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Amandine Aftalion∗, Alberto Farina†, Luc Nguyen‡

November 19, 2022

Abstract

The system leading to phase segregation in two-component Bose-Einstein
condensates can be generalized to hyperfine spin states with a Rabi term cou-
pling. This leads to domain wall solutions having a monotone structure for
a non-cooperative system. We use the moving plane method to prove mono-
tonicity and one-dimensionality of the phase transition solutions. This relies
on totally new estimates for a type of system for which no Maximum Principle
a priori holds. We also derive that one dimensional solutions are unique up to
translations. When the Rabi coefficient is large, we prove that no non-constant
solutions can exist.

1 Introduction

We study the monotonicity and uniqueness of a non-cooperative system coming from
the physics of two-component Bose-Einstein condensates which displays partial phase
transition. We are able to use the moving plane device in a case where a priori bounds
do not come from standard techniques. The particularity of this system with respect
to classical two-component segregated Bose-Einstein condensates is to couple both
linearly and nonlinearly the two equations due to spin coupling of the hyperfine states
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added to the intercomponent coupling. Our system for the functions u and v is the
following:

{

∆u = −u(1− u2 − v2)− v(ω − αuv) =: P (u, v) in R
N ,

∆v = −v(1− u2 − v2)− u(ω − αuv) =: Q(u, v) in R
N ,

(1.1)

where u and v are the wave functions for each component, α is a positive parameter
such that 1+α is the intercomponent coupling, and ω is a positive parameter, which
is the Rabi frequency of the one body coupling between the two internal states.
We would like to study the phase transition solutions, so we will impose boundary
conditions at infinity in one direction, namely:

{

u(x′, xN ) → b, v(x′, xN) → a, as xN → +∞,

u(x′, xN ) → a, v(x′, xN ) → b, as xN → −∞,
(1.2)

the limit being uniform in x′ ∈ R
N−1, where (a, b) is the solution to

a2 + b2 = 1, ab =
ω

α
, 0 < a < b. (1.3)

The existence of such solutions requires, in addition to the positivity of α and ω, the
condition

ω

α
<

1

2
. (1.4)

The study of domain wall solutions in coupled Gross-Pitaevskii equations or segre-
gation patterns has been the subject of many papers concerning existence, uniqueness,
monotonicity of asymptotic behaviour [2, 4, 19, 31]. It corresponds to the case ω = 0
and α > 0.

Here, we would like to address a different physical background, that of a two-
component Bose-Einstein condensates representing two different hyperfine states, and
coupled by their spin, to take into account a one body coherent Rabi coupling, which
corresponds to ω > 0. In this case, segregation is not complete and this leads to
what is called Rabi oscillations which have been experimentally observed in [28]. The
ground states and excited states have been studied in [1, 15, 27, 29, 32]. The system
(1.1)-(1.2) for N = 1 has been analyzed in [3] where the existence and asymptotic
properties of one dimensional domain wall solutions are derived in the case ω/α of
order 1 and α large and small. The properties and structures found in [3] have led
us to investigate the monotonicity and uniqueness of solutions. Let us point out that
this system has a heteroclinic structure and derives from the minimization of the
Gross-Pitaevskii energy. Understanding the solutions of (1.1)-(1.2) is a first step in
a future mathematical analysis of the specific vortex patterns appearing in the Rabi
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coupled condensates called multidimer bound states [1, 13, 26]: this is a state where a
pair of vortices of different components binds together as a molecule. These molecules
then interact in a nontrivial manner with other molecules, with the result that a rich
hierarchy of patterns, such as honeycombed, triangular, and square, is formed. It is
the possibility to have non segregation at infinity with these positive limits which is
at the origin of this specific pattern.

Here is our main result:

Theorem 1.1. Assume α > 0, ω > 0, and (1.4) holds. Then all positive solutions to
(1.1)-(1.2) depend only on xN , satisfy ∂Nu > 0 and ∂Nv < 0 and are translations of
one another along the xN direction.

The proof relies on the moving plane device of [5, 7, 21, 22, 30] to prove monotonic-
ity and one-dimensionality of the phase transition solutions and the sliding method
[6, 9, 10] to prove uniqueness. We point out that it is not clear a priori that these
methods can be applied as our system does not satisfy the usual monotonicity known
for cooperative systems. Therefore, as a first step, we need to prove key estimates that
will allow us to perform these methods and provide a structure to the system. These
estimates also hold for solutions of the system without any conditions at infinity:

Proposition 1.2. Assume α > 0, ω > 0, and (1.4) holds. Let (u, v) be a positive
regular solution of (1.1), then

u2 + v2 ≤ 1 and uv ≥ ω

α
. (1.5)

Moreover, either (u, v) ≡ (a, b) or (u, v) ≡ (b, a) or

a < u, v < b. (1.6)

The bounds (1.5) provide a special structure to the problem and come at various
stages in our proof. In the case ω = 0, the bound is only u2 + v2 ≤ 1 and is obtained
by Kato’s inequality. Indeed, the lower bound is reduced to uv ≥ 0. In this paper, it
becomes uv ≥ ω/α, and the upper and lower bounds have to be proved together in a
way which is similar to an attractor set. It is not a simple application of comparison
principles or Maximum Principle. Proving these bounds requires some non-trivial
extra-work, to which we devote the most part of Section 2.

In order to start the moving plane method, we need a sign for the difference
between the solution and its reflection with respect to a hyperplane close to infinity
in one direction. Since for our non-cooperative system, we do not have asymptotic
estimates of solutions at infinity, we show that the moving plane procedure can be
started by obtaining decrease estimates of the L2 norm of the gradients of these
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differences on large balls. This is inspired by [19] and relies on a Lemma in [18]. In
our case, we need in a crucial way a lower bound on uv and the proof is not a mere
adaptation of previous works since the estimates are more involved.

To continue the moving plane procedure, or to apply the sliding method, we need
to be able to apply the strong Maximum Principle and the Hopf lemma. This relies
again on our lower bound for uv and the special structure it provides to the system.
Let us point out that once the bounds (1.5) are known, the equations lead to (1.6),
but without a strict sign. Therefore, this provides signs to the right hand side of the
system (1.1), namely the system gets a structure of the type

{

−∆u = uf1(u, v) + vf2(u, v) in R
N ,

−∆v = vf1(v, u) + uf2(v, u) in R
N ,

(1.7)

with f1 positive, symmetric, decreasing in both variables and f2 negative, symmetric,
decreasing in both variables. This structure of the system allows to apply the Strong
Maximum Principle and the Hopf Lemma. One has to point out that this structure
is not assumed from the beginning but is a consequences of our bounds. What our
analysis emphasizes is that in order to obtain Maximum Principle or moving planes for
non-cooperative systems, it requires both bounds from above for u2+ v2 or −f1(u, v)
and below for uv or −f2(u, v).

The uniqueness proof for one dimensional solutions is based on the sliding method
[6, 9, 10] and first requires an asymptotic behaviour for the ode’s. Then the strong
Maximum Principle relying on our lower bounds allows to apply the device and get
uniqueness. We also refer to [23, 24, 25] where some related discussions on uniqueness
of 1D solutions are made for a related system arising in the Landau-de Gennes theory
for nematic liquid crystals.

We note that the existence of solutions to (1.1)-(1.2) can be obtained by approx-
imation by solutions on finite intervals as proved in Proposition 4.1.

In the case ω = 0, then the solution to (1.3) is given by a = 0 and b = 1, and
therefore domain wall solutions stay between 0 and 1. In the one-dimensional case
the existence of a monotone solution has been derived in [4] while uniqueness has
been derived in [2], based on a continuation argument and estimates of the linearized
operator, under the assumption that either u′ > 0 or v′ < 0. Asymptotic estimates
in the large α limit, still in one dimension, have been also obtained in [2], and rely
on properties for a simpler outer system studied by many authors and for instance
by [8, 11, 17, 20]. The other limit, that of weak segregation where α tends to 0
has been analyzed in [31]. The proof that N -dimensional solutions are in fact one-
dimensional and monotone is made in [19] and relies on the moving plane device. The
combination of the results of [19] and [2] then leads to the uniqueness of the solution,
up to translations.
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We also get interesting results using similar estimates in the case where (1.4)
does not hold. We prove that solutions to (1.1) are constant without any boundary
condition at infinity.

Theorem 1.3. Assume α > 0, and

ω

α
≥ 1

2
(1.8)

holds. Let (u, v) be a positive regular solution of (1.1). Then (u, v) is identically equal

to (c, c) with c =
√

1+ω
2+α

.

The paper is organized as follows: firstly, we prove our key a priori bounds, rough
upper and lower bounds as well as the refined bounds of Proposition 1.2. Then we
make the moving plane device work to get monotonicity and the one dimensional
property. Lastly, we study the properties of the one-dimensional solutions: existence,
uniqueness up to translations and exponential decay to constant at infinity.

2 A priori bounds. Proofs of Proposition 1.2 and

Theorem 1.3.

The proofs of Proposition 1.2 and Theorem 1.3 follow from the same treatment. Note
that the conclusion that u ≡ v ≡ c in Theorem 1.3 is equivalent to the pair of
inequalities that u2 + v2 ≤ 2c2 and uv ≥ c2, which resembles (1.5).

The rough idea of the proof is to bound the supremum of u2 + v2 in terms of the
infimum of uv and vice versa in such a way that the bounds self-bootstrap to the
desired bounds.

2.1 A non-degeneracy estimate

We start with a result which gives positive lower and upper bounds for u + v for
positive solutions to (1.1).

Lemma 2.1. Let (u, v) be a positive regular solution of (1.1). Then

[ 1 + ω

max(2+α
4
, 1)

]1/2

≤ u+ v ≤
[ 1 + ω

min(2+α
4
, 1)

]1/2

in R
N .

In particular u, v ∈ L∞(RN).
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Proof. Let w = u+ v. Then

∆w = w(u2 + v2 + αuv − 1− ω). (2.1)

Thus, by the strong maximum principle, we have w > 0 in R
N .

In view of (2.1), we have

∆w ≥ w
(

min(
2 + α

4
, 1)w2 − 1− ω

)

= min(
2 + α

4
, 1)w(w2 − γ2) (2.2)

where γ =
[

1+ω
min( 2+α

4
,1)

]1/2

.

By Kato’s inequality, this implies that

∆(w − γ)+ ≥ min(
2 + α

4
, 1)(w − γ)3+

which further implies (w − γ)+ ≡ 0 (see [12, Lemma 2]), i.e.

w ≤ γ in R
N . (2.3)

Returning to (2.1), we see that

∆w ≤ w
(

max(
2 + α

4
, 1)w2 − 1− ω

)

. (2.4)

and thus the rescaled function w̃(x) = max( (2+α)1/2

2
, 1)(1 + ω)−1/2w((1 + ω)−1/2x) is

a positive supersolution of the Allen-Cahn equation, i.e., it satisfies

−∆w̃ ≥ w̃
(

1− w̃2
)

in R
N . (2.5)

To proceed, we need the following lemma.

Lemma 2.2. There exists R0 > 0 such that, for R ≥ R0, the functional

I[ϕ] =

∫

BR

[1

2
|∇ϕ|2 + 1

4
(1− ϕ2)2

]

dx

admits a non-trivial minimizer ψ in H1
0 (BR). Furthermore, ψ is a smooth function

in BR satisfying 0 < ψ < 1 in BR.

Let us assume the above lemma for the moment and continue with the proof of
Lemma 2.1. Let R0 be the constant in Lemma 2.2 and m := minBR0

w̃ > 0 then, for

every ε ∈ (0,min{m, 1}), the function ψε := εψ satisfies

−∆ψε ≤ ψε(1− ψ2
ε ) in R

N ,
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and
ψε ≤ w̃ in BR0

, ψε = 0 on ∂BR0
.

The sliding method (see [6, Lemma 3.1]), then gives that w̃ ≥ ε in R
N and so w ≥ δ

in R
N , for some δ > 0.
Now, from (2.4) we get

−∆w ≥ w
(

1 + ω −max(
2 + α

4
, 1)w2

)

≥ δmax(
2 + α

4
, 1)(ϑ2 − w2) (2.6)

where ϑ =
[

1+ω
max( 2+α

4
,1)

]1/2

. Hence, by Kato’s inequality we have

∆(ϑ− w)+ ≥ δmax(
2 + α

4
, 1)[(ϑ− w)+]

2 (2.7)

which implies (ϑ− w)+ ≡ 0 (see [12, Lemma 2]), i.e.

w ≥
[ 1 + ω

max(2+α
4
, 1)

]1/2

in R
N . (2.8)

Proof of Lemma 2.2. We have that I[0] = 1
4
|BR|. Suppose that R > 1 and consider

the function
ϕ(x) = min(R− |x|, 1) for x ∈ BR.

We have

I[ϕ] =

∫

BR\BR−1

[1

2
|∇ϕ|2 + 1

4
(1− ϕ2)2

]

dx ≤ 3

4
|BR \BR−1|.

Clearly, for R sufficiently large, I[ϕ] < I[0] and so I posseses a non-trivial minimizer ψ
in H1

0 (BR). Replacing ψ by min{|ψ|, 1}, if necessary, we may assume that 0 ≤ ψ ≤ 1
in BR. Therefore ψ is a weak solution of the Allen-Cahn equation in BR and the
remaining part of the claim follows by standard elliptic regularity and by the strong
maximum principle.

2.2 Proof of Proposition 1.2

Proof. We have u, v > 0, and, by Lemma 2.1, there is some p > 1 such that

u+ v ≥ 1

p
. (2.9)
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Let A = u2 + v2, B = − ln(uv) and

m = supA, m∗ = max(m, 1), n = supB, and n∗ = max(n,− ln
ω

α
). (2.10)

1. We prove that

m ≤ 1

2
(1 +

√
1− 8s∗) where s∗ = min

t≥e−n∗
(αt2 − ωt). (2.11)

In particular, as s∗ ≥ −ω2

4α
, we have

m ≤ 1

2

(

1 +

√

1 +
2ω2

α

)

<∞. (2.12)

We have

∆A ≥ 2uP (u, v) + 2vQ(u, v) = 2u4 + 2v4 + 4(α + 1)u2v2 − 2u2 − 2v2 − 4ωuv

= 2A2 − 2A+ 4αe−2B − 4ωe−B.

Note that αe−2B − ωe−B ≥ s∗, and, as n∗ ≥ − ln ω
α
, s∗ ≤ 0. It follows that

∆A ≥ 2A2 − 2A+ 4s∗ = 2
(

A− 1

2
(1 +

√
1− 8s∗)

)(

A− 1

2
(1−

√
1− 8s∗)

)

,

and so, by Kato’s inequality,

∆
(

A− 1

2
(1 +

√
1− 8s∗)

)

+
≥ 2A2 − 2A+ 4s∗ = 2

(

A− 1

2
(1 +

√
1− 8s∗)

)2

+
.

Estimate (2.11) follows from [12, Lemma 2].

2. We prove that

n ≤ − ln
ω

α + 2− 2
m∗

. (2.13)

Equivalently,

uv ≥ ω

α + 2− 2
m∗

. (2.14)

We have

∆B ≥ −1

u
P (u, v)− 1

v
Q(u, v) = −(α + 2)(u2 + v2) + 2 +

ω(u2 + v2)

uv

= −(α + 2)A+ 2 + ωAeB = 2(1− A

m∗
) + (α+ 2− 2

m∗
)A(

ω

α+ 2− 2
m∗

eB − 1).
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Using Kato’s inequality, the inequality ex − 1 ≥ 1
2
x2 for x ≥ 0 and recalling (2.9), we

get

∆(B − ln
α + 2− 2

m∗

ω
)+ ≥

α+ 2− 2
m∗

4p2
(B − ln

α + 2− 2
m∗

ω
)2+.

We deduce that (B − ln
α+2− 2

m∗

ω
)+ ≡ 0, again thanks to [12, Lemma 2]. This proves

(2.13).

3. We prove that m∗ = 1 or n∗ = − ln ω
α
.

Assume by contradiction that the above does not hold. Then m = m∗ > 1 and
n = n∗ > − ln ω

α
.

Let

h1(t) =
1

2

(

1 +
√
1− 8αt2 + 8ωt

)

, (2.15)

h2(t) =
ωt

(α + 2)t− 2
. (2.16)

We claim that
m ≤ h1(h2(m)). (2.17)

Case (i): α ≥ 2. From (2.13), we have n ≤ − ln ω
α+2

≤ − ln ω
2α
. It follows that

s∗ = min
t≥e−n

(αt2 − ωt) = αe−2n − ωe−n.

Plugging this into (2.11) yields

m ≤ 1

2
(1 +

√
1− 8αe−2n + 8ωe−n) = h1(e

−n).

Since h1 is decreasing in [ ω
2α
,∞), this together with (2.13) implies (2.17).

Case (ii): α < 2. As α < 2, ω < α
2
< 2α

2−α
and so, by (2.12),

m ≤ 1

2

(

1 +

√

1 +
2ω2

α

)

<
1

2

(

1 +

√

1 +
8α

(2− α)2

)

=
2

2− α
.

Inserting this into (2.13) yields n ≤ − ln ω
2α
. We can now repeat the proof of Case (i)

to reach (2.17).
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We now compute

d

dt
h1(h2(t)) = h′1(h2(t))h

′
2(t) =

2(2αh2(t)− ω)
√

1− 8αh2(t)2 + 8ωh2(t)

2ω

[(α + 2)t− 2]2

=
1

√

1− 8αh2(t)2 + 8ωh2(t)

4ω2(αt− 2t+ 2)

(αt+ 2t− 2)3
. (2.18)

Note that h2 is decreasing in ( 2
2+α

,∞) and so h2(t) <
ω
α
for t > 1. Hence, for t > 1,

we have
√

1− 8αh2(t)2 + 8ωh2(t) > 1, αt − 2t + 2 < αt + 2t − 2 and 4ω2 < α2 <
(αt+ 2t− 2)2 and so

d

dt
h1(h2(t)) < 1 for all t > 1.

As h1(h2(1)) = 1, this implies that the inequality equation t ≤ h1(h2(t)) has no
solution in (1,∞). Therefore, (2.17) implies that m = 1. This finishes Step 3.

4. We prove (1.5). By Step 3, we have m∗ = 1 or n∗ = − ln ω
α
.

If m∗ = 1, then, in view of (2.13), n ≤ − ln ω
α
, and so A ≤ 1 and B ≥ − ln ω

α
,

which give (1.5).
On the other hand, if n∗ = − ln ω

α
, then, by (2.11), m ≤ 1. Again we obtain A ≤ 1

and B ≥ − ln ω
α
, which also give (1.5) as desired.

5. Finally, we prove the trichotomy that either (u, v) ≡ (a, b) or (u, v) ≡ (b, a) or
(1.6) holds.

Suppose that (u, v) 6≡ (a, b) and (u, v) 6≡ (b, a). From (1.5), we have

a ≤ u, v ≤ b. (2.19)

We note that

P (b, v) = b(b2 + v2 − 1) + v(αbv − ω)
(2.19)

≥ b(b2 + a2 − 1) + v(αba− ω) = 0.

Hence the constant function b satisfies

∆b = 0 ≤ P (b, v).

Since u ≤ b, and ∆u = P (u, v), the strong maximum principle implies either u < b
or u ≡ b. If the latter case holds, the second equation of (1.1) implies that v ≡ a,
which contradicts our assumption that (u, v) 6≡ (b, a). We thus have u < b.

The remaining inequalites in (1.6) are shown similarly using

P (a, v) = a(a2 + v2 − 1) + v(αav − ω)
(2.19)

≤ a(a2 + b2 − 1) + v(αab− ω) = 0,

Q(u, a) = a(u2 + a2 − 1) + u(αua− ω)
(2.19)

≤ a(b2 + a22 − 1) + u(αba− ω) = 0,

Q(u, b) = b(u2 + b2 − 1) + u(αub− ω)
(2.19)

≥ b(a2 + a22 − 1) + u(αab− ω) = 0.
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We omit the details.

2.3 Proof of Theorem 1.3

Proof. We adapt the proof of Proposition 1.2, as the conclusion is equivalent to the
following pair of inequalities:

u2 + v2 ≤ 2(1 + ω)

2 + α
and uv ≥ 1 + ω

2 + α
.

By Lemma 2.1, (2.9) holds. Let A = u2 + v2, B = − ln(uv) and

m = supA, m̃∗ = max(m,
2(1 + ω)

2 + α
),

n = supB, and ñ∗ = max(n,− ln
1 + ω

2 + α
).

(Note the difference between the definition of m̃∗ and ñ∗ and that of m∗ and n∗ in
the proof of Proposition 1.2.)

1. We prove that

m ≤ 1

2
min

(

1 +
√
1− 8s1, 1 + ω +

√

(1 + ω)2 − 8αs2

)

, (2.20)

where s1 = mint≥e−ñ∗ (αt2 − ωt) ≤ 0 and s2 = e−2ñ∗ ≤ (1+ω)2

8α
.

As ñ∗ ≥ − ln 1+ω
2+α

≥ − ln ω
α
(due to ω ≥ 1

2
α), s1 ≤ 0. Also s2 ≤ (1+ω)2

(2+α)2
≤ (1+ω)2

8α
.

The proof of the inequality m ≤ 1
2
(1 +

√
1− 8s1) follows from the differential

inequality

∆A ≥ 2A2 − 2A+ 4αu2v2 − 4ωuv,

exactly as in the proof of (2.11). To obtain m ≤ 1
2
(1 + ω +

√

(1 + ω)2 − 8αs2), we
use the inequality v1v2 ≤ 1

2
A in the above differential inequality:

∆A ≥ 2A2 − 2(1 + ω)A+ 4αe−2B ≥ 2A2 − 2(1 + ω)A+ 4αs2

= 2
(

A− 1

2
(1 + ω +

√

(1 + ω)2 − 8αs2)
)(

A− 1

2
(1 + ω −

√

(1 + ω)2 − 8αs2)
)

.

By Kato’s inequality, this leads to

∆
(

A− 1

2
(1 + ω +

√

(1 + ω)2 − 8αs2)
)

+
≥ 2

(

A− 1

2
(1 + ω +

√

(1 + ω)2 − 8αs2)
)2

+
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and so, by [12, Lemma 2],

A ≤ 1

2
(1 + ω +

√

(1 + ω)2 − 8αs2).

We have thus proved (2.20).

2. As in the proof of Proposition 1.2, we have

n ≤ − ln
ω

α + 2− 2
m̃∗

. (2.21)

3. We show that m̃∗ = 2(1+ω)
2+α

or ñ∗ = − ln 1+ω
2+α

. Assume by contradiction that this

does not hold, so that m = m̃∗ >
2(1+ω)
2+α

and n = ñ∗ > − ln 1+ω
2+α

.

Case (a): 1+ω
2+α

≥ ω
2α

(i.e. either α ≥ 2 or 0 < α < 2 and ω ≤ 2α
2−α

).

In this case, the argument in Step 3 of the proof of Proposition 1.2 gives

m ≤ h1(h2(m)), (2.22)

where h1 and h2 are defined in (2.15)-(2.16)

Now note that h1(h2(
2(1+ω)
2+α

)) = 2(1+ω)
2+α

. Thus in order to obtain a contradiction,
it suffices to show that

d

dt
h1(h2(t)) < 1 for all t >

2(1 + ω)

2 + α
. (2.23)

To see this, recall formula (2.18) for the derivative of h1 ◦ h2:

d

dt
h1(h2(t)) =

1
√

1− 8αh2(t)2 + 8ωh2(t)

4ω2(αt− 2t + 2)

[(α + 2)t− 2]3
.

Now if t > 2(1+ω)
2+α

, then as h2 is decreasing in ( 2
2+α

,∞), we have ω
2+α

= h2(∞) <

h2(t) < h2(
2(1+ω)
2+α

) = 1+ω
2+α

< ω
α
(thanks to α < 2ω), and so

1− 8αh2(t)
2 + 8ωh2(t) > 1.

Also, for t > 2(1+ω)
2+α

> 1, we have αt− 2t+ 2 < αt+ 2t− 2 and 4ω2 < (αt+ 2t− 2)2.
(2.23) hence follows. This concludes Case (a).

Case (b): 1+ω
2+α

< ω
2α

(i.e. 0 < α < 2 and ω > 2α
2−α

).

We start by showing that
m ≤ h̃1(h2(m)), (2.24)
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where h2 is defined in (2.16) and h̃1 is defined by

h̃1(t) =
1

2
(1 + ω +

√

(1 + ω)2 − 8αt2).

Indeed, By (2.21), n ≤ − ln h2(m). Plugging this into (2.20), we get m ≤ h̃1(e
−n) ≤

h̃1(h2(m)), as h̃1 is decreasing in (0,∞).

Next, a direct computation gives h̃1(h2(
2(1+ω)
2+α

)) = 2(1+ω)
2+α

. Thus, as in Case (a), it
suffices to show that

d

dt
h̃1(h2(t)) < 1 for all t >

2(1 + ω)

2 + α
. (2.25)

We compute

d

dt
h1(h2(t)) = h′1(h2(t))h

′
2(t) =

4αh2(t)
√

(1 + ω)2 − 8αh2(t)2
2ω

[(α + 2)t− 2]2

=
1

√

(1 + ω)2 − 8αh2(t)2
8αωh2(t)

[(α + 2)t− 2]2
.

Now for t > 2(1+ω)
2+α

, we have ω
2+α

< h2(t) <
1+ω
2+α

as in the previous case thanks to the
monotonicity of h2. It follows that

d

dt
h1(h2(t)) <

1
√

(1 + ω)2 − 8α (1+ω)2

(2+α)2

8αω 1+ω
2+α

4ω2
=

2α

(2− α)ω
< 1 for all t >

2(1 + ω)

2 + α
.

This proves (2.25), and so finishes Case (b). Step 3 is concluded.

4. Finally, we show that u ≡ v ≡
√

1+ω
2+α

.

By Step 3, we have m̃∗ =
2(1+ω)
2+α

or ñ∗ = − ln 1+ω
2+α

.

If m̃∗ = 2(1+ω)
2+α

, then, in view of (2.13), n ≤ − ln 1+ω
2+α

, and so A ≤ 2(1+ω)
2+α

and

B ≥ − ln 1+ω
2+α

, which give u ≡ v ≡
√

1+ω
2+α

.

On the other hand, if ñ∗ = − ln 1+ω
2+α

, then, by (2.11), m ≤ 2(1+ω)
2+α

. Again we obtain

A ≤ 2(1+ω)
2+α

and B ≥ − ln 1+ω
2+α

, which then give u ≡ v ≡
√

1+ω
2+α

. We conclude the

proof.

3 Moving plane device
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3.1 Monotonicity with respect to xN

We are going to show that if (u, v) is a solution to (1.1)-(1.2), then it is monotone
with respect to xN . This relies strongly on the estimates (1.5)-(1.6).

Proposition 3.1. Under the assumptions of Theorem 1.1, since (1.5)-(1.6) hold, we
have

∂Nu > 0 and ∂Nv < 0 in R
N . (3.1)

The proof is based on the moving planes method, in a version developed by [19].
Nevertheless our system requires some major adjustments which rely on new bounds,
and in particular the bounds from below for the product uv, as we will point out.

For λ ∈ R, we set

uλ(x
′, xN ) := u(x′, 2λ− xN ), vλ(x

′, xN ) := v(x′, 2λ− xN) and Σλ := {xN > λ}.

We want to prove that

uλ(x) ≤ u(x) and vλ(x) ≥ v(x) ∀x ∈ Σλ, ∀λ ∈ R. (3.2)

This and the strong Maximum Principle will yield Proposition 3.1.
In order to prove that (3.2) holds, we will show that

Λ := {λ ∈ R : uµ ≤ u and vµ ≥ v in Σµ for every µ ≥ λ} = R. (3.3)

In order to start the moving plane device, we will start by proving that Λ 6= ∅:

Lemma 3.2. There exists λ̄ ∈ R sufficiently large such that

u ≥ uλ and v ≤ vλ in Σλ

for any λ ≥ λ̄. In other words, Λ ⊃ [λ̄,∞).

The pair (uλ, vλ) solves











−∆uλ = g(uλ, vλ) + vλ(ω − αuλvλ)

−∆vλ = g(vλ, uλ) + uλ(ω − αuλvλ)

a < uλ, vλ < b

(Pλ)

where g(u, v) = u(1− u2 − v2) and where we have used (1.6).
Let ϕR be a standard C1 cut-off function on R

N such that ϕR = 1 in BR, ϕR = 0
outside B2R and |∇ϕR| ≤ 2/R on R

N . We subtract the equations for uλ and u, and
multiply by the test function

(uλ − u)+ϕ2
R 1Σλ

.
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We find
∫

Σλ

|∇(uλ − u)+|2ϕ2
R = −2

∫

Σλ

ϕR(uλ − u)+∇(uλ − u)+ · ∇ϕR + I1 + I2, (3.4)

where

I1 =

∫

Σλ

(

g(uλ, vλ)− g(u, v)
)

(uλ − u)+ϕ2
R, (3.5)

I2 =

∫

Σλ

(

vλ(ω − αuλvλ)− v(ω − αuv)
)

(uλ − u)+ϕ2
R . (3.6)

Let us point out that, in the above expressions, the term ω− αuv is non-negative by
our lower bound on uv. We will soon see that this sign of ω − αuv plays an essential
role in our argument.

We proceed similarly by subtracting the equations for v and vλ and multiplying
by

(v − vλ)
+ϕ2

R 1Σλ

and get
∫

Σλ

|∇(v − vλ)
+|2ϕ2

R = −2

∫

Σλ

ϕR(v − vλ)
+∇(v − vλ)

+ · ∇ϕR + I3 + I4 (3.7)

where

I3 =

∫

Σλ

(

g(v, u)− g(vλ, uλ)
)

(v − vλ)
+ϕ2

R, (3.8)

I4 =

∫

Σλ

(

u(ω − αuv)− uλ(ω − αuλvλ)
)

(v − vλ)
+ϕ2

R. (3.9)

Let

Lλ(R) :=

∫

Σλ∩BR

[

|∇(uλ − u)+|2 + |∇(v − vλ)
+|2

]

,

Jλ(R) :=

∫

Σλ

[

(

(uλ − u)+
)2

+
(

(v − vλ)
+
)2
]

ϕ2
R.

We deduce from (3.4)-(3.7) that for any ϑ ∈ (0, 1),

Lλ(R) ≤ ϑLλ(2R) +
4

ϑR2
Jλ(R) + I1 + I2 + I3 + I4. (3.10)

We want to estimate I1, I2, I3, I4 in terms of Jλ(R).
Estimate of I2 and I4: We deduce from (3.6) that

I2 =

∫

Σλ

[

(v − vλ)(αu(v + vλ)− ω)(uλ − u)+ − αv2λ
(

(uλ − u)+
)2
]

ϕ2
R . (3.11)
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We recall from Proposition 1.2 that αuv−ω ≥ 0, which is a crucial estimate. So that
in the first term in the square bracket on the right hand side of (3.11), we can keep
only (v − vλ)

+ in the upper bound and find

I2 ≤
∫

Σλ

[

(αuv−ω)(v−vλ)+(uλ−u)++αuvλ(v−vλ)+(uλ−u)+−αv2λ
(

(uλ−u)+
)2
]

ϕ2
R .

(3.12)
A similar computation for I4 yields

I4 ≤
∫

Σλ

[

(αuλvλ−ω)(v−vλ)+(uλ−u)++αuvλ(v−vλ)+(uλ−u)+−αu2
(

(v−vλ)+
)2
]

ϕ2
R .

(3.13)
Because of (1.2), for λ large enough, in Σλ, u tends to b, v tends to a and uv tends
to ab = ω/α. Moreover in the support of (v− vλ)

+, v ≥ vλ ≥ a, so vλ also tends to a,
and in the support of (uλ − u)+, b ≥ uλ ≥ u, so uλ tends to b. This implies that for
λ large enough, in Σλ, uλvλ also tends to ab = ω/α. Therefore, for some small ε > 0
which will be fixed later, there exists λ̄ large enough, so that for λ ≥ λ̄, in Σλ ∩ S,
where S is the intersection of the supports of (uλ − u)+ and (v − vλ)

+,

|(αuλvλ − ω) + (αuv − ω) + 2(αuvλ − ω)| ≤ ε. (3.14)

Moreover, for λ̄ large enough, and for λ ≥ λ̄, in Σλ, α|u2 − b2| ≤ ε/2. We sum the
two estimates (3.12) and (3.13), use this, (3.14) and the fact that vλ ≥ a, to find

I2+ I4 ≤ 2εJλ(R)−α

∫

Σλ

[

a2
(

(uλ−u)+
)2

+ b2
(

(v− vλ)
+
)2−2ab(v− vλ)

+(uλ−u)+
]

.

(3.15)
Estimate of I1 and I3: By the mean value theorem, there exist ξ1(x) ∈ (u(x), uλ(x))
and ξ2(x) ∈ (vλ(x), v(x)) such that

g(uλ, vλ)− g(u, v) =
∂g

∂u
(ξ1, vλ)(uλ − u) +

∂g

∂v
(u, ξ2)(vλ − v).

Since g(u, v) = u(1− u2 − v2), we have ∂g
∂v
(u, ξ2) ≤ 0. Hence

(

g(uλ, vλ)−g(u, v)
)

(uλ−u)+ ≤ ∂g

∂u
(ξ1, vλ)

(

(uλ−u)+
)2
+
∣

∣

∂g

∂v
(u, ξ2)

∣

∣(v−vλ)+(uλ−u)+.

Moreover,
∂g

∂u
(ξ1, vλ) = 1− 3ξ21 − v2λ,

∂g

∂v
(u, ξ2) = −2uξ2.

16



Next, note that, as λ → ∞, u and uλ tend to b in Σλ ∩ {uλ > u} and v and vλ tend
to a in Σλ ∩ S. Hence, we have

in Σλ ∩ {uλ > u}, lim sup
λ→∞

∂g

∂u
(ξ1, vλ) ≤ −2b2,

in Σλ ∩ S, lim
λ→∞

∂g

∂v
(u, ξ2) = −2ab.

Therefore, in view of (3.5) and by enlarging λ̄ if necessary we have for λ ≥ λ̄ that

I1 ≤
∫

Σλ

[

(−2b2 + ε)
(

(uλ − u)+
)2

+ (2ab+ ε)(v − vλ)
+(uλ − u)+

]

ϕ2
R . (3.16)

We argue similarly to I1 for I3 and find

I1 + I3 ≤
ε

2
Jλ(R)− 2

∫

Σλ

[

b2
(

(uλ − u)+
)2

+ a2
(

(v − vλ)
+
)2 − 2ab(v − vλ)

+(uλ − u)+
]

.

(3.17)

Combining the estimates, we get

I1 + I2 + I3 + I4 ≤
5ε

2
Jλ(R)

−
∫

Σλ

[

(αa2 + 2b2)
(

(uλ − u)+
)2

+ (αb2 + 2a2)
(

(v − vλ)
+
)2

− 2(2 + α)ab(v − vλ)
+(uλ − u)+

]

.

Note that the matrix

M :=

(

αa2 + 2b2 −(2 + α)ab
−(2 + α)ab αb2 + 2a2

)

has determinant 2α(a2 − b2)2 which is positive as soon as (1.4) holds. Hence M has
positive eigenvalues µ1 > µ2 > 0. In the sequel, we assume that µ2 > 3ε. Inserting
(3.15) and (3.17) into (3.10), for ε > 0, there exists λ̄ > 0, such that we for λ > λ̄
and large R that

Lλ(R) ≤ ϑLλ(2R) + (−µ2 + 3ε)Jλ(R). (3.18)

We fix ϑ := 2−(N+1) and some ε > 0 such that µ2 − 3ε > 0. Then for λ > λ̄ and
large R,

Lλ(R) ≤ ϑLλ(2R). (3.19)

The conclusion will follow from a lemma proved and used in [18] which allows to show
that Lλ(R) is identically zero.
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Lemma 3.3 ([18, Lemma 2.1]). Let ϑ > 0 and γ > 0 such that ϑ < 2−γ. Moreover
let R0 > 0, C > 0 and

L : (R0,+∞) → R

be a non-negative and non-decreasing function such that
{

L(R) ≤ ϑL(2R) +G(R) ∀R > R0,

L(R) ≤ CRγ ∀R > R0,

where G : (R0,+∞) → R
+ is such that

lim
R→+∞

G(R) = 0.

Then
L(R) = 0 ∀R > R0.

We have that Lλ(R) ≤ CRN since |∇u|, |∇v| ∈ L∞(RN) by elliptic estimates and
the L∞ bound of Lemma 2.1. Lemma 3.3 then yields that

Lλ(R) = 0 for all λ > λ̄ and large R.

Recalling that u = uλ and v = vλ on ∂Σλ, we reach the conclusion of Lemma 3.2.
We now have to prove that λ̃ := inf Λ (with Λ defined in (3.3)) is −∞ to complete

the proof of Proposition 3.1:

Lemma 3.4. We have λ̃ = −∞.

Proof. Assume by contradiction that λ̃ is finite. Then, Λ = [λ̃,+∞), and there exist
sequences (λi) with λi ∈ (−∞, λ̃) and (xi) with xi ∈ Σλi

such that λi → λ̃ as i→ ∞,
and at least one of the two holds:

uλi
(xi) > u(xi) for every i, or (3.20a)

vλi
(xi) < v(xi) for every i. (3.20b)

Assume that (3.20a) holds; the other case can be treated similarly. We claim that
the sequence (xiN) ⊂ R is bounded. If not, as xiN > λi and λi is bounded, up to a
subsequence xiN → +∞ as i → ∞. It follows that 2λi − xiN → −∞, and in light of
assumption (1.2) we obtain

lim
i→∞

uλi
(xi) = lim

i→∞
u((xi)′, 2λi − xiN ) = a and lim

i→∞
u(xi) = b,

in contradiction with (3.20a) for i sufficiently large. Hence the claim is proved and,
up to a subsequence, xiN → x̄N as i→ ∞.
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Let us set

ui(x) := u((xi)′ + x′, xN) and vi(x) := v((xi)′ + x′, xN ).

Since (u, v) is bounded (in view of (1.5)), by standard elliptic estimates |∇ku|, |∇kv| ∈
L∞(RN), for k = 1, 2, . . . Thus, after extracting a subsequence if necessary, (ui, vi)
converges in C2

loc(R
N) to a limit (ū, v̄), still solution of (1.1).

We wish to show that x̄N = λ̃. From equation (3.20a), we obtain

ūλ̃(0
′, x̄N ) = ū(0′, 2λ̃− x̄N) = lim

i→∞
u((xi)′, 2λi − xiN)

= lim
i→∞

uλi
(xi) ≥ lim

i→∞
u(xi) = ū(0′, x̄N).

(3.21)

On the other hand, we observe that ((xi)′+x′, xN) ∈ Σλ̃ whenever (x′, xN) ∈ Σλ̃, and
by definition uλ̃ ≤ u in Σλ̃. Consequently, by the convergence of ui to ū we deduce
that

ūλ̃(x
′, xN) = lim

i→∞
ui(x′, 2λ̃− xN) = lim

i→∞
u((xi)′ + x′, 2λ̃− xN)

≤ lim
i→∞

u((xi)′ + x′, xN) = lim
i→∞

ui(x′, xN) = ū(x′, xN )

for every (x′, xN) ∈ Σλ̃. Analogously, as vλ̃ ≥ v in Σλ̃, we have v̄λ̃ ≥ v̄ in Σλ̃.
Now







−∆(ū − ūλ̃) + c(x)(ū− ūλ̃) = (v̄λ̃ − v̄)(αūv̄ − ω + αūλ̃v̄λ̃ + ūλ̃(v̄λ̃ + v̄))
ū− ūλ̃ ≥ 0 in Σλ̃

ū− ūλ̃ = 0 on ∂Σλ̃,
(3.22)

with c ∈ C0(Σλ̃) defined by

c(x) = αv̄(x)v̄λ̃(x) + v̄2(x) + ū2(x) + ūūλ̃(x) + ū2
λ̃
(x)− 1.

Because of (1.5), the right hand side on the first line of (3.22) is nonnegative, hence,
the strong Maximum Principle implies that necessarily ū − ūλ̃ > 0 in Σλ̃, and a
comparison with (3.21) reveals that x̄N = λ̃, as desired.

At this point we are ready to reach a contradiction. On the one hand, by the
absurd assumption (3.20a)

0 < uλi
(xi)− u(xi) = ui(0′, 2λi − xiN)− ui(0′, xN) = 2∂Nu

i(0′, ξi)(λi − xiN) ∀i,

for some ξi ∈ (2λi − xiN , x
i
N). As λi < xiN for every i this implies ∂Nu

i(x′, ξiN) < 0 for
every i, and passing to the limit we infer that

∂N ū(0
′, λ̃) ≤ 0, (3.23)
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where we used the fact that λi ≤ ξi ≤ xiN with λi, x
i
N → λ̃.

On the other hand, thanks to (3.22) and the fact that ū− ūλ̃ > 0 in Σλ̃, the Hopf
Lemma implies that

−2∂N ū(0
′, λ̃) = ∂−eN (ū(0

′, λ̃)− ūλ̃(0
′, λ̃)) < 0,

in contradiction with (3.23).
The above argument establishes that (3.20a) cannot occur. With minor changes,

we can show that also (3.20b) cannot be verified, and in conclusion λ̃ cannot be
finite.

Proof of Proposition 3.1. By (3.3), we directly deduce that ∂Nu ≥ 0 and ∂Nv ≤ 0 in
R

N . Since
{

−∆(∂Nu) + (3u2 + (α + 1)v2 − 1)∂Nu = (ω − 2(α+ 1)uv)∂Nv ≥ 0 in R
N

−∆(∂Nv) + (3v2 + (α+ 1)u2 − 1)∂Nv = (ω − 2(α + 1)uv)∂Nu ≤ 0 in R
N ,

the strict inequality follows by the strong Maximum Principle.

3.2 One-dimensional symmetry

We extend the monotonicity in xN to all the directions of the open upper hemisphere
S
N−1
+ :=

{

ν ∈ S
N−1 : 〈ν, eN〉 > 0

}

. We follow the structure of proof in [19], introduced
in [16] and in [20], though the specificity of our system requires new estimates.

Proposition 3.5. For every ν ∈ S
N−1
+ , we have

∂νu > 0 and ∂νv < 0 in R
N .

In particular, u and v depend only on xN .

We divide the proof into several steps.

Lemma 3.6. Let σ > 0 be arbitrarily chosen. There exists an open neighborhood OeN

of eN in S
N−1 such that

∂u

∂ν
(x) > 0 and

∂v

∂ν
(x) < 0 ∀x ∈ Sσ, ∀ν ∈ OeN ,

where Sσ := R
N−1 × (−σ, σ).
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Proof. Let σ > 0 be arbitrarily chosen. Firstly, we claim that there exists ε = ε(σ) > 0
such that

∂Nu(x) ≥ ε and ∂Nv(x) ≤ −ε ∀x ∈ Sσ. (3.24)

By contradiction, assume that there exists a sequence (xi), with xi ∈ Sσ, such that
at least one of the two following equalities holds :

lim
i→+∞

∂Nu(x
i) = 0 (3.25a)

or lim
i→+∞

∂Nv(x
i) = 0. (3.25b)

We define
ui(x) := u(x+ xi) and vi(x) := v(x+ xi).

The sequence {(ui, vi)} is uniformly bounded in W 1,∞(RN), and hence by elliptic
regularity (ui, vi) → (ū, v̄) in C2

loc(R
N) up to a subsequence, where (ū, v̄) is still a

solution to (1.1)-(1.2), which also satisfies ∂N ū ≥ 0 and ∂N v̄ ≤ 0 on R
N . The strong

maximum principle and the condition at infinity (1.2) then imply that ∂N ū > 0 and
∂N v̄ < 0 on R

N , and this contradicts (3.25a) or (3.25b). This completes the proof of
claim (3.24).

Now we claim that

The map ν 7→ (∂νu, ∂νv) is in C0,1
(

S
N−1,

(

C0(RN)
)2
)

. (3.26)

This is a simple consequence of the globlal Lipschitz continuity of (u, v), which implies
that

∣

∣

∣

∣

∂u

∂ν1
(x)− ∂u

∂ν2
(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂v

∂ν1
(x)− ∂v

∂ν2
(x)

∣

∣

∣

∣

≤ 2C|ν1 − ν2|

for every x ∈ R
N .

Combining (3.24) and (3.26), the conclusion follows.

Lemma 3.7. The function u is strictly increasing and v is strictly decreasing with
respect to all unit vectors in an open neighborhood of eN in S

N−1.

Proof. Firstly, we write down the equations satisfied by the directional derivatives
uν = ∂νu and vν = ∂νv:

{

−∆uν + uν(3u
2 + (α + 1)v2 − 1) + vν(2(α+ 1)uv − ω) = 0

−∆vν + vν(3v
2 + (α+ 1)u2 − 1) + uν(2(α + 1)uv − ω) = 0

in R
N . (3.27)

Fix some σ > 0 for the moment and let OeN be the neighborhood of eN given by
Lemma 3.6. We will show that uν ≥ 0 and vν ≤ 0 for all ν ∈ OeN by applying Lemma
3.3 to the quantity

IR :=

∫

CR

[

|∇u−ν |2 + |∇v+ν |2
]

,
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where CR := Σσ ∩ BR and Σσ := {xN > σ}. The conclusion then follows from the
strong maximum principle.

We test the first equation in (3.27) with u−ν ϕ
2
R where ϕR is chosen exactly as in

Lemma 3.2. Using the bounds (1.5) and the fact that uν ≥ 0 on {xN = σ} (due to
Lemma 3.6), we obtain
∫

CR
|∇u−ν |2 ≤ −2

∫

C2R
u−ν ϕR∇u−ν · ∇ϕR

−
∫

C2R
(3u2 + (α + 1)v2 − 1)(u−ν ϕR)

2 +

∫

C2R
ϕ2
R(2(α+ 1)uv − ω)u−ν v

+
ν

≤ ϑ

∫

C2R
|∇u−ν |2 +

∫

C2R
(u−ν ϕR)

2

(

4

ϑR2
+ sup

Σσ

(−3u2 − (α + 1)v2 + 1)

)

+

∫

C2R
ϕ2
R(2(α+ 1)uv − ω)u−ν v

+
ν ,

where 0 < ϑ < 2−N . In a similar way, we find for v+ν
∫

CR
|∇v+ν |2 ≤ ϑ

∫

C2R
|∇v+ν |2 +

∫

C2R
(v+ν ϕR)

2

(

4

ϑR2
+ sup

Σσ

(−3v2 − (α + 1)u2 + 1)

)

+

∫

C2R
ϕ2
R(2(α+ 1)uv − ω)u−ν v

+
ν .

We notice that if σ > 0 is sufficiently large, since u tends to b and v tends to a for
xN large, then, in Σσ,

2(α+ 1)uv − ω → 2(α+ 1)ab− ω, 3u2 + (α+ 1)v2 − 1 → 2b2 + αa2,

and 3v2 + (α+ 1)u2 − 1 → 2a2 + αb2.

Thus, for any small δ > 0, we can choose σ and R sufficiently large so that

IR ≤ ϑI2R −
∫

C2R

[

(2b2 + αa2 − δ)(u−ν )
2 + (2a2 + αb2 − δ)(v+ν )

2

− 2(2(α+ 1)ab− ω + δ)|u−ν ||v+ν |
]

ϕ2
R. (3.28)

We point out that

(2b2+αa2−δ)(u−ν )2+(2a2+αb2−δ)(v+ν )2 ≥ 2
√

(2b2 + αa2 − δ)(2a2 + αb2 − δ)|u−ν ||v+ν |.
and that, by (1.3) and (1.4),

(2b2 + αa2)(2a2 + αb2)− (2(α+ 1)ab− ω)2

= 2α(a2 + b2)2 − 3α(α+ 4)a2b2 + 4ω(α+ 1)ab− ω2 = 2α
(

1− 4ω2

α2

)

> 0.
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Hence, by choosing first small δ and then large σ from the start, we have for all
sufficiently large R that the integral on the right hand side of (3.28) is non-negative.
As a consequence, we infer that

IR ≤ ϑI2R for all R sufficiently large. (3.29)

We can now apply Lemma 3.3 to find that IR = 0 for all large R. It follows that
uν ≥ 0 and vν ≤ 0 in Σσ = {xN > σ}. Arguing exactly in the same way, we can show
that the same conditions are satisfied in {xN < −σ}. By Lemma 3.6, we deduce that
uν ≥ 0 and vν ≤ 0 in R

N for every ν ∈ OeN , with both uν 6≡ 0 and vν 6≡ 0. In view
of (1.5) and (3.27), the conclusion follows from the strong maximum principle.

Proof of Proposition 3.5. Here we can essentially apply the same argument used in
step 4 of Proposition 6.1 in [20]. We report the details for completeness. Let Ω be the
set of the directions ν ∈ S

N−1
+ for which there exists an open neighborhood Oν ⊂ S

N−1
+

of ν such that
∂µu > 0 and ∂µv < 0 in R

N , ∀µ ∈ Oν .

The set Ω is open by definition, and contains eN by Lemma 3.7. Since S
N−1
+ is arc-

connected, if we can show that ∂Ω ∩ S
N−1
+ = ∅, then we conclude that Ω = S

N−1
+ ,

as desired. Thus, let us suppose by contradiction that ν̄ ∈ ∂Ω ∩ S
N−1
+ (notice in

particular that 〈eN , ν̄〉 > 0). By definition, there exists (νn) ⊂ Ω such that νn → ν̄.
As

∂νnu > 0 and ∂νnv < 0 in R
N , ∀n,

by continuity
∂ν̄u ≥ 0 and ∂ν̄v ≤ 0 in R

N .

By the strong maximum principle, recalling that (uν̄ , vν̄) solves (3.27), either uν̄ ≡ 0 or
uν̄ > 0 in R

N , and analogously either vν̄ ≡ 0 or vν̄ < 0 in R
N . The alternatives uν̄ ≡ 0

and vν̄ ≡ 0 are in contradiction with assumption (1.2), since ν̄ is not orthogonal to
eN , and hence

∂ν̄u > 0 and ∂ν̄v < 0 in R
N . (3.30)

Having established (3.30), it is possible to adapt the same proof of Lemmas 3.6 and
3.7, with ν̄ instead of eN , to deduce that uν > 0 and vν < 0 in R

N in all the directions
of an open neighborhood Oν̄ of ν̄ in S

N−1
+ . Thus, we have that ν̄ ∈ Ω ∩ ∂Ω, in

contradiction with the openness of Ω. This shows that ∂Ω ∩ S
N−1
+ = ∅ which, as

already observed, implies Ω = S
N−1
+ .

Finally, the fact that Ω = S
N−1
+ implies that both ∂τu ≡ 0 and ∂τv ≡ 0 for every

τ ∈ S
N−1 orthogonal to eN , which proves the last assertion.
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4 Existence and uniqueness of positive 1D solu-

tions when 2ω < α. Proof of Theorem 1.1.

In this section, we assume that 0 < ω < 1
2
α unless otherwise stated. By Proposition

3.5, positive solutions to (1.1)-(1.2) depend only on xN and are monotone. To con-
clude the proof of Theorem 1.1, it remains to prove the uniqueness up to translations
of such one-dimensional solutions.

We are led to consider on R the system

{

u′′ = P (u, v),
v′′ = Q(u, v),

(4.1)

subject to
(u, v) → (a, b) at −∞ and (u, v) → (b, a) at ∞. (4.2)

The main result of this section is:

Proposition 4.1. Suppose that 0 < ω < 1
2
α. Then there exist positive solutions to

(4.1)-(4.2), and these solutions are translations of one another, i.e. if (u, v) and (ū, v̄)
both satisfy (4.1)-(4.2), then there is a constant T such that

ū(x) = u(x+ T ) and v̄(x) = v(x+ T ).

Furthermore, u′ > 0 and v′ < 0 in R.

Proof of Theorem 1.1. The result is a consequence of Propositions 3.5 and 4.1.

The proof of the ‘uniqueness’ part in Proposition 4.1 uses the sliding method (cf.
[6, 9, 10]) with the help of the bounds (1.5) as well as the following lemma on the
asymptotic behavior of solutions.

Let

λ± :=

√

1

2

(

(α + 2)±
√

(α− 2)2 +
32ω2

α

)

, (4.3)

µ :=
2ω(α+ 2)

α
(

(α− 2)
√

1− 4ω2

α2 +
√

(α− 2)2 + 32ω2

α

)
> 0, (4.4)

which are related to the eigenvalues and eigenvectors of the linearized operator as-
sociated with (4.1) near the critical point (a, b). We refer to Appendix A for a brief
discussion on the origin of these constants.
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Lemma 4.2. Suppose that 0 < ω < 1
2
α. Let (u, v) be a positive solution of (4.1)-(4.2)

and λ− and µ be defined by (4.3)-(4.4). Then the limits

ℓ1 := lim
x→∞

(b− u(x))eλ−x and ℓ2 := lim
x→∞

(v(x)− a)eλ−x exist, (4.5)

and satisfy
ℓ2 = µℓ1 > 0. (4.6)

It should be noted that the asymptotic behavior of solutions changes somewhat
when ω = 0. See Lemma A.2 in the appendix.

An easy variational argument gives existence of the positive solutions to (4.1) on
finite intervals. The sliding method can be adapted to this case yielding:

Lemma 4.3. Suppose that 0 < ω < 1
2
α. For every R ∈ (0,∞), there exists a unique

positive solution to (4.1) in (−R,R) satisfying

(u(−R), v(−R)) = (a, b) and (u(R), v(R)) = (b, a). (4.7)

Furthermore, u′ > 0 and v′ < 0 in (−R,R).

4.1 Proof of Proposition 4.1

Let us assume Lemmas 4.2 and 4.3 for the moment and proceed with the proof of
Proposition 4.1. Lemma 4.3 will be proved in the next subsection. Lemma 4.2 follows
from a routine asymptotic analysis near a hyperbolic critical point for ODEs. Its proof
is postponed to Appendix A.

Proof. 1. We prove the existence of a solution to (4.1)-(4.2) by sending R → ∞ in
Lemma 4.3, where some care is needed to show that the solutions on finite intervals
do not flatten to the constant solutions (a, a) or (b, b).

For n = 1, 2, . . ., let (un, vn) be the positive solution to (4.1) obtained in Lemma
4.3 with R = n. Fix xn ∈ (−n, n) such that un(xn) =

1
2
(a+ b). Define ln = −n− xn,

rn = n− xn, and

(ũn(x), ṽn(x)) = (un(x+ xn), vn(x+ xn)) for x ∈ [ln, rn].

By Lemma 4.3, a ≤ un, vn ≤ b. Using elliptic estimates on unit closed subintervals
of [ln, rn], we have

|ũ(k)n |+ |ṽ(k)n | ≤ C in [ln, rn] for k = 0, 1, 2, 3, (4.8)

where C is a positive constant independent of n and k. Then, passing to a subsequence
if necessary, we may assume that ln → l∗ ∈ [−∞, 0], rn → r∗ ∈ [0,∞] (where l∗ and
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r∗ cannot be simultaneously finite), (ũn, ṽn) converges in C2
loc(l∗, r∗) to some (u∗, v∗)

satisfying (4.1), u′∗ ≥ 0, v′∗ ≤ 0 in (l∗, r∗).
Note that for each n, the Hamiltonian

hn :=
1

2
(|ũ′n|2 + |ṽ′n|2)−

1

4
(1− ũ2n − ṽ2n)

2 − α

2
(ũnṽn −

ω

α
)2

is constant in [ln, rn]. As (ũ(R), ṽ(R)) = (b, a), it follows that hn ≥ 0 and so

h∗ :=
1

2
(|u′∗|2 + |v′∗|2)−

1

4
(1− u2∗ − v2∗)

2 − α

2
(u∗v∗ −

ω

α
)2 ≥ 0.

As said above, one has that l∗ = −∞ or r∗ = ∞ (or both). We will only treat
the case that r∗ = ∞; the other case can be dealt with similarly. In this case we
have u∗(x) ≥ 1

2
(a + b) for every x > 0, since x > 0 ≥ l∗ implies ũn(x) ≥ ũn(0) =

a+b
2

for large n. Then, by the monotonicity of u∗ and v∗, as x → ∞, (u∗(x), v∗(x))
has a limit, say (b̃, ã), which satisfies 1

2
(a + b) ≤ b̃ ≤ b and a ≤ ã ≤ b. By (4.1),

(u′′∗(x), v
′′
∗(x)) tends to (P (b̃, ã), Q(b̃, ã)) as x → ∞. Applying the mean value theorem

to u|[n,n+1/2], we can find ξn ∈ (n, n+1/2) such that u′∗(ξn) → 0. Likewise, there exist

ηn ∈ (ξn, ξn+1) such that u′′∗(ηn) → 0. It follows that P (b̃, ã) = 0. This then implies
that sup[ξn−2,ξn+2] u

′
∗ → 0, and so u′∗(x) → 0 as x → ∞. Similarly, Q(b̃, ã) = 0 and

v′∗(x) → 0 as x→ ∞.
Now, note that the equation P (x, y) = Q(x, y) = 0 has three solutions in the

positive quadrant, namely (a, b), (b, a) and (c, c) where c =
√

1+ω
2+α

∈ (a, b). Also, as

(u′∗(x), v
′
∗(x)) → 0 as x→ ∞,

0 ≤ h∗ = −1

4
(1− b̃2 − ã2)2 − α

2
(b̃ã− ω

α
)2

and so h∗ = 0, b̃2+ã2 = 1 and b̃ã = ω
α
. As 1

2
(a+b) ≤ b̃ ≤ b, we thus have (b̃, ã) = (b, a),

i.e. (u∗(x), v∗(x)) → (b, a) as x→ ∞.
Now if l∗ is finite, (4.8) yields

|ũ(k)∗ |+ |ṽ(k)∗ | ≤ C in (l∗, r∗) for k = 0, 1, 2, (4.9)

where C is a positive constant independent of k, and so u∗ extends to a C1 function
in [l∗, r∗). Now, since for every x ∈ (l∗, r∗), we have x ∈ [ln, rn] for large n, from (4.8)
we also get that

|u∗(x)− a| = lim
n→∞

|ũn(x)− a| = lim
n→∞

|ũn(x)− ũn(ln)|
≤ lim sup

n→∞
C|x− ln| = C|x− l∗|
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which leads to u∗(l∗) = a. A similar argument gives v∗(l∗) = b. Now, by the strong
maximum principle and the Hopf lemma (see the argument in Step 5 of the proof of
Proposition 1.2), we have u′∗(x) > 0 and v′∗(x) < 0 for every x ∈ [l∗, r∗), and using
those properties with x = l∗ we get h∗ > 0, which contradicts the previous conclusion
that h∗ = 0. Hence l∗ = −∞. As above, this implies that (u∗(x), v∗(x)) → (a, b) as
x→ −∞.

We have thus shown that (u∗, v∗) is a positive and strictly monotone solution to
(4.1)-(4.2), as desired.

2. We use the sliding method to show that positive solutions to (4.1)-(4.2) are trans-
lations of one another.

Let (u, v) and (ū, v̄) be two positive solutions to (4.1)-(4.2). By Lemma 4.2, the
limits

ℓ+1 := lim
x→∞

(b− u(x))e−λ−x, ℓ̄+1 := lim
x→∞

(b− ū(x))e−λ−x,

ℓ+2 := lim
x→∞

(v(x)− a)e−λ−x, ℓ̄+2 := lim
x→∞

(v̄ − a)e−λ−x,

ℓ−1 := lim
x→−∞

(u(x)− a)eλ−x, ℓ̄−1 := lim
x→−∞

(ū(x)− a)eλ−x,

ℓ−2 := lim
x→−∞

(b− v(x))eλ−x, ℓ̄−2 := lim
x→−∞

(b− v̄)eλ−x

exist and are positive. Thus, in view of (1.6), there is some large T0 such that

u(x− T0) ≤ ū(x) ≤ u(x+ T0) and v(x− T0) ≥ v̄(x) ≥ v(x+ T0) for all x ∈ R.

Let

T = inf{t ∈ [−T0, T0] : ū(x) ≤ u(x+s) and v̄(x) ≥ v(x+s) for all t ≤ s ≤ T0, x ∈ R}.

Set ũ(x) = u(x+T ) and ṽ(x) = u(x+ T ). Then ũ ≥ ū and ṽ ≤ v̄. The result will
follow once we show that ũ ≡ ū and ṽ ≡ v̄. Assume by contradiction that this does
not hold.

a. We show that
ũ > ū and ṽ < v̄. (4.10)

Note that ũ ≥ ū, ṽ ≤ v̄, and (ũ, ṽ) is also a solution to (4.1) satisfying (4.7). Also,
we have

P (ũ, ṽ)− P (ũ, v̄) = (ṽ − v̄)
[

(1 + α)ũ(ṽ + v̄)− ω
]

≤ (ṽ − v̄)
[

(1 + α)ũṽ − ω
]

(1.5)

≤ (ṽ − v̄)
[

(1 + α)
ω

α
− ω

]

≤ 0,
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and

Q(ũ, ṽ)−Q(ū, ṽ) = (ũ− ū)
[

(1 + α)ṽ(ũ+ ū)− ω
]

≥ (ũ− ū)
[

(1 + α)ṽũ− ω
]

(1.5)

≥ (ũ− ū)
[

(1 + α)
ω

α
− ω

]

≥ 0.

So we have

ũ′′ ≤ P (ũ, v̄), ū′′ = P (ū, v̄)

ṽ′′ ≥ Q(ū, ṽ), v̄′′ = Q(ū, v̄).

Assertion (4.10) thus follows from the strong maximum principle.

b. We proceed to deduce a contradiction.
Define

ℓ̃+1 := lim
x→∞

(b− ũ(x))e−λ−x, ℓ̃+2 := lim
x→∞

(ṽ(x)− a)e−λ−x,

ℓ̃−1 := lim
x→−∞

(ũ(x)− a)eλ−x, ℓ̃−2 := lim
x→−∞

(b− ṽ(x))eλ−x.

Recall that, by Lemma 4.2, ℓ+2 = µℓ+1 , ℓ
−
1 = µℓ−2 and similar relations hold for the

counterparts with bar and tilde on top. By the minimality of T and (4.10), we have
that

ℓ̄+2 = ℓ̃+2 , (4.11)

or
ℓ̄−2 = ℓ̃−2 , (4.12)

or both. Because of the unique correspondence of linearized solutions and nonlinear
solutions near a hyperbolic critical point of ODEs [14, Chapter 13, Theorem 4.5] (with
p = 1) – see the argument leading to (A.10) – we then deduce that (ū, v̄) ≡ (ũ, ṽ),
which contradicts (4.10). We conclude the proof.

4.2 Proof of Lemma 4.3

The existence in Lemma 4.3 follows from an easy variational argument. As far as we
are concerned with the application of Lemma 4.3 to the proof of Proposition 4.1, it is
enough to show that u and v are monotone. This can be done as in Subsection 3.1.
Here we provide an alternative proof which yields also uniqueness, which echoes the
argument in Step 2 of the proof of Proposition 4.1.

We start with an adaptation of Proposition 1.2 for finite domains.
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Lemma 4.4. Suppose that 0 < ω < 1
2
α and R ∈ (0,∞), and let (u, v) be a positive

solution of (4.1) in (−R,R) satisfying (4.7). Then (1.5) and (1.6) hold in [−R,R].

Proof. The proof is similar to though easier than that of Proposition 1.2, thanks to
the boundary condition (4.7). We will only give a sketch.

Let A = u2 + v2, B = − ln(uv) and define m = maxA and n = maxB.1 If
m is attained at the endpoints, we have m ≤ 1. Otherwise, m = A(x0) for some
x0 ∈ (−R,R). We then have

0 ≥ A′′(x0) ≥ 2u(x0)P (u(x0), v(x0)) + 2v(x0)Q(u(x0), v(x0))

≥ 2A2(x0)− 2A(x0) + 4s∗ where s∗ := min
t≥e−n

(αt2 − ωt).

In either case, we obtain

m ≤ 1

2
(1 +

√
1− 8s∗). (4.13)

Likewise, we have

n ≤ − ln
ω

α + 2− 2
m

. (4.14)

We can now follows exactly the arguments in Steps 3 and 4 of the proof of Proposition
1.2 to reach the conclusion. We omit the details.

Proof of Lemma 4.3. Note that (4.1) is the Euler-Lagrange equation for the func-
tional

I[u, v] =

∫ R

−R

[1

2
(|u′|2 + |v′|2) + 1

4
(1− u2 − v2)2 +

α

2
(uv − ω

α
)2
]

dx.

The existence of a positive solution to (4.1) satisfying (4.7) follows from a simple
variational argument.

The uniqueness follows from the sliding method as we have seen earlier. Suppose
that (u, v) and (ū, v̄) are positive solutions of (4.1) in (−R,R) satisfying (4.7). Extend
(u, v) to the whole of R by defining (u, v) ≡ (a, b) on (−∞,−R) and (u, v) ≡ (b, a)
on (R,∞). Let

T = inf{t ∈ [0, 2R] : ū(x) ≤ u(x+ s)

and v̄(x) ≥ v(x+ s) for all x ∈ [−R,R], t ≤ s ≤ 2R}.

T is well-defined thanks to Lemma 4.4. To conclude it suffices to show that T = 0.

1Note that in the notation of (2.10), we have m = m∗ and n = n∗ thanks to (4.7).
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Set ũ(x) = u(x+ T ) and ṽ(x) = u(x+ T ). Note that ũ ≥ ū, ṽ ≤ v̄, (ũ, ṽ) is also a
solution to (4.1) in the interval (−R,R− T ), and, in view of (1.5), we have as before
that

ũ′′ ≤ P (ũ, v̄), ū′′ = P (ū, v̄)

ṽ′′ ≥ Q(ū, ṽ), v̄′′ = Q(ū, v̄).

In particular, if T was positive, it would follow from the strong maximum principle
and the Hopf lemma that there would exist some small ε > 0 such that

ū(x) ≤ u(x+ s) and v̄(x) ≥ v(x+ s) for all x ∈ [−R,R], T − ε ≤ s ≤ T,

which would contradict the definition of T . We hence have T = 0, as desired.

A Appendix: proof of Lemma 4.2.

We now prove of the exponential decay of solutions (u, v) to (4.1)-(4.2) to constants.
This was needed in the proof of Proposition 4.1. We perform a standard asymptotic
analysis near a hyperbolic critical point of ODEs.

We write u = b− û and v = a + v̂. The system (4.1) becomes

û′′ = −P (b− û, a+ v̂) =: P̂ (û, v̂), (A.1)

v̂′′ = Q(b− û, a+ v̂) =: Q̂(û, v̂). (A.2)

The functions P̂ and Q̂ are polynomials and a direct computation gives

∂(P̂ , Q̂)

∂(û, v̂)
(0, 0) =

[

2b2 + α a2 −ω(2+α)
α

−ω(2+α)
α

2a2 + αb2

]

=: A.

In particular, we have, for large x, that

û′′ = (2b2 + α a2)û− ω(2 + α)

α
v̂ +O(|û|2 + |v̂|2), (A.3)

v̂′′ = −ω(2 + α)

α
û+ (2a2 + αb2)v̂ +O(|û|2 + |v̂|2). (A.4)

The matrix A has two positive eigenvalues λ2± (see (4.3)). For ω > 0, an A-
eigenbasis of R2 can be chosen as (1, µ) and (−µ, 1) (which correspond to the eigen-
values λ2− and λ2+, respectively) where µ is defined in (4.4). Note that

lim
ω→0

µ =







0 if α > 2,
∞ if α < 2,
1 if α = 2.
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This signifies some difference in the asymptotic behavior of (û, v̂) for ω = 0 and for
ω > 0.

Proof of Lemma 4.2. 1. We prove (4.5) and the relation ℓ2 = µℓ1.
As û(x), v̂(x) → 0 as x → ∞, we have from (A.1)-(A.2) that û′′(x), v̂′′(x) → 0 as

x → ∞. By interpolation, this implies û′(x), v̂′(x) → 0 as x → ∞. We now write
v̂3 = û′, v̂4 = v̂′, v̂ = (û, v̂, v̂3, v̂4) and recast (A.1)-(A.2) as a first order system

v̂′ = Mv̂ + f̂(v̂) (A.5)

where

M =









0 0 1 0
0 0 0 1

2b2 + α a2 −ω(2+α)
α

0 0

−ω(2+α)
α

2a2 + αb2 0 0









,

and f̂ is a polynomial satisfying f̂(0) = 0 and Df̂(0) = 0. Note that, as 0 < ω
α
< 1

2
, M

has real and nonzero eigenvalues λ1 = −λ+ < λ2 = −λ− < 0 < λ3 = λ− < λ4 = λ+.
Hence the origin is a hyperbolic critical point of (A.5). As v̂(x) → 0 as x→ 0, we thus
have that, for all large x, v̂(x) belongs to the stable manifold of (A.5) at the origin.
By the Stable Manifold Theorem (see e.g. [14, Chapter 13, Theorem 4.3]), we then
have that v̂(x) converges exponentially to 0 as x→ ∞ and the rate of convergence is
O(e−λx) for any 0 < λ < |λ2| = λ−.

Set

X = û+ µv̂, (A.6)

Y = −µû+ v̂. (A.7)

We have

X ′′ = P (û, v̂) + µQ(û, v̂) = λ2−X +O(|û|2 + |v̂|2), (A.8)

Y ′′ = −µP (û, v̂) +Q(û, v̂) = λ2+Y +O(|û|2 + |v̂|2). (A.9)

Applying [14, Chapter 13, Theorem 4.5], we can find a constant k and some δ > 0
such that

X = ke−λ−x +O(e−(λ−+δ)x) and Y = O(e−(λ−+δ)x). (A.10)

Assertion (4.5) and the relation ℓ2 = µℓ1 are readily seen.

2. We next show that ℓ1 and ℓ2 are positive.

Suppose by contradiction the assertion does not hold. As ℓ2 = µℓ1, one has
ℓ1 = ℓ2 = 0. Returning to (A.10) we have that

|X|+ |Y | = O(e−(λ−+δ)x)
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which implies

lim sup
x→∞

ln(|X|+ |Y |)
x

≤ −(λ− + δ).

Appealing again to [14, Chapter 13, Theorem 4.3], we thus have

lim sup
x→∞

ln(|X|+ |Y |)
x

≤ −λ+.

This leads to

lim
x→∞

(b− u(x))eλx = lim
x→∞

(v(x)− a)eλx = 0 for all 0 < λ < λ+. (A.11)

As as b
√
2 < λ+, this gives a contradiction to Lemma A.1 below and so concludes the

proof.

Lemma A.1. Suppose that 0 ≤ ω < 1
2
α and let (u, v) be a positive solution of (4.1)-

(4.2). There is some C > 0 such that

b− u(x) ≥ 1

C
e−b

√
2x for large x. (A.12)

Proof. We note from (4.1) and (1.5) that

u′′
(4.1),(1.5)

≥ u(u2 + v2 − 1)
(1.5)

≥ u(u2 − b2). (A.13)

Now, take some R > 0 such that u(R) ≥ b√
3
in (R,∞). Select x0 such that

b tanh( b√
2
(R− x0)) = u(R). To prove (A.12), it suffices to show that

u(x) ≤ b tanh(
b√
2
(x− x0)) in (R,∞).

To this end, we note that the function w1,c = b tanh( b√
2
(x−x0))+c satisfies for c ≥ 0,

w′′
1,c = w1,0(w

2
1,0 − b2) ≤ w1,c(w

2
1,c − b2) in (R,∞), (A.14)

where we have used w1,0(x) ≥ w1,0(R) = u(R) ≥ b√
3
.

Clearly there is some large c > 0 such that w1,c ≥ u in [R,∞). Let

c = inf{c ≥ 0 : w1,c ≥ u in [R,∞)}.

If c > 0, then we have w1,c ≥ u in [R,∞), w1,c(R) > u(R), limx→∞(w1,c−u) > 0, and
there is some x1 ∈ (R,∞) such that w1,c(x1) = u(x1), which gives a contradiction
to the strong maximum principle, in view of (A.13) and (A.14). We thus have that
c = 0, which implies that w1,0 ≥ u in [R,∞), which gives (A.12).
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The asymptotic behavior changes somewhat in the case ω = 0, which we record
here for comparison. (This is not used in the paper.)

Lemma A.2. Suppose α > 0 and ω = 0. Then, a = 0 and b = 1. Let (u, v) be a
positive solution of (4.1)-(4.2). Then the following statements hold.

(i) ℓ̃2 := limx→∞(v(x)− a)e
√
αx exists and is positive.

(ii) If α > 1
2
, then ℓ̃+1 := limx→∞(b− u(x))e

√
2x exists and is positive.

(iii) If α < 1
2
, then ℓ̃−1 := limx→∞(b− u(x))e2

√
αx exists and is equal to

(α+1)ℓ̃22
2(1−2α)

.

(iv) If α = 1
2
, then ℓ̃∗1 := limx→∞(b− u(x)) e

√
2x

x
exists and is equal to

3ℓ̃2
2

4
√
2
.

Proof. The proof is similar to that of Lemma 4.2 and is omitted.
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