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Bracketing backward reach sets of a dynamical
system

Thomas Le Mézo, Luc Jaulin and Benoı̂t Zerr

ENSTA-Bretagne, LabSTICC UMR CNR 6285, 2 rue
François Verny, 29806 Brest, France.

Abstract—In this paper, we present a new method for bracket-
ing (i.e., characterizing from inside and from outside) backward
reach set of the target region T of a continuous time dynamical
system. The principle of the method is to formalize the problem
as a constraint network, where the variables are the trajectories
(or paths) of the system. The resolution is made possible by
using mazes which is a set of paths that contain all solutions of
the problem. As a result, we will be able to derive a method able
to compute a backward reach set for a huge class of systems
without any knowledge of a parametric Lyapunov function and
without assuming any linearity for our system. The method will
be illustrated on several examples.

Index Terms—Abstract interpretation, Backward reach set,
Basin of attraction, Stability, Constraint solving, Interval Com-
putation

I. INTRODUCTION

Reachability analysis is a classical approach in control
theory Aubin and Frankowska 1990; Blanchini and Miani
2007 and has several applications, for instance (i) to validate
some properties of cyber-physic systems Konecny et al. 2013;
Taha and Duracz 2015, (ii) to ensure the safe configuration
during the landing Bayen et al. 2007 or the take off Seube,
Moitie, and Leitmann 2000 of an airplane or (iii) to avoid col-
lisions Desilles, Zidani, and Cruck 2012 with other aircrafts.
Reachability analysis allows us to guarantee that the system
with a given control law will always reach a target Aubin 2001.
In this paper, we deal with a dynamical system S defined by
the following state equation:

S : ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn is the state vector and f : Rn 7→ Rn is the
evolution function of S. Denote by ϕ the flow map of S, i.e.,
with the initial condition x0 = x(0), the system S reaches
the state ϕ(t,x0) at time t. The backward reach set C Aubin
2001Blanchini and Miani 2007 of a target T ⊂ Rn is the set
of initial states x0 from which S reaches the target T in a
finite time:

C = Bwd (T) = {x0 | ∃t ≥ 0,ϕ(t,x0) ∈ T} . (2)

Note that T ⊂ C. In this paper, we propose a new method
to bracket C. By bracketing C, we mean computing an inner
approximation C− and an outer approximation C+ of C.
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Two different types of approaches Mitchell 2007 are used to
compute backward reach sets: the Lagrangian and the Eulerian.
This classification is taken from the field of fluid mechanics
Landau and Lifshitz 1987. In the Lagrangian point of view, the
observer follows an individual fluid parcel as it moves through
the fluid. In an Eulerian point of view, the observer stays static
looking at the fluid moving around.

When we deal with a dynamical system such as (1), the
velocity of the fluid corresponds to the evolution function
f(x(t)), and the position of a fluid parcel at time t corresponds
to the state x(t). A Lagrangian approach would require
simulations to find states that reach the target. In the literature,
the corresponding methods are generally restricted to linear
dynamics Asarin, Dang, and Girard 2003; Asarin, Dang, and
Girard 2007 where a closed form of the flow ϕ is available.
They can also be extended to nonlinear systems if we use
guaranteed integration Sandretto and Chapoutot 2016; Wilczak
and Zgliczynski 2011, but the resulting method is slow. As
shown in Lhommeau, Jaulin, and Hardouin 2011; Monnet,
Ninin, and Jaulin 2016 a Lagrangian method requires many
bisections with respect to the time line (for the integration of
the state equation), but also on the state space (to bracket
C). The Eulerian methods are used for nonlinear systems
Quincampoix 1992; Gao, Lygeros, and Quincampoix 2006;
Kaynama et al. 2012 and try to avoid the integration of the
state equation. Most of the corresponding algorithms rely
on griding the state space Saint-Pierre 2002. To provide
guaranteed results, griding methods require the knowledge of
some Lipschitz constant which are rarely available in practice
(Saint-Pierre, 1994).

Lyapunov-based methods (Ratschan and She, 2010; De-
lanoue, Jaulin, and Cottenceau, 2006; Gonzaga, Jungers, and
Daafouz, 2012; Barreiro, Aracil, and Pagano, 2002), level-
set methods (Mitchell, Bayen, and Tomlin, 2001; Biemond
and Michiels, 2014), or barrier functions Bouissou et al.
2014; Esterhuizen and Lévine 2016 can also be considered
as Eulerian since they only check the constraints on the state
space and do not need to perform any integration through
time. Now, these methods require a parametric expression for
candidate Lyapunov-like functions She and Xue 2013. When
the state-equation is polynomial, due to decidability of the
theory of real-closed fields Tarski 1951, there is an algorithm
that, for a given polynomial with parametric coefficients,
decides whether there exist some consistent instantiations of
these parameters. For the resolution of the problem, several
methods exist, such as the ones based on sum of squares
Parrilo and Lall 2003 or on Linear Matrix Inequalities Henrion,
Lasserre, and Lofberg 2009. When the parametric model for
the Lyapunov function is non polynomial, interval methods
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which take into account some quantifier eliminations Ratschan
2002 can also be used.

The main contribution of this paper is to show that an
Eulerian approach can be implemented using interval analysis
and abstract interpretation. As a result, we will be able to
bracket backward reach sets without any interval integration
and without any model for a Lyapunov function. This was not
possible before except for some specific cases (Henrion and
Korda, 2014) such as when the system is linear Girard 2003.

The paper is organized as follows. Section II proposes
a formalization of the backward reach set problem as a
constraint network where the variables are paths of Rn. The
notion of maze is presented in Section III. A maze is a set
of paths that are used to enclose an uncertain path. Section
V illustrates the principle of the method on several test-cases
taken from the literature and Section VI concludes the paper.

II. FORMALIZATION

This section introduces a set-membership based formalism
in the context of dynamical systems described by a continuous-
time state equation Tornil-Sin et al. 2012; Mazhoud et al.
2012. These corresponding notions will be used to characterize
backward reach sets.

We define a trajectory as a smooth function x(·) from R+

to Rn. The path associated with a trajectory x(·) is the set of
all x(t) ∈ Rn, t ≥ 0 Spivak 1965. A path which is consistent
with a trajectory satisfying (1) is said to be feasible. A path
is valid if at least one of its points is inside T. Otherwise it
is dead. A state x which belongs to a dead path is outside C.
Figure 1 provides five paths. All of them satisfy (1) except (v)
which makes a loop and thus cannot satisfy a state equation in
the form of (1) because of its uniqueness (Khalil, 2002). The
path (ii) enters in T and converges to an equilibrium point. The
path (iii) is valid since it enters in T, but because it leaves it
later, it contains some subpaths that are dead. The path (iv)
corresponds to a limit cycle which is dead since it does not
enter in T.

Fig. 1. The paths (i), (iv) are dead, (v) does not satisfy (1) since it loops,
and paths (ii), (iii) are valid

Constraint network. We now recall briefly the notion of
constraint network that will be used for the formalization of
our problem. A constraint network (CN) Mackworth 1977
H is composed of a set of variables V = {x1, . . . , xn} , a
set of constraints C = {c1, . . . , cm} and a set of domains
{X1, . . . ,Xn} containing the xi’s. The values for variables xi

of a CN can be symbols, real numbers Araya, Trombettoni, and

Neveu 2012, vectors of Rn, and sometimes trajectories (see
Le Bars et al. 2012). The constraints can be equations between
the variables (such as x3 = x1+exp (x2)) or differential equa-
tions (such as ẋ3 · ẍ1 + exp (x2) = 0) and the domains can be
intervals, boxes Jaulin et al. 2001, zonotopes Combastel 2005
or tubes Drevelle and Bonnifait 2013. The goal of propagation
techniques is to contract as much as possible the domains
for the variables of a CN without loosing any solution. The
principle is to decompose all constraints of the initial CN into
primitive constraints and to call the corresponding contractors
Chabert and Jaulin 2009; Collins and Goldsztejn 2008 until
no more contraction can be observed. Therefore, constraint
propagation is only able to find an outer approximation of the
problem. When we want to bracket the solution set from inside
and outside, we have to build two complementary constraint
networks H and H. Any instantiation of (x1, . . . , xn) is either
a solution of H or a solution of H. Applying a constraint
propagation alternatively on H and H will allow us to build
an inner and an outer approximation of the solution set.

Backward reach sets as a constraint network. For our
problem, to apply a constraint approach, we need to define the
constraint network H. The variables are the paths of Rn which
are consistent with ẋ(t) = f(x(t)). The unique constraint
is the following: “the path should cross the target T”. And
the complementary CN is H has the same variables as H
except that the constraint is now: “the path is dead, i.e., it
never reaches the target T”. We have now defined the variables
and the constraints. It remains to define the domains for paths
which is the objective of the next section.

III. MAZE

The domains of a CN are in general a finite set (i.e., the
variables take their values inside a finite set), or intervals when
the variables correspond to real numbers. Domains should be
representable in the memory of a computer, and should have a
lattice structure in order to allow intersections. In the literature,
no type of domains has been proposed to enclose paths except
mazes that have been used in (Le Mézo, Jaulin, and Zerr,
2018b) for integrating differential equations, but without a
strong formalization. We now propose a formal definition of a
maze with a link to lattice theory which will allow us to have
some convergence proofs.

Definition. A maze L of Rn is composed of
• A paving P , i.e., a union of non overlapping boxes which

covers Rn.
• A list of nonoverlapping doors between adjacent boxes,

i.e., a path is allowed to go from one box to another
adjacent box by crossing a door. Formally, a door is
defined as a polytope of dimension n− 1 included in the
intersection between two adjacent boxes of dimension n.

A path is said to belong to a maze L if it crosses the boundary
between two adjacent boxes of the paving through a door. This
set-membership property is illustrated by Figure 2. In all our
figures, doors are shown as holes between brown painted walls.

Road. In the computer, a maze can be represented by a list
of boxes [x] (1), [x] (2), . . . . Each box [x] (i) is linked with
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the set D(i) of all doors it intersects. The pair 〈[x] (i),D(i)〉
is called a road. For a given box [x], the set of possible roads
〈[x] ,D〉 is a complete lattice with respect to the inclusion. For
the largest element 〈[x] ,>〉, all points of the boundary of [x]
belong to a door. We say that all doors are open or equivalently
that there is no wall. For the least element 〈[x] ,⊥〉 , D is
empty and we say that all doors are closed. Given a road
〈[x] ,D〉, we define CONV(D) as the polytope corresponding
to the convex hull of D. In Figure 2 the yellow polytopes
correspond to CONV(D) for each road of the maze.

∈

Fig. 2. The path (left) belongs to the maze (right). The maze contains 5
boxes and 6 doors.

Inclusion. Given two mazes La and Lb. We say that La

is included in Lb, denoted by La ⊂ Lb, if (i) the boxes of
La are subboxes of the boxes of Lb and (ii) all paths in La

also belong to Lb. An illustration of this definition is given
by Figure 3 where the left maze contains less paths than the
right maze. Indeed, the left maze La is included in the right
maze Lb, since (i) the 5 boxes of La are all subboxes of the
3 boxes of Lb and (ii) all doors of La are tighter than those
of Lb. It is trivial to check that if La ⊂ Lb then all paths in
La are also in Lb, but there is no equivalence.

⊂

La Lb

Fig. 3. Inclusion between two mazes

Lattice. Given two mazes La and Lb, we define the meet
La ∩ Lb as the largest maze (with respect to ⊂) which is
included in both La and Lb. We also define the join La ∪ Lb

as the smallest maze which contains both La and Lb. It is
trivial to check that the set of mazes of Rn is a lattice.

Door consistency. The road 〈[x] ,D〉 is said to be door-
consistent with the system S if all paths in [x] that are
consistent with the doors D and with the state equation (1)
remain inside CONV(D). This property means that inside [x]
a trajectory cannot leave CONV(D) and then come back. The

concept is illustrated by Figure 4. The road (a) is not door-
consistent since some trajectories which are consistent with
the two doors of D may leave CONV(D). The left door of
road (a) may be contracted into road (b) to make the road
door-consistent. It may also be inflated into roads (c) or (d)
to get the door-consistency. We can notice that the inflation
proposed by road (c) is more accurate than that of road (d).

(a) (b) (d)(c)

Fig. 4. The roads (b),(c),(d) are door-consistent. The polygon CONV(D) is
painted yellow

Maze. The maze L can be thus seen as a puzzle, the piece
of which are the roads. If [x] ∈ P , we define as DOORS ([x]),
the union of all doors associated to [x] and as WALLS ([x])
the set of all points of the boundary of [x] that are not inside
a door of [x]. In our implementation, we do not memorize the
polytope associated with the road 〈[x] (i),D(i)〉 since it can
be obtained geometrically by using as first estimate the outer
approximation of the vector field [f ] ([x]) in the pave. The
yellow polytope corresponds to the set of all point a ∈ [x] such
that there exists a ray starting from a of direction v ∈ [f ] ([x])
that intersects DOORS ([x]). Figure 5 depicts a maze with
three roads: 〈[x] (1) , {d (1) , d (4)}〉, 〈[x] (2) , {d (1) , d (2)}〉,
〈[x] (3) , {d (2) , d (3)}〉. We have DOORS ([x] (1)) = d (1) ∪
d (4), DOORS ([x] (2)) = d (1)∪d (2) and DOORS ([x] (3)) =
d (2) ∪ d (3).

d(1)

[x](2)

[x](3)

[x](1)

d(2)

d(3)

[x](1) [x](2) [x](3)

d(1) d(2) d(3)

d(4)

d(4)

Fig. 5. Left: A maze made with three roads, Right: the machine representation
of the links between boxes and doors

IV. METHOD

To bracket the backward reach set C, we propose to build
two complementary constraint networks. The first one defines
the valid paths (i.e., the paths that satisfy the state equation
and that reach the target T) and the second one defines the
dead paths (i.e., the paths that satisfy the state equation and
that never reach T). Recall that, since the system (1) is de-
terministic, there exists a one-to-one correspondence between
each path and the corresponding initial state. This is why the
bisections which will generate the paving will take place in
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the space Rn of all initial states and not in the set of paths
which has a dimension equal to infinity.

A. Computing an inner approximation

Computing an inner approximation C− for C amounts to
computing an outer approximation of the complementary C
of C:

C = {x0 | ∀t ≥ 0,ϕ(t,x0) /∈ T} . (3)

Since, we deal with paths, we search for all dead paths. For
this, we need two contractors: the target contractor and the
flow contractor. The goal of these operators is to contract the
roads composing the current maze without removing a single
dead path.

Target contractor. For each road of the maze, if the
corresponding box [x] is included in T then we contract the
road to 〈[x],⊥〉, i.e., we close all doors linked to [x].

Flow contractor. We contract each road 〈[x] ,D〉 of the
maze with respect to the constraint ẋ = f(x). To do this, we
contract the doors D without loosing any point in the set of
all a ∈ DOORS ([x]) such that there exists a ray starting from
a of direction v ∈ [f ] ([x]) that does not intersect WALL ([x]).

We can check that contracted road is door-consistent since
no trajectory can enter in CONV(D) (see Figure 4(b)).

An illustration of the corresponding contractor is given by
Figure 6. (a) illustrates a road with the vector field f (x),
three doors corresponding to D, and the polytope (yellow)
CONV(D). In (b) an external event comes to contract the right
door. The vector field is now represented by the gray cone
[f ] ([x]) computed using interval computation. The contrac-
tion of the bottom and left doors and the updated polytope
CONV(D) are representes in (c).

(a) (b) (c)

Fig. 6. Illustration of the flow contractor; the road is contracted backward
and the eliminated zones are in magenta

Propagation. To compute an inner approximation of C, we
apply the two contractors several times, as illustrated by Figure
7. In Sub-figure (1), all doors of all roads are assumed to be
open. Since The magenta box in Sub-figure (2) is inside T
(red curve) all corresponding doors are closed. In Sub-figures
(3)-(6) the propagation contracts backward the roads without
eliminating any dead path, which are all trapped inside the
yellow zone representing the current maze.

B. Computing an outer approximation

In the previous section, to compute an inner approximation
C− for C, we proposed to remove valid paths. The set T−

contains t the states x0 that reach T for at least one t ≥ 0. In

(5) (6)

[c] [b] [a]

[f ]

[e]

[d]

(1) (2)

(3) (4)

Fig. 7. Inner propagation; at each step, the magenta area inflates and is
necessary inside C, even if we did not reach the fixed point yet.

this section, we compute an outer approximation C+ for C.
For this, we need to remove dead paths Le Mézo, Jaulin, and
Zerr 2018a. Using a pure constraint approach Desrochers and
Jaulin 2016, as it was the case for the inner approximation,
is not possible anymore. Indeed, checking that a state x0

corresponds to a dead path requires to check that it never
reaches T for all t ≥ 0. The only possibility for this task is to
use the inflation principle provided by the theory of abstract
interpretation Cousot and Cousot 1977; Goubault and Putot
2006 based on invariant-set theory. The principle is to generate
a sequence of nested subsets X(k), k ≥ 0 where X(0) is an
outer approximation of T. More precisely, we build X(k + 1)
by an inflation of X(k) by adding all paths (or initial states)
that enter inside X(k). The process terminates at k̄ when the
fixed point is reached, i.e, when no more path can be added.
The set X

(
k̄
)

is said to be positive invariant. For this purpose,
we will use two inflators: the target inflator and the flow
inflator.

Target inflator. For each road 〈[x],D〉 of the maze, if the
corresponding box [x] intersects T then we inflate the road to
〈[x],>〉, i.e., we open all doors linked to [x].

Flow inflator. We inflate backward each road 〈[x] ,D〉
of the maze with respect to the constraint ẋ = f(x). To
do this, we add/inflate doors D to enclose the set of all
a ∈ WALLS([x]) such that there exists a ray starting from
a of direction v ∈ [f ] ([x]) that intersects DOORS ([x]).

We can check that inflated roads are door-consistent since
no trajectory can enter in CONV(D) (see Figure 4(c)).
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An illustration is given by Figure 8. (a) illustrates a road
with the vector field f (x), two doors corresponding to D, and
the yellow polytope CONV(D). In (b) an external event comes
to inflate the right door. The vector field is now represented by
the gray cone [f ] ([x]). The inflation of the bottom door, the
creation of the left door and the updated polytope CONV(D)
are represented in (c).

(a) (b) (c)

Fig. 8. Illustration of the flow inflation; the road is inflated backward

Propagation. The propagation of the inflations is illustrated
by Figure 9. In (1), all doors are closed and the red set
corresponds to T. In (2) the yellow box is known to intersect T
and the corresponding doors are open. In (3)-(5) the backward
propagation takes place and doors open accordingly. Gray
areas have not been processed yet. Once the fixed point is
reached, we can conclude that the remaining area, is outside C
(painted blue), or equivalently that the yellow area corresponds
to an outer approximation C+ of C.

Remark. Both Flow inflator and Flow contractor operator
can be expressed as a CN using geometrical contractors
(Guyonneau, Lagrange, and Hardouin, 2013) or using a Time-
Elapse Operator (Halbwachs, Proy, and Roumanoff, 1997).

C. Main algorithm

This section proposes an algorithm to compute an inner and
an outer approximation of the backward reach set. It uses the
following contraction/inflation procedures.

TargetContract
(
Lin
)

calls the target contractor proposed in
Section IV-A. For each 〈[x] ,D〉 in Lin if [x] ⊂ T then we
close the doors, i.e., D = ⊥.

FlowContract
(
Lin
)

calls the flow contractor proposed in
Section IV-A to shrink the doors without removing a single
path consistent with the state equation.

TargetInflate
(
Lin
)

calls the target inflator proposed in Sec-
tion IV-B. For each 〈[x] ,D〉 in Lout, if [x] ∩ T 6= ∅ then, we
open the doors, i.e., D = >

FlowInflate(Lout) inflates doors as explained in Section
IV-B.

Bisect([x]) cuts a box into two nonoverlapping subboxes.
For simplicity, in the algorithm, all doors have to be recon-
structed and we do not take advantage of the doors computed
before bisection.

[c] [b] [a]

[f ]

[e]

[d]

(1) (2)

(3) (4)

(5) (6)

Fig. 9. Outer propagation: Once the fixed-point is reached, we conclude that
the blue zone is outside C.

1 P := {Rn};
2 C− := ∅;Lin = {〈[x] ,>〉 | [x] ∈ P}

TargetContract
(
Lin
)

Repeat several times
FlowContract

(
Lin
)

For each 〈[x] ,D〉 in Lin

C− = C− ∪ ([x] \CONV(D))
3 C+ := ∅; Lout = {〈[x] ,⊥〉 | [x] ∈ P}

TargetInflate(Lout)
Repeat up to the fixed point

FlowInflate(Lout)
For each 〈[x] ,D〉 in Lout

C+ = C+ ∪ CONV(D)
4 If not accurate enough

Bisect all [x] in P s.t. [x] 6⊂ C− ∪ C+

Go to Step 2
Else return C−,C+.

• Step 1 corresponds to the initialization. The paving con-
tains a single box: [x] = Rn.

• Step 2 proceeds to the inner contractions for each road
〈[x] (i),D(i)〉 of the inner maze Lin and add the resulting
inner approximation to C−. The approximation C− is
initialized to empty and will inflate while the algorithm
progresses. Note that reaching a fixed point is not manda-
tory here contrary to the inflation propagation of Step 3.

• Step 3 initializes C+ to empty and applies the outer fixed-
point procedure. The outer approximation C+ is built as
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the union of all CONV(D) of the maze.
• Step 4. If the maze is not accurate enough, all boxes of P

are then bisected and we go to Step 2. The new iteration
will compute a more accurate approximation.

Proposition. The algorithm computes the following enclosure

C− ⊂ C ⊂ C+, (4)

or using an interval notation, we have C ∈ [C−,C+].
Proof. We first prove the inclusion (C− ⊂ C). For this,

we show that any point c of C− has been eliminated by
a contractor associated with the complementary set C of
C. Indeed, the point c belongs to a polytope that has been
eliminated at Step 2 either (i) by the target contractor or (ii)
by the flow contractor. In case (i), c ∈ T and thus c ∈ C. In
case (ii), the path with the initial condition c reaches the target
T, or equivalently reaches a zone which has been proved to
be inside C. Thus, in both cases, c ∈ C, which concludes the
first part of the proof.
To prove that C ⊂ C+, we will prove that if a state c is outside
C+, it is necessary outside C. From the procedure at Step
3, the point c is outside a positive invariant set X(k) which
encloses C. Since the system is deterministic, from Blanchini
and Miani 2007, we know that no feasible path starting from
c can enter in X(k) and thus cannot enter in C. Therefore
c /∈ C.

Complexity. Due to the paving approximation with boxes,
for a given required accuracy, the worst-case complexity of
the algorithm is exponential with respect to the dimension of
x. Even if we observed that the polytope approximations and
the algorithms used inside the contractors strongly determine
the computing time and the degree of accuracy, they do not
change the theoretical complexity.

V. TEST-CASES

We consider here several test-cases in order to illustrate the
principle of the method. For all these test-cases, computing
times are given for an Intel i5-3320M CPU.

We designed a simple python library
that can be found at http://www.ensta-
bretagne.fr/lemezo/pyinvariant/pyinvariant.html which
implements the algorithms of this paper. The reader
can test their own two dimensional examples.

Test-case 1. Reverse Van der Pol system. Consider the
system described by:{

ẋ1 = − x2

ẋ2 = −
(
1− x2

1

)
· x2 + x1.

(5)

The corresponding vector field is depicted in Figure 10.
If we apply our algorithm with the target T1 = {x | x2

1 +
x2
2 ≤ (0.4)2}, we get the approximation of Figure 11 in about

0.9 sec and with 12 iterations. The red circle corresponds to the
target T. The magenta area is proved to be inside C whereas
the blue area is proved to be outside C. Figure 12 gives also
a trend of the evolution, as a function of the iteration, of the
computation time and the volume of the uncertainty layer (in
yellow) which has not yet been proven to be inside or outside
C.

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Fig. 10. Vector field of the reverse Van der Pol system
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1

1.5

2
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3

3.5

4

x1

x2

Fig. 11. Bracketing the backward reach set of the target T1 (the red circle).
The frame box is [−4, 4]× [−4, 4].

We can also choose a target that is not centered on an
equilibrium point. If we take T2 = {[0.6, 1.4]× [−0.4, 0.4]}∪
{[−1,−0.6]× [0.3, 0.7]}, we obtain Figure 13 in about 3.7 sec
and with 14 iterations.

Test-case 2. Rayleigh system. Consider the system described
by: {

ẋ1 = −x2

ẋ2 = (x1 + x3
2 − x2)

(6)

and a target T = {x | x2
1 +x2

2 ≤ (0.4)2}. In about 2.3 sec and
with 14 iterations, we get the approximation given by Figure
14.

Test-case 3. Consider the system Bacha, Jerbi, and Braiek
2008 described by the state equation

{
ẋ1 = x2

ẋ2 = −0.5x2 − sin(x1 + 0.412) + sin(0.412)
(7)

where T = {x | x2
1 + x2

2 ≤ (0.4)2}. In about 2.3 sec and 14
iterations, we get the paving depicted on Figure 15 which is
consistent (and more accurate) with the results of Bacha, Jerbi,
and Braiek 2008 obtained using a geometrical approach.

http://www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
http://www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
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Fig. 12. Computation time and volume of the uncertainty layer at each
iteration for the reverse Van Der Pol system in logarithmic scale.
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Fig. 13. Bracketing the backward reach set of the target T2 (red box). The
frame box is [−3, 3]× [−3, 3].

Test-case 4. We consider a Dubins car (Dubins, 1957)
described by the following state equation


ẋ1 = −0.1 cos(x3)

ẋ2 = −0.1 sin(x3)

ẋ3 = −0.3

(8)

and the target set T = [−0.5, 0.5] × [−0.5, 0.5] × [0, 0.5]. In
about 173 sec and with 22 iterations, we get the enclosure
illustrated by Figure 16. Note that the poor quality of the ap-
proximation and the large computing time shows the difficulty
of the approach to deal with problems with a dimension greater
than three.

In our implementation, we used the Parma Polyhedra Li-
brary (PPL) to compute the projections, intersections and
convex envelops of polytopes (when n ≥ 3). Very few libraries
are available nowadays and they mainly work with rationals
as PPL. The main drawback of such libraries is the fact that
they try to compute a convex polyhedral solution with rational
numbers, which makes the algorithm inefficient.

Test-case 5. Two-wells system
We define the attraction basin of a set T as:

A = {x|∃t1 ≥ 0,∀t ≥ t1,ϕ(t,x) ∈ T}
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-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

Fig. 14. Bracketing the backward reach set of the target T (the red circle).
The frame box is [−2, 2]× [−2, 2].
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Fig. 15. Bracketing the backward reach set of T (the red circle). The frame
box is [−6, 6]× [−6, 6].

Since

x ∈ A
⇔ ∃t1 ≥ 0,∀t ≥ t1,ϕ(t,x) ∈ T
⇔ ∃t1 ≥ 0,¬(∃t ≥ t1,ϕ(t,x) ∈ T)

⇔ ∃t1 ≥ 0,ϕ(t1,x) ∈ Bwd(T)

⇔ x ∈ Bwd(Bwd(T)),

we can use our algorithm to compute A.
For the system described by the state equation

{
ẋ1 = x2

ẋ2 = 8
25x

5
1 − 4

3x
3
1 + 4

5x1 − 3
10x2

(9)

and a target T = {x|(x1 + 0.3)2 + (x2)2 ≤ 1}, Figure 18
gives the approximation of Bwd(T). Figure 19 provides an
approximation of Bwd(T) which also corresponds the largest
positive invariant set included in T. Figure 20 corresponds to
the attraction basin Bwd(Bwd(T)). Note that the uncertainty
layer (in yellow) is large but could be reduced at the cost
of more computation as shown on Figure 21. The cost is
exponential as a function of the number of iterations. All
these images have been generated in about 45 sec and with
14 iterations.
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Fig. 16. Bracketing the backward reach set of T (the red box at the top).
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Fig. 18. Backward reach set Bwd(T) of the target T (the red circle). The
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Fig. 19. Largest positive invariant set Bwd(T) included in T
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Fig. 20. Characterization of A = Bwd(Bwd(T)), the capture set of T
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Fig. 21. Computation time and volume of the uncertainty layer at each
iteration for the reverse Two-wells system in logarithmic scale.

VI. CONCLUSION

In this paper, we have proposed a new method able to
discretize a dynamical system described by a state equation.
The corresponding discrete structure is called a maze. It
corresponds to a graph with boxes inside each nodes and doors
between nodes. Our main motivation for the discretization is
to bracket the backward reach set associated to a target T. The
inner contraction was made possible using classical tools taken
from constraint programming whereas the outer approximation
was based on the theory of abstract interpretation and requires
fixed point procedures.
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Now, due to the fact that a pure Eulerian approach has
been developed, no integration method was used, which makes
the method much more efficient than those which require
bisections with respect to both the state space and the time
line.

Since the discretization method generates a structure which
is similar to a region graph, a generalization to hybrid systems
(Podelski and Wagner, 2006; Doyen, Henzinger, and Raskin,
2005), where the state can jump from one state to another
when some time-independent guard conditions are satisfied,
could be a straightforward extension of our approach.
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