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Abstract 33 

 34 

To survive in complex and seasonal environments, primates are thought to rely upon cognitive 35 

capacities such as decision-making and episodic memory, which enable them to plan their daily 36 

foraging path. According to the Ecological Brain hypothesis, feeding ecology has driven the 37 

expansion of the brain to support the corresponding development of cognitive skills. Recent works 38 

in cognitive neurosciences indicate that cognitive operations such as decision-making or subjective 39 

evaluation (which are contextual and dependent upon episodic memory), relied critically upon a 40 

small part of the frontal lobe, often referred to as the ventromedial prefrontal cortex (VMPFC). 41 

Several authors suggested that this area might be important for foraging, but this has never

been tested. In the present study, we quantified the relation between the size of the VMPFC (along 43 

with other cerebral measures: the whole brain, the gyrus rectus and the somatosensory cortex) and 44 

key socio-ecological variables in five primate species (Macaca mulatta, Macaca fuscata, Gorilla 45 

gorilla, Pan troglodytes and Homo sapiens). We hypothesized that the size of the VMPFC would be 46 

greater in primates with a large dietary spectrum and complex foraging strategies. We also 47 

hypothesized that the impact of feeding ecology would be stronger on this specific region than on 48 

other regions (somatosensory cortex) or on more global cerebral measures (e.g. whole brain). In line 49 

with these hypotheses, we found that all cerebral measures were more strongly related to feeding 50 

ecology than group size, a proxy for social complexity. As expected, the VMPFC volume is more 51 

precisely related to feeding ecology than the whole brain, and appears to be critically related to 52 

dietary quality. Thus, combining a comparative approach with predictions coming both from 53 

behavioral ecology and cognitive neurosciences, our study provides convincing evidence that 54 

feeding ecology played a key role in the development of specific cognitive skills, which rely upon 55 

the expansion of a specific cortical area. 56 

 57 

 58 

Keywords: decision-making; ventromedial prefrontal cortex; diet diversity; foraging strategies; 59 

primates  60 
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1. INTRODUCTION 61 

Optimization of the ratio between resources-associated costs and benefits is a key selective pressure 62 

underlying natural selection in animals (Altmann, 2006; MacArthur & Pianka, 1966). Among 63 

primates, foraging behaviors have been described by some authors as a combination of more or less 64 

random exploration and reactions to environmental stimuli encountered along the way, such as 65 

visual or olfactory cues (Berridge, 2004; Kolling et al., 2012). However, most primates live in 66 

complex and patchy environments where preferred resources are not distributed uniformly in space 67 

and time, and/or may not be easily accessible through direct sensory cues (embedded foods). 68 

Because of the spatial distribution and seasonality of food in the environment, and given the high 69 

energy requirements of primates, other studies have pointed out that primates could not rely upon 70 

mere luck to find their energetic resources. Indeed, their trajectories suggest that they use mental 71 

representation of how food resources are distributed in space and time to plan their daily foraging 72 

path (Janmaat et al., 2006a, 2006b, 2016; Noser & Byrne, 2007). Thus, their foraging strategies 73 

rather imply mental representations of what, where and when a specific resource would be available 74 

as well as the course of action necessary to obtain it (Trapanese et al., 2018, van Schaik, 2016). 75 

Foraging behaviors in primates therefore seem to imply complex cognitive abilities such as value-76 

based decision-making, episodic memory (which refers to the recollection of specific events that 77 

happened at a specific location and at a particular time) and planning (i.e. imagining future events 78 

and preparing actions accordingly). Based on this view, it has been suggested that these foraging-79 

associated capacities were favored during the course of primate cognitive evolution (Cunningham 80 

& Janson, 2007; Hayden et al., 2011; Rosati, 2017; Zuberbühler & Janmaat, 2010).  81 

This idea resonates with what is often referred to as the Ecological Brain hypothesis, according to 82 

which environmental parameters associated with foraging strategies and food resources have 83 

favored the evolution of cognitive complexity and brain size among primates (Milton, 1981, 1988). 84 

A recent study by De Casien et al. (2017) has actually provided a strong support for this hypothesis. 85 

The Ecological Brain hypothesis is sometimes perceived as conflicting with the Social Brain 86 

hypothesis, according to which cognitive abilities and the associated brain size were driven by an 87 

increase in social complexity (Dunbar, 1998). But strictly, these theories are not mutually exclusive, 88 

and they both rely upon the same idea that global cognitive abilities are associated with a global 89 

neuroanatomical measure (the whole brain size, the neocortex size or the encephalization quotient). 90 

Indeed, both sociality and ecology could have contributed to the modulation of cognition and brain 91 

size across species (De Casien et al., 2017; Dunbar, 1992; Foley & Lee, 1991; Sol et al., 2008; van 92 

Schaik et al., 2012). However, the idea that global brain size represents a good proxy for global 93 

cognitive skills lacks experimental support and is not confirmed when tested within a broad 94 
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comparative context (e.g birds vs. primates, Güntürkün & Bugnyar, 2016). More critically, social 95 

interactions (e.g. number of individuals an animal can remember, number of third-party 96 

relationships, dominance ranks) and ecological knowledge (e.g. recognition of food types, food 97 

selection, knowledge of food processing and harvesting schedules, estimation of amounts) rely 98 

upon distinct brain systems, even though decision-making in both social and food dimensions could 99 

involve overlapping brain regions (Eichenbaum & Cohen, 2014; Lin et al., 2015; Peters & Büchel, 100 

2010; Ruff & Fehr, 2014; Stanley & Adolphs, 2013). Thus, a major challenge for understanding 101 

primate cognition would rather be the identification of specific cognitive abilities, associated with 102 

their underlying neurobiological substrate, which both underlie adaptation to specific ecological or 103 

social challenges. In that frame, since the relative size of distinct brain regions varies across species 104 

(Barton & Harvey, 2000; Passingham & Wise, 2012), size differences of specific cortical areas 105 

could better capture the adaptations of cognitive capacities that occurred in response to particular 106 

ecological conditions. As such, a few studies focused on specific brain regions, such as the 107 

hippocampus or the olfactory cortex and their volumetric variations as a function of ecological 108 

variables across primates (Barks et al., 2015; Barton & Harvey, 2000).  109 

Here, we propose an innovative and holistic approach to assess how socio-ecological parameters 110 

can explain variations of brain measurements among five primate species (Macaca mulatta, 111 

Macaca fuscata, Gorilla gorilla, Pan troglodytes and Homo sapiens), when taking into account the 112 

phylogeny. We measured the whole brain volume to facilitate comparison with existing 113 

comparative studies, since most of them only used this measure. Additionally, we measured the 114 

primary somatosensory cortex (S1 cortex) as a control region, since it is located outside of the 115 

frontal lobe and is not supposed to be involved in any kind of executive function. We considered 116 

two regions of interest, referred to as the gyrus rectus and the ventromedial prefrontal cortex 117 

(VMPFC). The gyrus rectus is an easily identifiable brain region located on the ventromedial part of 118 

the prefrontal cortex, and it has largely been associated with value-encoding and decision-making 119 

behaviors among human and non-human primates (Bechara et al., 1998; Jocham et al., 2014; 120 

Noonan et al., 2017; Rushworth et al., 2012). In addition, based on recent functional imaging and 121 

electrophysiological studies in humans and monkeys, we considered a more specific region, the 122 

VMPFC, located on the ventral part of the gyrus rectus. Indeed, this region is reliably associated 123 

with valuation of items and outcomes based on contextual information and memory, and with 124 

subsequent decision-making behaviors (Barron et al., 2013; Bouret & Richmond, 2010; Clark et al., 125 

2013; Lebreton et al., 2009, 2013; Papageorgiou et al., 2017; Peters & Büchel, 2010; Rushworth & 126 

Behrens, 2008; Rushworth et al., 2011; San-Galli et al., 2016; Strait et al., 2014). We thus 127 

hypothesized that the VMPFC should be a better proxy than the whole brain volume to explore the 128 

relationship between specific cognitive capacities and ecology. We also made the hypothesis that 129 
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the brain, the gyrus rectus and the VMPFC volumes would be larger among species with complex 130 

diets and dietary strategies than among species with simpler ones. More precisely, we hypothesized 131 

that the volume variation of the VMPFC would be more strongly related to foraging than other 132 

brain regions. 133 

 134 

2. MATERIAL & METHODS 135 

2.1. Sample 136 

A total of 29 brain magnetic resonance (MRI) 3D reconstructions of five primate species were used 137 

in this study: Macaca mulatta (n=6), Macaca fuscata (n=6), Gorilla gorilla (n=5), Pan troglodytes 138 

(n=7) and Homo sapiens (n=5). Due to important damages, measurements of the brain and the ratio 139 

VMPFC/brain were missing for one gorilla, as it was the case for the volume of the somatosensory 140 

cortex of one rhesus macaque. 141 

Japanese macaques and rhesus macaques were captive animals housed and scanned, respectively, at 142 

National Institutes for Quantum and Radiological Science and Technology (Chiba, Japan) and at 143 

Brain and Spine Institute (Paris, France). Pan troglodytes and Gorilla gorilla brains came from the 144 

Muséum national d’Histoire naturelle (Paris, France). They had been collected between 1920 and 145 

1970 and subsequently preserved in formalin solution. We selected a sample of seven chimpanzee 146 

brains and five gorilla brains, based on the integrity of the regions of interest, located in the ventral 147 

part of the gyrus rectus (see below for details). The great apes brains were scanned at the University 148 

of Leuven (KUL). Brains for which the gyrus rectus was bilaterally damaged or distorted were 149 

excluded from the analysis. Post-mortem or in-vivo brain images of five modern humans were 150 

obtained from the open website http://human.brain-map.org/mri_viewers/data and from the open-151 

access LPBA40 MRI dataset (Shattuck et al., 2008).  152 

All specimens were sexually mature at the time of scanning. Although some non-human primates 153 

were captive specimens, we will ignore the potential effects of captivity on the brain measurements, 154 

assuming that they are negligible compared to the inter-species differences (according to Isler et al., 155 

2008: endocranial volumes do not differ between captive and wild animals). We also tried to 156 

maintain a balanced sex ratio for each of the 5 species (M:F ratios: Macaca mulatta 3:3; Macaca 157 

fuscata 2:4; Gorilla gorilla 2:3; Pan troglodytes 3:4; Homo sapiens 2:2 and one subject of unknown 158 

sex).  159 

 160 

2.2. Processing of brain MRI and measurements 161 

http://human.brain-map.org/mri_viewers/data
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Avizo v9.0 software was used for visualization, segmentation and quantification of brain tissues. 162 

We measured 3 regions of interest: the whole brain (without cerebellum), the gyrus rectus and the 163 

ventromedial prefrontal cortex (VMPFC). Additionally, we measured the volume of the primary 164 

somatosensory cortex (S1 cortex) as a control region. We anatomically defined these regions of 165 

interest and the corresponding landmarks on the basis of cytoarchitectonic maps (Carmichael & 166 

Price, 1994; Mackey & Petrides, 2010; Öngür et al., 2003), and on brain atlases of rhesus macaques 167 

and humans (Dubach & Bowden, 2009; Paxinos et al., 2008; Rohlfing et al., 2012; Sunkin et al., 168 

2013). 169 

Whole brain segmentation was firstly performed using the semi-automated tool which allows to 170 

select a single material or structure according to a specific gray level threshold. Manual corrections 171 

were made whenever necessary, for instance when the brain and the adjacent tissue had a similar 172 

gray level. As the cerebellum was missing for two gorilla brains, the cerebellum was systematically 173 

excluded of the whole brain measure in all specimens.  174 

We also measured the volume of gray matter in the gyrus rectus. Indeed, the gyrus rectus is an 175 

easily identified brain region that includes the area of interest (the ventromedial prefrontal cortex). 176 

It thus provides an intermediate level of anatomical precision (here, the ventral prefrontal cortex) 177 

between the area of interest (VMPFC, identified on the basis of its functional role) and the whole 178 

brain. The gyrus rectus is more functionally heterogeneous than the VMPFC because it contains 179 

subcallosal areas, which are more related to autonomic responses (Freedman et al., 2000; Joyce & 180 

Barbas, 2018; Neubert et al., 2015), as well as a part of the frontal pole associated with higher 181 

cognitive abilities such as complex planning of future actions or managing competing goals 182 

(Mansouri et al., 2017; Semendeferi et al., 2001). Reliable inter-species boundaries of the gyrus 183 

rectus were defined according to the same brain atlases used for the delimitation of the VMPFC 184 

(Fig. 1). The anterior border of rostral and medial orbital gyri represents the anterior limit. Caudal 185 

limit is set at the most anterior part of the head of the caudate nucleus. Lateral and medial 186 

boundaries include the fundi of the rostral and medial orbital sulci.  187 

 188 

[Insert Figure 1] 189 

Based on the functional anatomy literature in humans and macaques, we defined the VMPFC as a 190 

region of interest critically involved in value-based decision-making and episodic memory (see 191 

introduction for complete references). In short, this region corresponds to the ventral part of the 192 

gyrus rectus and strongly overlaps with Brodmann area 14r, but we make no claim about the 193 

relation between our definition of the VMPFC and specific regions identified based on 194 
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cytoarchitechtonic or connectivity maps. Indeed, we defined the VMPFC using two criteria: the 195 

region should closely match the results of functional studies and should be reliably identifiable 196 

using macroscopic anatomical landmarks. The anterior limit of the VMPFC was defined as the most 197 

anterior part of the cingular/paracingular cortex. The posterior limit was the genu of the corpus 198 

callosum. Superior/medial border was defined as the rostral sulcus, just before the folding of the 199 

cortex – i.e. the fundus of the rostral sulcus was not included in the region of interest (Fig. 1). In 200 

humans, we chose the superior rostral sulcus as the medial marker because it is present in all 201 

individuals whereas, as noted by Mackey and Petrides (2010), the inferior rostral sulcus only 202 

appears in 70% of their samples. Lateral border was defined as the medial orbital sulcus. As for the 203 

medial border, the fundus of the medial orbital sulcus was not included in the VMPFC. The 204 

application of these generic boundaries to segment the gyrus rectus and the VMPFC of individual 205 

specimens is shown on Fig. 2. 206 

 207 

[Insert Figure 2] 208 

In order to confirm the specificity of the structure-function relation between the VMPFC and socio-209 

ecological variables, we examined another cortical region, the somatosensory cortex (S1 cortex) as 210 

a control region. The S1 cortex is located in the parietal lobe and it receives sensory inputs from 211 

several modalities (touch, proprioception, nociception and temperature; Kaas, 2004). It is a priori 212 

not involved in executive functions. We thus hypothesized that this control region would not be 213 

associated with the planning of foraging strategies and thus it should not be related to the same 214 

socio-ecological variables as the VMPFC. We used reliable inter-species boundaries to delimitate 215 

the S1 cortex among our primate sample (Fig. 3). Both in human and non-human primates, S1 is 216 

located on the postcentral gyrus which is immediately caudal to the central sulcus. Similarly to the 217 

gyrus rectus and the VMPFC, we thus measured the volume of gray matter of the post-central 218 

gyrus. The anterior limit of the S1 cortex corresponds to the central sulcus, and the inferior one to 219 

the inferior limit of the central sulcus. The fundus of the central sulcus is included in the S1 cortex. 220 

In humans and great apes, the posterior limit of S1 is the post-central sulcus. However in macaques, 221 

it is slightly observable on the dorsolateral surface between intraparietal and central sulci – in the 222 

continuity of the ascending branch of the intraparietal sulcus (Seelke et al., 2011). We thus set the 223 

posterior border of the S1 cortex in macaques immediately rostral to the superior parietal lobule, at 224 

the end of the cortical convexity formed by the slightly observable post-central sulcus. The fundus 225 

of the post-central sulcus is included in the S1 cortex. 226 

 227 
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[Insert Figure 3] 228 

2.3. Ecological and phylogenetic data 229 

Among primates and mammals generally, brain size and life history have undergone correlated 230 

evolution (e.g. Barton, 1999; Isler & van Schaik, 2009; Ross, 2003; Schuppli et al., 2016b). It has 231 

also been shown that energetics, and especially basal metabolic rate (BMR), is positively correlated 232 

with brain size in primates, after controlling for the influence of body mass and for the potential 233 

effects of phylogenetic relatedness. We therefore compiled sixteen ecological and life-history 234 

parameters from published literature sources (Table S1). We included data related to body 235 

condition (body mass, crown-rump length, Quetelet index), energetics (basal metabolic rate, daily 236 

energy expenditure), diet (diet category, dietary quality), reproduction and life history traits (mating 237 

system, seasonal mating, gestation length, interbirth interval, birth mass, weaning age). We also 238 

included home range, daily traveled distance and group size. Because there is no strict consensus on 239 

the group size value within H. sapiens, we considered in our analyses the mean group size of two 240 

reliable measurements in this species (Hill & Dunbar, 2003: mean social network in contemporary 241 

societies, i.e. 124.9 individuals; Marlowe, 2005: mean group size of 48.2 individuals in foragers). 242 

Regarding energetic parameters, basal metabolic rate is measured at rest and thus is the lowest rate 243 

of energy expenditure (Pontzer, 2015). The daily energy expenditure refers to the energy expended 244 

by day and reflects body mass and activity level, as well as other species-specific parameters such 245 

as growth, reproduction and thermoregulation. Mating systems are species-specific patterns of 246 

coupling associations between males and females (Wolfe, 2015). Dietary quality index has been 247 

proposed to characterize the richness of the dietary spectrum, both in terms of diversity and 248 

energetics (Sailer et al., 1985). Low dietary quality values (about 100) characterize folivorous 249 

primates, whereas higher values represent a more diversified diet including fruits and/or animals. 250 

We used this variable because it is more precise than diet categories, which only refers to as 251 

folivory, frugivory/folivory, frugivory and omnivory. 252 

All Japanese macaques in our sample were M. f. fuscata which is the mainland subspecies of M. 253 

fuscata. Concerning gorillas, we only included data coming from western lowland gorillas. We 254 

combined average data for subspecies of common chimpanzees. Concerning the modern human 255 

dataset, we chose in priority hunter-gatherer samples as references because we made the assumption 256 

that their ecological parameters (e.g. body composition and energetics, day range) represented more 257 

accurately the human species’ ecology than samples from industrialized countries. 258 

Regarding the phylogeny data, we used the topologies and branch lengths from the consensus tree 259 

provided by the 10kTrees website (Arnold et al., 2010; https://10ktrees.nunn-260 

https://10ktrees.nunn-lab.org/Primates/dataset.html
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lab.org/Primates/dataset.html; version 3). This version provides a Bayesian inference of primate 261 

phylogeny which is based on collected data for eleven mitochondrial and six autosomal genes 262 

available in GenBank across 301 primate species. We computed the consensus tree on the basis of 263 

the species present in our sample to measure the respective phylogenetic distances between non-264 

human primates and Homo sapiens. 265 

 266 

2.4. Statistical analyses 267 

Our statistical approach was designed to test how each of the five brain measures (hemispheric 268 

brain, gyrus rectus, VMPFC, ratio VMPFC/brain and the S1 cortex) were related to ecological or 269 

life-history parameters in addition to phylogeny. We constructed a generalized linear model for 270 

each response variable (cerebral measure) using the glm function in R version 3.5. Each response 271 

variable was averaged from left and right sides of the brain (N=22). However, in some cases (N=7), 272 

because some great apes brains were not perfectly preserved on both sides, we only kept the left or 273 

the right side measurement. As Student’s t-tests did not reveal significant differences between 274 

males and females for any of the cerebral measures (all p > 0.5), we pooled sexes in our analyses. 275 

Before running our models, we first checked for correlations between the predictor variables in 276 

order to avoid redundancies due to multi-collinearity. Birthmass and gestation length were 277 

correlated with phylogeny (all r >0.9, all p<0.05). As it was necessary to take into account 278 

phylogeny effects in statistical analyses for all of our brain measures, we did not include these two 279 

predictor variables linked to phylogeny. Body mass, basal metabolic rate (BMR) and daily energy 280 

expenditure (DEE) were also highly correlated (r > 0.9) and we chose to only include body mass in 281 

our analyses because it is a raw measurement, contrary to BMR or DEE which were calculated with 282 

standard equations (see Table S1). Interbirth intervals and weaning age were highly correlated, so 283 

we only included weaning age in our analyses because it is directly related to the acquisition of 284 

adult-like diet repertoire and foraging skills (e.g. Schuppli et al., 2016a). Along the same lines, due 285 

to a high correlation between daily traveled distance and home range area, we only used daily 286 

traveled distance for modeling the brain measurements. The six following variables were therefore 287 

tested in our analyses: phylogeny, body mass, daily traveled distance, dietary quality, group size 288 

and weaning age. None of these variables were correlated to phylogeny, as previously shown by 289 

Kamilar and Cooper (2013) (low phylogenetic signal for daily traveled distance, dietary quality, 290 

weaning age and group size).  291 

All five response variables’ distributions revealed good fit with the lognormal distribution, so each 292 

variable was log-transformed prior to model fitting. We verified model assumptions with the 293 
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inspection of histogram of residuals and plots of residuals and fitted values. Each fitted model was 294 

compared with a null model, in which all predictors variables were removed, using a likelihood 295 

ratio test (package « lme4 »). Any full model that did not significantly outperform its respective null 296 

model was discarded and we did not report further on its parameter estimates. For each response, 297 

we tested several models corresponding to specific combinations of socio-ecological variables and 298 

phylogeny, and the best fitted model was chosen according to Bayesian Information Criterion (BIC) 299 

and Variance Inflation Factors (VIF). We employed the anova function to assess the percentage of 300 

variance explained by each predictor in the best fitted model for each of the five cerebral 301 

measurements. The detailed statistics for comparisons of the different models including different 302 

variables are presented in the supplementary material. 303 

 304 
3. RESULTS 305 

3.1. Measurements of the brain, the gyrus rectus, the VMPFC and the somatosensory cortex 306 

We present in Table 1 the average volumes of the brain, the gyrus rectus, the VMPFC and the 307 

somatosensory cortex (S1) for each primate species in our sample, as well as the relative volume of 308 

the VMPFC compared to the brain hemisphere. The two macaque species had similar gyrus rectus 309 

and brain volumes, but Japanese macaques exhibited a larger VMPFC than rhesus macaques 310 

(Mann-Whitney test: U = 2.0, p = 0.009). The mean relative volume of the VMPFC of gorillas was 311 

intermediate between the values for rhesus macaques and Japanese macaques. The volume of all 312 

areas of interest was greater in modern humans than in all non-human primates. 313 

  314 
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Table 1. Mean volumes of neuroanatomical structures: the brain hemisphere, the gyrus 315 

rectus, the VMPFC, the ratio VMPFC/brain hemisphere and the primary somatosensory 316 

cortex (S1) among our primate sample. All measurements are expressed in mm3 and represent the 317 

average of one hemisphere only. For the sake of consistency, the cerebellum was systematically 318 

excluded from all the measurements. 319 

Species 
Brain 

hemisphere 

Gyrus 
rectus 

VMPFC 
VMPFC / Brain 

hemisphere 
S1 

Macaca mulatta  

Macaca fuscata 

Gorilla gorilla 

Pan troglodytes 

Homo sapiens 

44643.6 

45030.5 

122768.5 

98614.7 

753584.2 

320.9 

320.7 

808.3 

594.2 

4578.8 

89.9 

115.1 

277.4 

254.8 

2296.1 

0.0020 

0.0026 

0.0023 

0.0026 

0.0030 

554.7 

562.7 

2370.5 

1769.0 

9949.1 

 320 

 321 

3.2. Absolute volume of the brain 322 

Comparison between the fitted and null models showed that the absolute volume of the brain (one 323 

hemisphere without cerebellum) was related to the following tested variables: phylogeny, daily 324 

range and group size (LRT, χ2 = 118.07, Δdf = 3, P < 2.2e-16; Table 2; Fig. S1, S2, S3 and S4). 325 

The phylogeny accounted for 66% of the total variance, the daily traveled distance explained 30 % 326 

and group size only 3 %. Phylogeny was negatively linked to absolute brain volume, with higher 327 

brain volumes for species closest to humans. The daily traveled distance was positively associated 328 

with brain volume, with brain volume increasing with the daily distance traveled. We also reported 329 

a significant negative effect of group size on brain volume variation, with smaller brain volumes for 330 

high group sizes.  331 

  332 
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Table 2. Results of the best fitted generalized linear model examining the relationship between the 333 

absolute volume of the brain without cerebellum (n = 28), phylogeny, daily traveled distance and 334 

group size. 335 

Factors 
 

   

 Estimate + SE t - value Pr(> | t |) 

Phylogeny - 1.757 ± 0.15 - 11.402 3.57e-11 

Daily traveled distance 0.245 ± 0.01 21.097 5.31e-17 

Group size - 0.012 ± 2.00e-3 - 7.031 2.87e-7 

 336 

 337 

3.3. Absolute volume of the gyrus rectus 338 

Representative examples of the gyrus rectus for each species are shown on Fig. 2. Based on model 339 

comparison, the volume of the gyrus rectus was best explained by phylogeny, daily traveled 340 

distance and group size as predictor variables (LRT, χ2 = 105.76, Δdf = 3, P < 2.2e-16; Table 3; 341 

Fig. S5, S6, S7 and S8). As for the brain volume, phylogeny accounted for more than half of the 342 

variance observed (58%), whereas socio-ecological parameters explained 40 % (respectively 35 % 343 

for daily traveled distance and 5 % for group size). Similarly to what we found for the brain 344 

volume, the daily traveled distance was positively related to the volume of the gyrus rectus, whereas 345 

phylogeny and group size were negatively linked to the volume of the gyrus. 346 

  347 
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Table 3. Results of the best fitted generalized linear model examining the relationship between the 348 

absolute volume of the gyrus rectus (n = 29), phylogeny, daily traveled distance and group size. 349 

Factors    

 Estimate ± SE t - value Pr(> | t |) 

Phylogeny - 1.305 ± 0.19 - 7.064 2.10e-7 

Daily traveled distance 0.256 ± 0.01 17.881 9.33e-16 

Group size - 0.013 ± 2.0e-3 - 6.684 5.28e-7 

 350 

 351 

3.4. Absolute volume of the VMPFC 352 

Representative examples of the VMPFC for each species are shown on Fig. 2. The model with 353 

phylogeny, dietary quality, weaning age and group size as predictor variables better explained the 354 

variation of the VMPFC in our sample (LRT, χ2 = 118.65, Δdf = 4, P < 2.2e-16; Table 4; Fig S9, 355 

S10, S11, S12 and S13). Phylogeny accounted for 64 % of the variance observed, whereas dietary 356 

quality and weaning age explained respectively 20% and 12% of variance. Group size only 357 

accounted for a very little portion of the variance (3%). In the one hand, we still found a negative 358 

relationship between phylogeny and the volume of the VMPFC, as well as a negative effect of 359 

group size. On the other hand, we found that the dietary quality was positively associated with 360 

VMPFC: the VMPFC is bigger when the dietary quality is higher. Moreover, there was a negative 361 

relation between weaning age and the VMPFC, with a bigger VMPFC with earlier weaning ages. 362 

  363 
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Table 4. Results of the best fitted generalized linear model examining the relationship between 364 

absolute volume of the VMPFC (n = 29), phylogeny, dietary quality, weaning age and group size. 365 

Factors    

 Estimate ± SE t - value Pr(> | t |) 

Phylogeny - 8.023 ± 0.31 - 25.600 6.19e-19 

Dietary quality 0.012 ± 1.0e-3 9.338 1.84e-9 

Weaning age - 0.568 ± 0.04 - 12.958 2.51e-12 

Group size - 0.017 ± 3.0e-3 - 6.359 1.42e-6 

 366 

 367 

3.5. Proportion of the VMPFC relative to brain volume 368 

The best fitted model suggests that the ratio VMPFC/brain in our primate sample was better 369 

explained by the phylogeny and dietary quality (LRT, χ2 = 32.41, Δdf = 2, P = 9.2e-8; Table 5; Fig. 370 

S14, S15 and S16). Dietary quality explained 41 % of the variance observed, whereas phylogeny 371 

explained about 28 %. As it was the case for the absolute measure of the VMPFC, the relative 372 

volume of the VMPFC was positively modulated by the dietary quality index, and negatively 373 

associated with phylogeny. 374 

 375 

Table 5. Results of the best fitted generalized linear model examining the relationship between the 376 

volume of the VMPFC relative to the whole brain (n = 28), phylogeny and dietary quality. 377 

Factors    

 Estimate + SE t - value Pr(> | t |) 

Phylogeny - 0.320 ± 0.08 - 3.869 6.94e-4 

Dietary quality 2.088e-3 ± 3.70e-4 5.695 6.25e-6 

 378 

 379 

3.6. Absolute volume of the somatosensory (S1) cortex 380 

Variation of the absolute volume of the S1 cortex was better explained by the phylogeny, the daily 381 
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traveled distance and the group size (LRT, χ2 = 111.55, Δdf = 3, P < 2.2e-16; Table 6; Fig. S17, 382 

S18, S19 and S20). The phylogeny explained 79% of the variance observed for the volume of the 383 

S1 cortex, whereas socio-ecological parameters explained 19% of the variance observed, with daily 384 

traveled distance accounting for 15% and group size for 4%. Similarly to what we found for the 385 

whole brain volume, phylogeny and group size had a negative impact on the volume of the S1 386 

cortex, whereas the impact of daily traveled distance was positive. Contrary to the VMPFC, the best 387 

model to account for the volume of S1 does not include either dietary quality or weaning age. 388 

 389 

Table 6. Results of the best fitted generalized linear model examining the relationship between 390 

absolute volume of the S1 cortex (n = 28), phylogeny, daily traveled distance and group size. 391 

Factors    

 Estimate + SE t - value Pr(> | t |) 

Phylogeny - 2.892 ± 0.18 - 16.311 1.73e-14 

Daily traveled distance 0.206 ± 0.01 15.314 6.91e-14 

Group size - 0.013 ± 2.00e-3 - 7.397 1.23e-7 

 392 

4. DISCUSSION 393 

This study provides specific models describing the influence of phylogeny and key socio-ecological 394 

variables on several brain regions. One of the aims of our study was to go beyond the use of the 395 

overall brain volume as a proxy to infer a global cognitive capacity (e.g. Benson-Amram et al., 396 

2016, Lefebvre et al., 2004;), which is crude and can lead to misinterpretations (e.g. Healy & Rowe, 397 

2007; Logan et al., 2018). In line with our hypothesis, socio-ecological factors (diet quality and 398 

weaning age) implying a strong pressure from the environment to exhibit flexibility in foraging 399 

strategies had a specific influence on the VMPFC, a region associated with both episodic memory 400 

and decision-making. The influence of these factors was not detectable when using less specific 401 

regions (the whole gyrus rectus or the whole brain) or when using a control region not involved in 402 

executive functions (the primary somatosensory cortex, S1). The similarity across the socio-403 

ecological factors influencing the size of these later regions is probably related to a global 404 

relationship between brain size and cognition/behavioral control (e.g. Deaner et al., 2007; Isler & 405 

van Schaik, 2014; Reader & Laland, 2002). 406 
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Regarding the overall brain volume, the best model describing this global measure included not 407 

only phylogeny but also daily range and group size (although its influence was negative). The 408 

strong influence of phylogeny on brain size is probably related to the constraints of evolutionary 409 

history; closely related species tend to display similarities in morphological traits because they 410 

inherited them from a common ancestor. Phylogeny also influenced the size of specific brain 411 

regions (gyrus rectus, VMPFC, primary somatosensory cortex), in line with the idea that the strong 412 

constraint of evolutionary history does not only apply to the brain as the whole, but also to specific 413 

cerebral regions. 414 

Besides phylogeny, brain size was also significantly related to ecology: bigger brains are associated 415 

with longer distances traveled by day. This is in accordance with previous studies showing 416 

associations between brain size and home range size (which is correlated with distances traveled by 417 

day) (Gilissen, 2005; Powell et al., 2017). Our results are also somehow consistent with those 418 

recently published by De Casien et al. (2017) who showed that, among primates, brain size was 419 

related to dietary factors more than to social parameters; frugivorous primates having bigger brains 420 

than folivorous ones. Although we found a better relationship between brain size and daily traveled 421 

distance than diet quality, the two studies converge in showing that brain size seems to be better 422 

predicted by feeding ecology than by group size. Moreover, when entered as a covariate, group size 423 

— which has been used as a proxy for social complexity in primates (Dunbar, 1998) — has a 424 

negative influence on brain size and its influence is one order of magnitude less (3% of the total 425 

variance) than that of phylogeny (66%) and ecology (30%). This might look at odds with the Social 426 

Brain hypothesis (Dunbar, 1998). This hypothesis suggests that social challenges favored the 427 

evolution of larger brains, and especially larger neocortex size, with species living in larger groups 428 

having bigger brains to deal with the associated complex social interactions (Barrett et al., 2003; 429 

Dunbar & Shultz, 2007; van Schaik & Burkart, 2011). Cognitive adaptations are expected to 430 

improve the effectiveness with which a species deals with social challenges (coalition formation, 431 

social learning of skills…), and social factors have been suggested as selective forces to favor 432 

increases in cognitive abilities (Street et al., 2017). Nevertheless, disentangling the respective role 433 

of social factors and ecological factors involved in the increase of cognitive abilities remains tricky, 434 

especially because some social factors, such as group size, are not independent from ecological 435 

factors. Indeed, group size in primates is often limited by feeding competition, for example as group 436 

size increases, there is an inevitable increase in scramble competition and consequently individual 437 

daily traveled distance increases (van Schaik, 2016). Moreover, it appears that in more stable and 438 

productive environment, groups of a given species tend to be larger (e.g. Chapman & Chapman, 439 

2000; Emery Thompson, 2017). Consequently, the weak negative influence of group size (when 440 

associated with other covariates such as phylogeny and daily traveled distance) that we reported is 441 
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difficult to interpret, especially because when considered individually, group size positively affects 442 

all brain measures. Thus, given these limitations and our limited sample (5 species), the putative 443 

effects of group size must be treated cautiously, and testing the Social Brain hypothesis would 444 

require clarifying the prediction regarding the influence of sociality on specific vs. generic 445 

cognitive skills, as well as the corresponding brain regions. Lastly, it should be kept in mind that 446 

group size could be a very crude (or even inaccurate) measure of social complexity, and more work 447 

is necessary to find a better proxy of the quality of social interactions (e.g. social network size). For 448 

example, larger group size may not always be associated with a corresponding increase of 449 

differentiated relationships at the individual level (Bergman & Beehner, 2015; De Casien et al., 450 

2017; Dunbar & Schultz, 2007). Thus, this measure (even if largely used in primate studies) could 451 

inaccurately capture what the Social Brain hypothesis actually entails and refining this hypothesis 452 

would also benefit from a clarification of the specific social and cognitive processes at play. 453 

Nevertheless, whatever the relation between group size and social skills and whatever the 454 

limitations of our study, feeding ecology remains a better predictor of brain volume compared to 455 

group size in our sample. Thus, even if the ecological and social hypotheses are not mutually 456 

exclusive (Rosati, 2017), our work reinforces the idea that ecological parameters, and particularly 457 

those related to foraging, could have played a stronger role than sociality in the evolution of overall 458 

brain volume (home rang size: Clutton-Brock & Harvey, 1980; Powell et al., 2017; ephemeral food 459 

resources: Milton, 1981, 1988; extractive foraging: in van Schaik, 2016). 460 

Given the limitations of whole brain measures, we designed this study to capture the relation 461 

between specific cognitive operations and key socio-ecological factors by measuring the volume of 462 

a specific brain region, the VMPFC, which is associated with decision-making and valuation based 463 

on episodic memory (e.g. Barron et al., 2013; Rushworth et al., 2012; San-Galli et al., 2016). 464 

Indeed, these processes are thought to be crucial for behavioral flexibility and acquisition of food 465 

resources or “foraging cognition” among primates (Cunningham & Janson, 2007; Noser & Byrne, 466 

2007; Rosati, 2017; Zuberbühler & Janmaat, 2010). To our knowledge, our study is the first to 467 

focus on this specific brain region at the interspecific level, and we demonstrate that this approach 468 

provides a significant insight into the relationship between cognition, neuroanatomy and ecology. In 469 

fact, the best model to capture the difference in size of the VMPFC across species included not only 470 

phylogeny and group size (as it was the case for the whole brain and other control regions’ size), 471 

but also diet quality and weaning age. This clearly suggests that coping with these socio-ecological 472 

factors would involve the cognitive operations in which the VMPFC plays a critical role. Primate 473 

species with a more diversified diet, including fruits and/or animal items, should require a solid 474 

capacity of selecting which course of action to take based on expected costs and benefits, compared 475 

to species which have an easier access to resources such as leaves and stems. Thus, the cognitive 476 
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operations involving the VMPFC (selecting actions based on memorized information and according 477 

to a specific context) may have been favored among primates that forage in complex and variable 478 

environments for ephemeral or seasonal food resources such as fruits. The negative influence of 479 

weaning age on the VMPFC that we reported could be interpreted along the same lines: all other 480 

things being equal, being weaned earlier could mean that animals must start earlier to make 481 

appropriate foraging decisions, in part by selecting the right food and the right way to obtain it. In 482 

other words, the VMPFC might provide the cognitive tools to survive both when animals need to 483 

obtain diverse food resources from a rich environment and when they must learn to forage on their 484 

own earlier in their life. Even if similar arguments had been already advanced based on experiments 485 

in individual species (rhesus macaques: San-Galli et al., 2016 or humans: Rushworth & Behrens, 486 

2008), the present work is the first direct demonstration of a relationship between a specific brain 487 

region and a set of specific ecological variables across several primate species.  488 

We also measured the cortical volume of the gyrus rectus, an easily identifiable part of the ventral 489 

prefrontal cortex related to decision-making and planning (Bechara et al., 2000). Interestingly, the 490 

gyrus rectus showed the same relationship with ecology than the whole brain; they were larger 491 

among species traveling longer daily distances, and smaller among species with large group size. 492 

As for the whole brain, this latter parameter only explained a small part of the total variance 493 

observed in our sample (5% for the gyrus rectus). In other words, looking at this region of the 494 

prefrontal cortex provides no additional insight into the relation between brain and ecology. This 495 

might be due to the fact that the prefrontal cortex is the major source of variability among primate 496 

brains (Passingham & Smaers, 2014; Preuss & Goldman-Rakic, 1991; Smaers et al., 2017). In that 497 

context, the size of the gyrus rectus would simply represent the global expansion of the prefrontal 498 

cortex across species, and the corresponding increase in executive capacities. Following that 499 

hypothesis, ecological variables would simply put a global pressure on all executive functions, 500 

rather than on other functions such as sensory or motor processing. This is however probably not 501 

the case, because the same variables also explained the relative expansion of the primary 502 

somatosensory cortex S1. In the one hand, this is surprising, because it is hard to relate primary 503 

somatosensory processing and variables such as daily traveled distance and group size. On the other 504 

hand, it indicates that the neuroanatomical correlates of these variables is highly non-specific; rather 505 

than driving the increase in a set of specific structures, it seems to boost a global cortical expansion.  506 

Finally, measuring the ratio VMPFC/brain further established the specificity of the relationship 507 

between VMPFC and ecological variables. First, in contrast with other measures (such as whole 508 

brain, gyrus rectus and VMPFC sizes), the relative size of the VMPFC showed no significant 509 

influence of group size, in line with the idea that the effect of group size remains relatively limited 510 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 19 

 

and neuroanatomically unspecific. Secondly, the relative volume of the VMPFC showed a stronger 511 

influence of dietary quality than the absolute VMPFC volume (explaining 41% vs. 20% of the 512 

variance), in line with the idea that the relationship between VMPFC and this ecological variable is 513 

stronger than for the rest of the brain.  514 

Altogether, it seems reasonable to conclude that the specific cognitive operations associated with 515 

the VMPFC are strongly related to an increase in dietary quality and potentially to the complexity 516 

of associated foraging strategies. Our results are in line with several studies that emphasize the key 517 

influence of feeding ecology on evolution of primate cognition (De Casien et al., 2017; Powell et 518 

al., 2017; Rosati, 2017; Schuppli et al., 2016b; Zuberbühler & Janmaat, 2010). Even if the primate 519 

species tested in our study spanned a large range of brain sizes found in living primates (suggesting 520 

that the results may reflect a general pattern for Old Word primates, at least), our conclusions must 521 

be taken with caution given our small sample size, and our analysis should be extended to more 522 

primate species. In addition, our study confirms that the relationship between feeding ecology and 523 

cognition is strong enough to be detected by using such a crude proxy for cognitive skills as brain 524 

size (cf. the positive effect of daily traveled distance not only on the whole brain but also on the 525 

gyrus rectus and on the somatosensory cortex). The exact cognitive operations and the 526 

neuroanatomical substrates underlying this relation, however, still needs to be established. Our 527 

work provides a significant step in that direction, by demonstrating that the relationship between 528 

ecology, neurobiology and cognition can be better captured with a more specific brain measure, and 529 

presumably a more specific cognitive operation. The strong modulation of VMPFC size by the diet 530 

quality paves the way for a more specific exploration of the neurobiological and cognitive 531 

operations underlying foraging. Conversely, this works also provides a critical insight into the 532 

ecological function of distinct brain systems, complementing the studies conducted in laboratory 533 

settings (Kolling et al., 2012; San-Galli et al., 2016). More generally, the capacity to guide behavior 534 

in complex and variable environment in order to fulfill energetic requirements may have had a 535 

major impact on primate evolution. Together with previous studies (Foley & Lee, 1991; Reader & 536 

Laland, 2002; Zink & Lieberman, 2016), we suggest that foraging strategies, together with 537 

extractive abilities (e.g. tool use), manipulative complexity and food processing techniques played a 538 

primary role in the evolution of cognition in hominids (i.e. Pongo, Pan, Gorilla and Homo 539 

including their immediate ancestors). Efficient foraging and associated behavioral and technical 540 

innovations (van Schaik, 2016) may have been particularly favored among hominin species (i.e. 541 

modern humans, their direct ancestors, and their extinct relatives) who complexified foraging 542 

strategies and increased their dietary ranges to face a critically changing environment.543 
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FIGURE CAPTIONS 885 

 886 

Figure 1. Reliable inter-species boundaries of the gyrus rectus and the ventromedial prefrontal 887 

cortex in primates. Left: coronal view; right: sagittal view. Yellow: Gyrus rectus; red: VMPFC. 888 

Abbreviations: cc: corpus callosum; cis: cingulate sulcus; rs: rostral sulcus; mos: medial orbital 889 

sulcus; A: Anterior; P: Posterior; D: Dorsal; V: Ventral.  890 

[Figure size: 1.5 column] 891 

 892 

Figure 2. Delimitation of the gyrus rectus and the ventromedial prefrontal cortex on brain MRI of 893 

non-human primate species and humans. From top to bottom: Macaca mulatta (in-vivo), Macaca 894 

fuscata (in-vivo), Gorilla gorilla (post-mortem), Pan troglodytes (post-mortem) and Homo sapiens 895 

(post-mortem). Left: coronal views; right: sagittal views. Yellow: Gyrus rectus; red: VMPFC. Scale 896 

bar = 1 cm. 897 

[Figure size: 1.5 column] 898 

 899 

Figure 3. Reliable inter-species boundaries of the somatosensory cortex (blue) in primates. Left: 900 

lateral view; middle: axial view; right: sagittal view. Abbreviations: cis: cingulate sulcus; cs: 901 

central sulcus; pcs: precentral sulcus; pocs: postcentral sulcus; A: Anterior; P: Posterior; M: 902 

Medial; L: Lateral; D: Dorsal; V: Ventral. 903 
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