2 = 2α (2 -α)ω < 1 for all t > 2(1 + ω) 2 + α .
This proves (2.25), and so finishes Case (b).

Step 3 is concluded.

4. Finally, we show that u ≡ v ≡ 1+ω 2+α . By Step 3, we have m * = 2(1+ω) 2+α or ñ * =ln 1+ω 2+α . If m * = 2(1+ω) 2+α , then, in view of (2.13), n ≤ln 1+ω 2+α , and so A ≤ 2(1+ω) 2+α and B ≥ln 1+ω 2+α , which give u ≡ v ≡ 1+ω 2+α . On the other hand, if ñ * =ln 1+ω 2+α , then, by (2.11), m ≤ 2(1+ω) 2+α . Again we obtain A ≤ 2(1+ω) 2+α and B ≥ln 1+ω 2+α , which then give u ≡ v ≡ 1+ω 2+α . We conclude the proof.

3 Moving plane device 

∂ N v < 0 in R N . (3.1)
The proof is based on the moving planes method, in a version developed by [START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF]. Nevertheless our system requires some major adjustments which rely on new bounds, and in particular the bounds from below for the product uv, as we will point out.

For λ ∈ R, we set

u λ (x ′ , x N ) := u(x ′ , 2λ -x N ), v λ (x ′ , x N ) := v(x ′ , 2λ -x N ) and Σ λ := {x N > λ}.
We want to prove that

u λ (x) ≤ u(x) and v λ (x) ≥ v(x) ∀x ∈ Σ λ , ∀λ ∈ R. (3.2)
This and the strong Maximum Principle will yield Proposition 3.1.

In order to prove that (3.2) holds, we will show that

Λ := {λ ∈ R : u µ ≤ u and v µ ≥ v in Σ µ for every µ ≥ λ} = R. (3.3) 
In order to start the moving plane device, we will start by proving that Λ = ∅: Lemma 3.2. There exists λ ∈ R sufficiently large such that

u ≥ u λ and v ≤ v λ in Σ λ for any λ ≥ λ. In other words, Λ ⊃ [ λ, ∞).
The pair (u λ , v λ ) solves

     -∆u λ = g(u λ , v λ ) + v λ (ω -αu λ v λ ) -∆v λ = g(v λ , u λ ) + u λ (ω -αu λ v λ ) a < u λ , v λ < b (P λ ) where g(u, v) = u(1 -u 2 -v 2
) and where we have used (1.6). Let ϕ R be a standard

C 1 cut-off function on R N such that ϕ R = 1 in B R , ϕ R = 0 outside B 2R and |∇ϕ R | ≤ 2/R on R N .
We subtract the equations for u λ and u, and multiply by the test function

(u λ -u) + ϕ 2 R 1 Σ λ .
We find

Σ λ |∇(u λ -u) + | 2 ϕ 2 R = -2 Σ λ ϕ R (u λ -u) + ∇(u λ -u) + • ∇ϕ R + I 1 + I 2 , (3.4) 
where

I 1 = Σ λ g(u λ , v λ ) -g(u, v) (u λ -u) + ϕ 2 R , (3.5) 
I 2 = Σ λ v λ (ω -αu λ v λ ) -v(ω -αuv) (u λ -u) + ϕ 2 R . (3.6) 
Let us point out that, in the above expressions, the term ωαuv is non-negative by our lower bound on uv. We will soon see that this sign of ωαuv plays an essential role in our argument.

We proceed similarly by subtracting the equations for v and v λ and multiplying by (v

-v λ ) + ϕ 2 R 1 Σ λ and get Σ λ |∇(v -v λ ) + | 2 ϕ 2 R = -2 Σ λ ϕ R (v -v λ ) + ∇(v -v λ ) + • ∇ϕ R + I 3 + I 4 (3.7) 
where

I 3 = Σ λ g(v, u) -g(v λ , u λ ) (v -v λ ) + ϕ 2 R , (3.8) 
I 4 = Σ λ u(ω -αuv) -u λ (ω -αu λ v λ ) (v -v λ ) + ϕ 2 R . (3.9) Let L λ (R) := Σ λ ∩B R |∇(u λ -u) + | 2 + |∇(v -v λ ) + | 2 , J λ (R) := Σ λ (u λ -u) + 2 + (v -v λ ) + 2 ϕ 2 R .
We deduce from (3.4)-(3.7) that for any ϑ ∈ (0, 1),

L λ (R) ≤ ϑL λ (2R) + 4 ϑR 2 J λ (R) + I 1 + I 2 + I 3 + I 4 . (3.10) 
We want to estimate I 1 , I 2 , I 3 , I 4 in terms of J λ (R).

Estimate of I 2 and I 4 : We deduce from (3.6) that

I 2 = Σ λ (v -v λ )(αu(v + v λ ) -ω)(u λ -u) + -αv 2 λ (u λ -u) + 2 ϕ 2 R . (3.11) 
We recall from Proposition 1.2 that αuvω ≥ 0, which is a crucial estimate. So that in the first term in the square bracket on the right hand side of (3.11), we can keep only (vv λ ) + in the upper bound and find

I 2 ≤ Σ λ (αuv-ω)(v-v λ ) + (u λ -u) + +αuv λ (v-v λ ) + (u λ -u) + -αv 2 λ (u λ -u) + 2 ϕ 2 R . ( 3 
.12) A similar computation for I 4 yields

I 4 ≤ Σ λ (αu λ v λ -ω)(v-v λ ) + (u λ -u) + +αuv λ (v-v λ ) + (u λ -u) + -αu 2 (v-v λ ) + 2 ϕ 2 R . (3.13)
Because of (1.2), for λ large enough, in Σ λ , u tends to b, v tends to a and uv tends to ab = ω/α. Moreover in the support of (vv λ ) + , v ≥ v λ ≥ a, so v λ also tends to a, and in the support of (u λu) + , b ≥ u λ ≥ u, so u λ tends to b. This implies that for λ large enough, in Σ λ , u λ v λ also tends to ab = ω/α. Therefore, for some small ε > 0 which will be fixed later, there exists λ large enough, so that for λ ≥ λ, in Σ λ ∩ S, where S is the intersection of the supports of (u λu) + and (v

-v λ ) + , |(αu λ v λ -ω) + (αuv -ω) + 2(αuv λ -ω)| ≤ ε. (3.14) 
Moreover, for λ large enough, and for λ ≥ λ, in Σ λ , α|u 2b 2 | ≤ ε/2. We sum the two estimates (3.12) and (3.13), use this, (3.14) and the fact that v λ ≥ a, to find

I 2 + I 4 ≤ 2εJ λ (R) -α Σ λ a 2 (u λ -u) + 2 + b 2 (v -v λ ) + 2 -2ab(v -v λ ) + (u λ -u) + .
(3.15) Estimate of I 1 and I 3 : By the mean value theorem, there exist ξ 1 (x) ∈ (u(x), u λ (x)) and ξ 2 (x) ∈ (v λ (x), v(x)) such that

g(u λ , v λ ) -g(u, v) = ∂g ∂u (ξ 1 , v λ )(u λ -u) + ∂g ∂v (u, ξ 2 )(v λ -v). Since g(u, v) = u(1 -u 2 -v 2 ), we have ∂g ∂v (u, ξ 2 ) ≤ 0. Hence g(u λ , v λ )-g(u, v) (u λ -u) + ≤ ∂g ∂u (ξ 1 , v λ ) (u λ -u) + 2 + ∂g ∂v (u, ξ 2 ) (v -v λ ) + (u λ -u) + . Moreover, ∂g ∂u (ξ 1 , v λ ) = 1 -3ξ 2 1 -v 2 λ , ∂g ∂v (u, ξ 2 ) = -2uξ 2 .
Next, note that, as λ → ∞, u and u λ tend to b in Σ λ ∩ {u λ > u} and v and v λ tend to a in Σ λ ∩ S. Hence, we have in Σ λ ∩ {u λ > u}, lim sup

λ→∞ ∂g ∂u (ξ 1 , v λ ) ≤ -2b 2 , in Σ λ ∩ S, lim λ→∞ ∂g ∂v (u, ξ 2 ) = -2ab.
Therefore, in view of (3.5) and by enlarging λ if necessary we have for λ ≥ λ that

I 1 ≤ Σ λ (-2b 2 + ε) (u λ -u) + 2 + (2ab + ε)(v -v λ ) + (u λ -u) + ϕ 2 R . (3.16) 
We argue similarly to I 1 for I 3 and find

I 1 + I 3 ≤ ε 2 J λ (R) -2 Σ λ b 2 (u λ -u) + 2 + a 2 (v -v λ ) + 2 -2ab(v -v λ ) + (u λ -u) + .
(3.17)

Combining the estimates, we get

I 1 + I 2 + I 3 + I 4 ≤ 5ε 2 J λ (R) - Σ λ (αa 2 + 2b 2 ) (u λ -u) + 2 + (αb 2 + 2a 2 ) (v -v λ ) + 2 -2(2 + α)ab(v -v λ ) + (u λ -u) + .
Note that the matrix

M := αa 2 + 2b 2 -(2 + α)ab -(2 + α)ab αb 2 + 2a 2
has determinant 2α(a 2b 2 ) 2 which is positive as soon as (1.4) holds. Hence M has positive eigenvalues µ 1 > µ 2 > 0. In the sequel, we assume that µ 2 > 3ε. Inserting (3.15) and (3.17) into (3.10), for ε > 0, there exists λ > 0, such that we for λ > λ and large R that

L λ (R) ≤ ϑL λ (2R) + (-µ 2 + 3ε)J λ (R). (3.18)
We fix ϑ := 2 -(N +1) and some ε > 0 such that µ 2 -3ε > 0. Then for λ > λ and large R,

L λ (R) ≤ ϑL λ (2R). (3.19)
The conclusion will follow from a lemma proved and used in [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆ p u = f (u) in half-spaces[END_REF] which allows to show that L λ (R) is identically zero.

Lemma 3.3 ([18, Lemma 2.1]

). Let ϑ > 0 and γ > 0 such that ϑ < 2 -γ . Moreover let R 0 > 0, C > 0 and L : (R 0 , +∞) → R be a non-negative and non-decreasing function such that

L(R) ≤ ϑL(2R) + G(R) ∀R > R 0 , L(R) ≤ CR γ ∀R > R 0 , where G : (R 0 , +∞) → R + is such that lim R→+∞ G(R) = 0. Then L(R) = 0 ∀R > R 0 .
We have that L λ (R) ≤ CR N since |∇u|, |∇v| ∈ L ∞ (R N ) by elliptic estimates and the L ∞ bound of Lemma 2.1. Lemma 3.3 then yields that L λ (R) = 0 for all λ > λ and large R.

Recalling that u = u λ and v = v λ on ∂Σ λ , we reach the conclusion of Lemma 3.2.

We now have to prove that λ := inf Λ (with Λ defined in (3.3)) is -∞ to complete the proof of Proposition 3.1: Lemma 3.4. We have λ = -∞.

Proof. Assume by contradiction that λ is finite. Then, Λ = [ λ, +∞), and there exist sequences (λ i ) with λ i ∈ (-∞, λ) and (x i ) with x i ∈ Σ λ i such that λ i → λ as i → ∞, and at least one of the two holds:

u λ i (x i ) > u(x i ) for every i, or (3.20a) 
v λ i (x i ) < v(x i ) for every i. (3.20b) 
Assume that (3.20a) holds; the other case can be treated similarly. We claim that the sequence ( 

x i N ) ⊂ R is bounded. If not, as x i N > λ i and λ i is bounded, up to a subsequence x i N → +∞ as i → ∞. It follows that 2λ i -x i N → -∞,
u λ i (x i ) = lim i→∞ u((x i ) ′ , 2λ i -x i N ) = a and lim i→∞ u(x i ) = b,
in contradiction with (3.20a) for i sufficiently large. Hence the claim is proved and, up to a subsequence,

x i N → xN as i → ∞.
Let us set

u i (x) := u((x i ) ′ + x ′ , x N ) and v i (x) := v((x i ) ′ + x ′ , x N ).
Since (u, v) is bounded (in view of (1.5)), by standard elliptic estimates |∇ k u|, |∇ k v| ∈ L ∞ (R N ), for k = 1, 2, . . . Thus, after extracting a subsequence if necessary, (u i , v i ) converges in C 2 loc (R N ) to a limit (ū, v), still solution of (1.1). We wish to show that xN = λ. From equation (3.20a), we obtain

ūλ (0 ′ , xN ) = ū(0 ′ , 2 λ -xN ) = lim i→∞ u((x i ) ′ , 2λ i -x i N ) = lim i→∞ u λ i (x i ) ≥ lim i→∞ u(x i ) = ū(0 ′ , xN ). (3.21)
On the other hand, we observe that ((

x i ) ′ + x ′ , x N ) ∈ Σ λ whenever (x ′ , x N ) ∈ Σ λ,
and by definition u λ ≤ u in Σ λ. Consequently, by the convergence of u i to ū we deduce that

ūλ (x ′ , x N ) = lim i→∞ u i (x ′ , 2 λ -x N ) = lim i→∞ u((x i ) ′ + x ′ , 2 λ -x N ) ≤ lim i→∞ u((x i ) ′ + x ′ , x N ) = lim i→∞ u i (x ′ , x N ) = ū(x ′ , x N ) for every (x ′ , x N ) ∈ Σ λ. Analogously, as v λ ≥ v in Σ λ, we have vλ ≥ v in Σ λ. Now    -∆(ū -ūλ ) + c(x)(ū -ūλ ) = (v λ -v)(αūv -ω + αū λ vλ + ūλ (v λ + v)) ū -ūλ ≥ 0 in Σ λ ū -ūλ = 0 on ∂Σ λ, (3.22) with c ∈ C 0 (Σ λ) defined by c(x) = αv(x)v λ(x) + v2 (x) + ū2 (x) + ūū λ(x) + ū2 λ(x) -1.
Because of (1.5), the right hand side on the first line of (3.22) is nonnegative, hence, the strong Maximum Principle implies that necessarily ūūλ > 0 in Σ λ, and a comparison with (3.21) reveals that xN = λ, as desired.

At this point we are ready to reach a contradiction. On the one hand, by the absurd assumption (3.20a)

0 < u λ i (x i ) -u(x i ) = u i (0 ′ , 2λ i -x i N ) -u i (0 ′ , x N ) = 2∂ N u i (0 ′ , ξ i )(λ i -x i N ) ∀i,
for some ξ i ∈ (2λ ix i N , x i N ). As λ i < x i N for every i this implies ∂ N u i (x ′ , ξ i N ) < 0 for every i, and passing to the limit we infer that

∂ N ū(0 ′ , λ) ≤ 0, (3.23)
where we used the fact that λ i ≤ ξ i ≤ x i N with λ i , x i N → λ. On the other hand, thanks to (3.22) and the fact that ūūλ > 0 in Σ λ, the Hopf Lemma implies that

-2∂ N ū(0 ′ , λ) = ∂ -e N (ū(0 ′ , λ) -ūλ (0 ′ , λ)) < 0,
in contradiction with (3.23).

The above argument establishes that (3.20a) cannot occur. With minor changes, we can show that also (3.20b) cannot be verified, and in conclusion λ cannot be finite.

Proof of Proposition 3.1. By (3.3), we directly deduce that ∂ N u ≥ 0 and

∂ N v ≤ 0 in R N . Since -∆(∂ N u) + (3u 2 + (α + 1)v 2 -1)∂ N u = (ω -2(α + 1)uv)∂ N v ≥ 0 in R N -∆(∂ N v) + (3v 2 + (α + 1)u 2 -1)∂ N v = (ω -2(α + 1)uv)∂ N u ≤ 0 in R N ,
the strict inequality follows by the strong Maximum Principle.

One-dimensional symmetry

We extend the monotonicity in x N to all the directions of the open upper hemisphere S N -1 + := ν ∈ S N -1 : ν, e N > 0 . We follow the structure of proof in [START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniform limits[END_REF], introduced in [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] and in [START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation[END_REF], though the specificity of our system requires new estimates. Proposition 3.5. For every ν ∈ S N -1 + , we have

∂ ν u > 0 and ∂ ν v < 0 in R N .
In particular, u and v depend only on x N .

We divide the proof into several steps. Proof. Let σ > 0 be arbitrarily chosen. Firstly, we claim that there exists ε = ε(σ) > 0 such that

∂ N u(x) ≥ ε and ∂ N v(x) ≤ -ε ∀x ∈ S σ . (3.24)
By contradiction, assume that there exists a sequence (x i ), with x i ∈ S σ , such that at least one of the two following equalities holds :

lim i→+∞ ∂ N u(x i ) = 0 (3.25a) or lim i→+∞ ∂ N v(x i ) = 0. (3.25b)
We define

u i (x) := u(x + x i ) and v i (x) := v(x + x i ). The sequence {(u i , v i )} is uniformly bounded in W 1,∞ (R N )
, and hence by elliptic regularity (u i , v i ) → (ū, v) in C 2 loc (R N ) up to a subsequence, where (ū, v) is still a solution to (1.1)-(1.2), which also satisfies ∂ N ū ≥ 0 and ∂ N v ≤ 0 on R N . The strong maximum principle and the condition at infinity (1.2) then imply that ∂ N ū > 0 and ∂ N v < 0 on R N , and this contradicts (3.25a) or (3.25b). This completes the proof of claim (3.24).

Now we claim that

The map ν

→ (∂ ν u, ∂ ν v) is in C 0,1 S N -1 , C 0 (R N ) 2 . (3.26)
This is a simple consequence of the globlal Lipschitz continuity of (u, v), which implies that ∂u ∂ν 1

(x) - ∂u ∂ν 2 (x) + ∂v ∂ν 1 (x) - ∂v ∂ν 2 (x) ≤ 2C|ν 1 -ν 2 |
for every x ∈ R N . Combining (3.24) and (3.26), the conclusion follows.

Lemma 3.7. The function u is strictly increasing and v is strictly decreasing with respect to all unit vectors in an open neighborhood of e N in S N -1 .

Proof. Firstly, we write down the equations satisfied by the directional derivatives

u ν = ∂ ν u and v ν = ∂ ν v: -∆u ν + u ν (3u 2 + (α + 1)v 2 -1) + v ν (2(α + 1)uv -ω) = 0 -∆v ν + v ν (3v 2 + (α + 1)u 2 -1) + u ν (2(α + 1)uv -ω) = 0 in R N . (3.27) 
Fix some σ > 0 for the moment and let O e N be the neighborhood of e N given by Lemma 3.6. We will show that u ν ≥ 0 and v ν ≤ 0 for all ν ∈ O e N by applying Lemma 3.3 to the quantity

I R := C R |∇u - ν | 2 + |∇v + ν | 2 ,
where C R := Σ σ ∩ B R and Σ σ := {x N > σ}. The conclusion then follows from the strong maximum principle. We test the first equation in (3.27) with u - ν ϕ 2 R where ϕ R is chosen exactly as in Lemma 3.2. Using the bounds (1.5) and the fact that u ν ≥ 0 on {x N = σ} (due to Lemma 3.6), we obtain

C R |∇u - ν | 2 ≤ -2 C 2R u - ν ϕ R ∇u - ν • ∇ϕ R - C 2R (3u 2 + (α + 1)v 2 -1)(u - ν ϕ R ) 2 + C 2R ϕ 2 R (2(α + 1)uv -ω)u - ν v + ν ≤ ϑ C 2R |∇u - ν | 2 + C 2R (u - ν ϕ R ) 2 4 ϑR 2 + sup Σσ (-3u 2 -(α + 1)v 2 + 1) + C 2R ϕ 2 R (2(α + 1)uv -ω)u - ν v + ν ,
where 0 < ϑ < 2 -N . In a similar way, we find for v

+ ν C R |∇v + ν | 2 ≤ ϑ C 2R |∇v + ν | 2 + C 2R (v + ν ϕ R ) 2 4 ϑR 2 + sup Σσ (-3v 2 -(α + 1)u 2 + 1) + C 2R ϕ 2 R (2(α + 1)uv -ω)u - ν v + ν .
We notice that if σ > 0 is sufficiently large, since u tends to b and v tends to a for x N large, then, in Σ σ ,

2(α + 1)uv -ω → 2(α + 1)ab -ω, 3u 2 + (α + 1)v 2 -1 → 2b 2 + αa 2 ,
and 3v 2 + (α + 1)u 2 -1 → 2a 2 + αb 2 .
Thus, for any small δ > 0, we can choose σ and R sufficiently large so that

I R ≤ ϑI 2R - C 2R (2b 2 + αa 2 -δ)(u - ν ) 2 + (2a 2 + αb 2 -δ)(v + ν ) 2 -2(2(α + 1)ab -ω + δ)|u - ν ||v + ν | ϕ 2 R . (3.28)
We point out that

(2b 2 +αa 2 -δ)(u - ν ) 2 +(2a 2 +αb 2 -δ)(v + ν ) 2 ≥ 2 (2b 2 + αa 2 -δ)(2a 2 + αb 2 -δ)|u - ν ||v + ν |. and that, by (1.3) and (1.4), (2b 2 + αa 2 )(2a 2 + αb 2 ) -(2(α + 1)ab -ω) 2 = 2α(a 2 + b 2 ) 2 -3α(α + 4)a 2 b 2 + 4ω(α + 1)ab -ω 2 = 2α 1 - 4ω 2 α 2 > 0.
Hence, by choosing first small δ and then large σ from the start, we have for all sufficiently large R that the integral on the right hand side of (3.28) is non-negative.

As a consequence, we infer that

I R ≤ ϑI 2R for all R sufficiently large. (3.29) 
We can now apply Lemma 3.3 to find that I R = 0 for all large R. It follows that u ν ≥ 0 and v ν ≤ 0 in Σ σ = {x N > σ}. Arguing exactly in the same way, we can show that the same conditions are satisfied in {x N < -σ}. By Lemma 3.6, we deduce that u ν ≥ 0 and v ν ≤ 0 in R N for every ν ∈ O e N , with both u ν ≡ 0 and v ν ≡ 0. In view of (1.5) and (3.27), the conclusion follows from the strong maximum principle.

Proof of Proposition 3.5. Here we can essentially apply the same argument used in step 4 of Proposition 6.1 in [START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation[END_REF]. We report the details for completeness. Let Ω be the set of the directions ν ∈ S N -1

+
for which there exists an open neighborhood O ν ⊂ S N -1

+ of ν such that ∂ µ u > 0 and ∂ µ v < 0 in R N , ∀µ ∈ O ν .
The set Ω is open by definition, and contains e N by Lemma 3.7. Since S N -1

+ is arc- connected, if we can show that ∂Ω ∩ S N -1 + = ∅, then we conclude that Ω = S N -1 + , as desired. Thus, let us suppose by contradiction that ν ∈ ∂Ω ∩ S N -1 + (notice in particular that e N , ν > 0). By definition, there exists (ν n ) ⊂ Ω such that ν n → ν. As ∂ νn u > 0 and ∂ νn v < 0 in R N , ∀n, by continuity ∂ ν u ≥ 0 and ∂ ν v ≤ 0 in R N .
By the strong maximum principle, recalling that (u ν , v ν ) solves (3.27), either u ν ≡ 0 or u ν > 0 in R N , and analogously either v ν ≡ 0 or v ν < 0 in R N . The alternatives u ν ≡ 0 and v ν ≡ 0 are in contradiction with assumption (1.2), since ν is not orthogonal to e N , and hence

∂ ν u > 0 and ∂ ν v < 0 in R N . (3.30) 
Having established (3.30), it is possible to adapt the same proof of Lemmas 3.6 and 3.7, with ν instead of e N , to deduce that u ν > 0 and

v ν < 0 in R N in all the directions of an open neighborhood O ν of ν in S N -1 +
. Thus, we have that ν ∈ Ω ∩ ∂Ω, in contradiction with the openness of Ω. This shows that ∂Ω ∩ S N -1 + = ∅ which, as already observed, implies Ω = S N -1 + . Finally, the fact that Ω = S N -1 + implies that both ∂ τ u ≡ 0 and ∂ τ v ≡ 0 for every τ ∈ S N -1 orthogonal to e N , which proves the last assertion.

4 Existence and uniqueness of positive 1D solutions when 2ω < α. Proof of Theorem 1.1.

In this section, we assume that 0 < ω < 1 2 α unless otherwise stated. By Proposition 3.5, positive solutions to (1.1)-(1.2) depend only on x N and are monotone. To conclude the proof of Theorem 1.1, it remains to prove the uniqueness up to translations of such one-dimensional solutions.

We are led to consider on R the system

u ′′ = P (u, v), v ′′ = Q(u, v), (4.1) 
subject to (u, v) → (a, b) at -∞ and (u, v) → (b, a) at ∞. (4.2)
The main result of this section is: The proof of the 'uniqueness' part in Proposition 4.1 uses the sliding method (cf. [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF][START_REF] Berestycki | Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]) with the help of the bounds (1.5) as well as the following lemma on the asymptotic behavior of solutions. Let

λ ± := 1 2 (α + 2) ± (α -2) 2 + 32ω 2 α , (4.3) 
µ := 2ω(α + 2) α (α -2) 1 -4ω 2 α 2 + (α -2) 2 + 32ω 2 α > 0, (4.4) 
which are related to the eigenvalues and eigenvectors of the linearized operator associated with (4.1) near the critical point (a, b). We refer to Appendix A for a brief discussion on the origin of these constants. It should be noted that the asymptotic behavior of solutions changes somewhat when ω = 0. See Lemma A.2 in the appendix.

An easy variational argument gives existence of the positive solutions to (4.1) on finite intervals. The sliding method can be adapted to this case yielding: Lemma 4.3. Suppose that 0 < ω < 1 2 α. For every R ∈ (0, ∞), there exists a unique positive solution to (4.1) in (-R, R) satisfying For n = 1, 2, . . ., let (u n , v n ) be the positive solution to (4.1) obtained in Lemma 4.

(u(-R), v(-R)) = (a, b) and (u(R), v(R)) = (b, a). (4.7) Furthermore, u ′ > 0 and v ′ < 0 in (-R, R).
3 with R = n. Fix x n ∈ (-n, n) such that u n (x n ) = 1 2 (a + b). Define l n = -n -x n , r n = n -x n , and (ũ n (x), ṽn (x)) = (u n (x + x n ), v n (x + x n )) for x ∈ [l n , r n ]. By Lemma 4.3, a ≤ u n , v n ≤ b.
Using elliptic estimates on unit closed subintervals of [l n , r n ], we have

|ũ (k) n | + |ṽ (k) n | ≤ C in [l n , r n ] for k = 0, 1, 2, 3, (4.8) 
where C is a positive constant independent of n and k. Then, passing to a subsequence if necessary, we may assume that l n → l * ∈ [-∞, 0], r n → r * ∈ [0, ∞] (where l * and r * cannot be simultaneously finite), (ũ n , ṽn ) converges in C 2 loc (l * , r * ) to some (u * , v * ) satisfying (4.1), u ′ * ≥ 0, v ′ * ≤ 0 in (l * , r * ). Note that for each n, the Hamiltonian

h n := 1 2 (|ũ ′ n | 2 + |ṽ ′ n | 2 ) - 1 4 (1 -ũ2 n -ṽ2 n ) 2 - α 2 (ũ n ṽn - ω α ) 2
is constant in [l n , r n ]. As (ũ(R), ṽ(R)) = (b, a), it follows that h n ≥ 0 and so

h * := 1 2 (|u ′ * | 2 + |v ′ * | 2 ) - 1 4 (1 -u 2 * -v 2 * ) 2 - α 2 (u * v * - ω α ) 2 ≥ 0.
As said above, one has that l * = -∞ or r * = ∞ (or both). We will only treat the case that r * = ∞; the other case can be dealt with similarly. In this case we have u * (x) ≥ 1 2 (a + b) for every x > 0, since x > 0 ≥ l * implies ũn (x) ≥ ũn (0) = a+b 

(x), v ′ * (x)) → 0 as x → ∞, 0 ≤ h * = - 1 4 (1 -b2 -ã2 ) 2 - α 2 ( bã - ω α ) 2
and so h * = 0, b2 +ã 2 = 1 and bã = ω α . As 

(x), v * (x)) → (b, a) as x → ∞. Now if l * is finite, (4.8) yields |ũ (k) * | + |ṽ (k) * | ≤ C in (l * , r * ) for k = 0, 1, 2, (4.9) 
where C is a positive constant independent of k, and so u * extends to a C 1 function in [l * , r * ). Now, since for every x ∈ (l * , r * ), we have x ∈ [l n , r n ] for large n, from (4.8) we also get that

|u * (x) -a| = lim n→∞ |ũ n (x) -a| = lim n→∞ |ũ n (x) -ũn (l n )| ≤ lim sup n→∞ C|x -l n | = C|x -l * |
which leads to u * (l * ) = a. A similar argument gives v * (l * ) = b. Now, by the strong maximum principle and the Hopf lemma (see the argument in Step 5 of the proof of Proposition 1.2), we have u ′ * (x) > 0 and v ′ * (x) < 0 for every x ∈ [l * , r * ), and using those properties with x = l * we get h * > 0, which contradicts the previous conclusion that h * = 0. Hence l * = -∞. As above, this implies that (u * (x), v * (x)) → (a, b) as x → -∞.

We have thus shown that (u * , v * ) is a positive and strictly monotone solution to (4.1)-(4.2), as desired.

2. We use the sliding method to show that positive solutions to (4.1)-(4.2) are translations of one another.

Let (u, v) and (ū, v) be two positive solutions to (4.1)-(4.2). By Lemma 4.2, the limits

ℓ + 1 := lim x→∞ (b -u(x))e -λ -x , l+ 1 := lim x→∞ (b -ū(x))e -λ -x , ℓ + 2 := lim x→∞ (v(x) -a)e -λ -x , l+ 2 := lim x→∞ (v -a)e -λ -x , ℓ - 1 := lim x→-∞ (u(x) -a)e λ -x , l- 1 := lim x→-∞ (ū(x) -a)e λ -x , ℓ - 2 := lim x→-∞ (b -v(x))e λ -x , l- 2 := lim x→-∞ (b -v)e λ -x
exist and are positive. Thus, in view of (1.6), there is some large T 0 such that

u(x -T 0 ) ≤ ū(x) ≤ u(x + T 0 ) and v(x -T 0 ) ≥ v(x) ≥ v(x + T 0 ) for all x ∈ R. Let T = inf{t ∈ [-T 0 , T 0 ] : ū(x) ≤ u(x+s) and v(x) ≥ v(x+s) for all t ≤ s ≤ T 0 , x ∈ R}.
Set ũ(x) = u(x + T ) and ṽ(x) = u(x + T ). Then ũ ≥ ū and ṽ ≤ v. The result will follow once we show that ũ ≡ ū and ṽ ≡ v. Assume by contradiction that this does not hold. a. We show that ũ > ū and ṽ < v. (4.10)

Note that ũ ≥ ū, ṽ ≤ v, and (ũ, ṽ) is also a solution to (4.1) satisfying (4.7). Also, we have

P (ũ, ṽ) -P (ũ, v) = (ṽ -v) (1 + α)ũ(ṽ + v) -ω ≤ (ṽ -v) (1 + α)ũṽ -ω (1.5) ≤ (ṽ -v) (1 + α) ω α -ω ≤ 0, and 
Q(ũ, ṽ) -Q(ū, ṽ) = (ũ -ū) (1 + α)ṽ(ũ + ū) -ω ≥ (ũ -ū) (1 + α)ṽũ -ω (1.5) ≥ (ũ -ū) (1 + α) ω α -ω ≥ 0. So we have ũ′′ ≤ P (ũ, v), ū′′ = P (ū, v) ṽ′′ ≥ Q(ū, ṽ), v′′ = Q(ū, v).
Assertion (4.10) thus follows from the strong maximum principle.

b. We proceed to deduce a contradiction. Define

l+ 1 := lim x→∞ (b -ũ(x))e -λ -x , l+ 2 := lim x→∞ (ṽ(x) -a)e -λ -x , l- 1 := lim x→-∞ (ũ(x) -a)e λ -x , l- 2 := lim x→-∞ (b -ṽ(x))e λ -x .
Recall that, by Lemma 4.2, or both. Because of the unique correspondence of linearized solutions and nonlinear solutions near a hyperbolic critical point of ODEs [14, Chapter 13, Theorem 4.5] (with p = 1) -see the argument leading to (A.10) -we then deduce that (ū, v) ≡ (ũ, ṽ), which contradicts (4.10). We conclude the proof.

ℓ + 2 = µℓ + 1 , ℓ - 1 = µℓ -

Proof of Lemma 4.3

The existence in Lemma 4.3 follows from an easy variational argument. As far as we are concerned with the application of Lemma 4.3 to the proof of Proposition 4.1, it is enough to show that u and v are monotone. This can be done as in Subsection 3.1.

Here we provide an alternative proof which yields also uniqueness, which echoes the argument in Step 2 of the proof of Proposition 4.1.

We start with an adaptation of Proposition 1.2 for finite domains.

Lemma 4.4. Suppose that 0 < ω <1 2 α and R ∈ (0, ∞), and let (u, v) be a positive solution of (4.1) in (-R, R) satisfying (4.7). Then (1.5) and (1.6) hold in [-R, R].

Proof. The proof is similar to though easier than that of Proposition 1.2, thanks to the boundary condition (4.7). We will only give a sketch.

Let A = u 2 + v 2 , B =ln(uv) and define m = max A and n = max B. 1 If m is attained at the endpoints, we have m ≤ 1. Otherwise, m = A(x 0 ) for some x 0 ∈ (-R, R). We then have 0 ≥ A ′′ (x 0 ) ≥ 2u(x 0 )P (u(x 0 ), v(x 0 )) + 2v(x 0 )Q(u(x 0 ), v(x 0 )) ≥ 2A 2 (x 0 ) -2A(x 0 ) + 4s * where s * := min t≥e -n (αt 2ωt).

In either case, we obtain We can now follows exactly the arguments in Steps 3 and 4 of the proof of Proposition 1.2 to reach the conclusion. We omit the details.

Proof of Lemma 4.3. Note that (4.1) is the Euler-Lagrange equation for the functional

I[u, v] = R -R 1 2 (|u ′ | 2 + |v ′ | 2 ) + 1 4 (1 -u 2 -v 2 ) 2 + α 2 (uv - ω α ) 2 dx.
The existence of a positive solution to (4.1) satisfying (4.7) follows from a simple variational argument. The uniqueness follows from the sliding method as we have seen earlier. Suppose that (u, v) and (ū, v) are positive solutions of (4.1) in (-R, R) satisfying (4. If c > 0, then we have w 1,c ≥ u in [R, ∞), w 1,c (R) > u(R), lim x→∞ (w 1,cu) > 0, and there is some x 1 ∈ (R, ∞) such that w 1,c (x 1 ) = u(x 1 ), which gives a contradiction to the strong maximum principle, in view of (A.13) and (A.14). We thus have that c = 0, which implies that w 1,0 ≥ u in [R, ∞), which gives (A.12).

2 A

 2 priori bounds. Proofs of Proposition 1.2 and Theorem 1.3.

. 9 )

 9 Let A = u 2 + v 2 , B =ln(uv) and m = sup A, m * = max(m, 1), n = sup B, and n * = max(n,ln ω α ). (2.10)

13 3. 1 Proposition 3 . 1 .

 13131 Monotonicity with respect to x NWe are going to show that if (u, v) is a solution to (1.1)-(1.2), then it is monotone with respect to x N . This relies strongly on the estimates (1.5)-(1.6). Under the assumptions of Theorem 1.1, since (1.5)-(1.6) hold, we have ∂ N u > 0 and

Lemma 3 . 6 .

 36 Let σ > 0 be arbitrarily chosen. There exists an open neighborhood O e N of e N in S N -1 such that ∂u ∂ν (x) > 0 and ∂v ∂ν (x) < 0 ∀x ∈ S σ , ∀ν ∈ O e N , where S σ := R N -1 × (-σ, σ).

Proposition 4 . 1 .

 41 Suppose that 0 < ω < 1 2 α. Then there exist positive solutions to (4.1)-(4.2), and these solutions are translations of one another, i.e. if (u, v) and (ū, v) both satisfy (4.1)-(4.2), then is a constant T such thatū(x) = u(x + T ) and v(x) = v(x + T ).Furthermore, u ′ > 0 and v ′ < 0 in R.Proof of Theorem 1.1. The result is a consequence of Propositions 3.5 and 4.1.

Lemma 4 . 2 .

 42 Suppose that 0 < ω < 1 2 α. Let (u, v) be a positive solution of (4.1)-(4.2) and λ -and µ be defined by (4.3)-(4.4). Then the limits ℓ 1 := lim x→∞ (bu(x))e λ -x and ℓ 2 := lim x→∞ (v(x)a)e λ -x exist,

4. 1

 1 Proof of Proposition 4.1 Let us assume Lemmas 4.2 and 4.3 for the moment and proceed with the proof of Proposition 4.1. Lemma 4.3 will be proved in the next subsection. Lemma 4.2 follows from a routine asymptotic analysis near a hyperbolic critical point for ODEs. Its proof is postponed to Appendix A. Proof. 1. We prove the existence of a solution to (4.1)-(4.2) by sending R → ∞ in Lemma 4.3, where some care is needed to show that the solutions on finite intervals do not flatten to the constant solutions (a, a) or (b, b).

2

  for large n. Then, by the monotonicity of u * and v * , as x → ∞, (u * (x), v * (x)) has a limit, say ( b, ã), which satisfies1 2 (a + b) ≤ b ≤ b and a ≤ ã ≤ b. By (4.1), (u ′′ * (x), v ′′ * (x)) tends to (P ( b, ã), Q( b, ã)) as x → ∞. Applying the mean value theorem to u| [n,n+1/2] , we can find ξ n ∈ (n, n + 1/2) such that u ′ * (ξ n ) → 0. Likewise, there exist η n ∈ (ξ n , ξ n+1 ) such that u ′′ * (η n ) → 0.It follows that P ( b, ã) = 0. This then implies that sup [ξn-2,ξn+2] u ′ * → 0, and so u ′ * (x) → 0 as x → ∞. Similarly, Q( b, ã) = 0 and v ′ * (x) → 0 as x → ∞. Now, note that the equation P (x, y) = Q(x, y) = 0 has three solutions in the positive quadrant, namely (a, b), (b, a) and (c, c) where c = 1+ω 2+α ∈ (a, b). Also, as (u ′ *

1 2 (

 2 a+b) ≤ b ≤ b, we thus have ( b, ã) = (b, a), i.e. (u *

2

 2 and similar relations hold for the counterparts with bar and tilde on top. By the minimality of T and (4.10), we have that l+

≥ u(u 2 + v 2 - 1 )( 1 . 5 ) 3 .

 21153 [START_REF] Berestycki | Inequalities for second-order elliptic equations with applications to unbounded domains i[END_REF]. Extend (u, v) to the whole of R by defining (u, v) ≡ (a, b) on (-∞, -R) and (u, v) ≡ (b, a) on (R, ∞). LetT = inf{t ∈ [0, 2R] : ū(x) ≤ u(x + s) and v(x) ≥ v(x + s) for all x ∈ [-R, R], t ≤ s ≤ 2R}.T is well-defined thanks to Lemma 4.4. To conclude it suffices to show that T = 0. which implies lim sup x→∞ ln(|X| + |Y |) x ≤ -(λ -+ δ). Appealing again to [14, Chapter 13, Theorem 4.3], we thus have lim sup x→∞ ln(|X| + |Y |) x ≤ -λ + . This leads to lim x→∞ (bu(x))e λx = lim x→∞ (v(x)a)e λx = 0 for all 0 < λ < λ + . (A.11)As as b √ 2 < λ + , this gives a contradiction to Lemma A.1 below and so concludes the proof.Lemma A.1. Suppose that 0 ≤ ω < 1 2 α and let (u, v) be a positive solution of (4.1)-(4.2). There is someC > 0 such that bu(x) ≥ u(u 2b 2 ). (A.13)Now, take some R > 0 such that u(R)≥ b √ 3 in (R, ∞). Select x 0 such that b tanh( b √ 2 (Rx 0 )) = u(R).To prove (A.12), it suffices to show thatu(x) ≤ b tanh( b √ 2 (xx 0 )) in (R, ∞).To this end, we note that the functionw 1,c = b tanh( b √ 2 (xx 0 )) + c satisfies for c ≥ 0, w ′′ 1,c = w 1,0 (w 2 1,0b 2 ) ≤ w 1,c (w 2 1,cb 2 ) in (R, ∞), (A.14)where we have used w1,0 (x) ≥ w 1,0 (R) = u(R) ≥ b√ Clearly there is some large c > 0 such that w 1,c ≥ u in [R, ∞). Letc = inf{c ≥ 0 : w 1,c ≥ u in [R, ∞)}.

  2(1+ω) 2+α > 1, we have αt -2t + 2 < αt + 2t -2 and 4ω 2 < (αt + 2t -2) 2 . (2.23) hence follows. This concludes Case (a).

	Case (b): 1+ω 2+α < ω 2α (i.e. 0 < α < 2 and ω > 2α 2-α ).	
	We start by showing that	m ≤ h1 (h 2 (m)),	(2.24)

Note that in the notation of (2.10), we have m = m * and n = n * thanks to (4.7).

Set ũ(x) = u(x + T ) and ṽ(x) = u(x + T ). Note that ũ ≥ ū, ṽ ≤ v, (ũ, ṽ) is also a solution to (4.1) in the interval (-R, R -T ), and, in view of (1.5), we have as before that ũ′′ ≤ P (ũ, v), ū′′ = P (ū, v) ṽ′′ ≥ Q(ū, ṽ), v′′ = Q(ū, v).

In particular, if T was positive, it would follow from the strong maximum principle and the Hopf lemma that there would exist some small ε > 0 such that

which would contradict the definition of T . We hence have T = 0, as desired.

A Appendix: proof of Lemma 4.2.

We now prove of the exponential decay of solutions (u, v) to (4.1)-(4.2) to constants. This was needed in the proof of Proposition 4.1. We perform a standard asymptotic analysis near a hyperbolic critical point of ODEs.

We write u = bû and v = a + v. The system (4.1) becomes

The functions P and Q are polynomials and a direct computation gives

In particular, we have, for large x, that

The matrix A has two positive eigenvalues λ 2 ± (see (4.3)). For ω > 0, an Aeigenbasis of R 2 can be chosen as (1, µ) and (-µ, 1) (which correspond to the eigenvalues λ 2 -and λ 2 + , respectively) where µ is defined in (4.4). Note that

This signifies some difference in the asymptotic behavior of (û, v) for ω = 0 and for ω > 0.

Proof of Lemma 4.2. 1. We prove (4.5) and the relation ℓ 2 = µℓ 1 .

As û(x), v(x) → 0 as x → ∞, we have from (A.1)-(A.2) that û′′ (x), v′′ (x) → 0 as x → ∞. By interpolation, this implies û′ (x), v′ (x) → 0 as x → ∞. We now write v3 = û′ , v4 = v′ , v = (û, v, v3 , v4 ) and recast (A.1)-(A.2) as a first order system

where

and f is a polynomial satisfying f(0) = 0 and D f(0) = 0. Note that, as 0 < ω α < 1 2 , M has real and nonzero eigenvalues

Hence the origin is a hyperbolic critical point of (A.5). As v(x) → 0 as x → 0, we thus have that, for all large x, v(x) belongs to the stable manifold of (A.5) at the origin. By the Stable Manifold Theorem (see e.g. [14, Chapter 13, Theorem 4.3]), we then have that v(x) converges exponentially to 0 as x → ∞ and the rate of convergence is O(e -λx ) for any 0

We have

Applying [14, Chapter 13, Theorem 4.5], we can find a constant k and some δ > 0 such that

) and Y = O(e -(λ -+δ)x ). (A.10) Assertion (4.5) and the relation ℓ 2 = µℓ 1 are readily seen.

2. We next show that ℓ 1 and ℓ 2 are positive.

Suppose by contradiction the assertion does not hold. As ℓ 2 = µℓ 1 , one has ℓ 1 = ℓ 2 = 0. Returning to (A.10) we have that

The asymptotic behavior changes somewhat in the case ω = 0, which we record here for comparison. (This is not used in the paper.) Lemma A.2. Suppose α > 0 and ω = 0. Then, a = 0 and b = 1. Let (u, v) be a positive solution of (4.1)-(4.2). Then the following statements hold. x exists and is equal to

Proof. The proof is similar to that of Lemma 4.2 and is omitted.