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Dynamic Characterization of Hydroelectric Turbine with Transient Data Records Using OBMA and Phase-Shift Analysis

The purpose of this paper is to investigate the possibility of estimating Francis hydroelectric turbine modal parameters in transient conditions by focusing on resonance regions generated by the interaction of a structural mode with a frequency-variant harmonic pressure pulsation. Especially when numerous modes are in the same bandwidth, this method separates them by exciting only matching mode shapes. To extract a specified harmonic from the signal, the resonance retrieval is done using Order Tracking method. A classical ambient modal identification algorithm is then used to feature the isolated mode. Furthermore, using the phase-shift between measured locations, modes can be localized and shape determined.
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Negative Log-Likelyhood Function Design and exploitation of hydroelectric turbines relies on the knowledge of their dynamic behavior. This enables one to generate and validate models to either get a good assessment of life duration or plan predictivebased maintenance. Two sources of information are useful to properly characterize the mechanical behavior of a structure: numerical simulations and experimental data processing. Giving high computing power, the first source could give a whole and detailed analysis of the behavior in any expected regime through Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) but needs to be validated by the second to be reliable. It is a straightforward consequence of the strong assumptions made to reduce computational burden and model the highly turbulent characteristics of the flow. The second approach relies on in-situ measurements to extract dynamic features [START_REF] Presas | Fatigue life estimation of francis turbines based on experimental strain measurements: Review of the actual data and future trends[END_REF].

ω k Discrete pulsation k ∈ 1, N f X X X k (N S × 1) Estimated frequency response in ω k (C) X X X k (N S ×
The increase of computational power over years allows getting more accurate simulations for startup regimes [START_REF] Nicolle | Transient cfd simulation of a francis turbine startup[END_REF][START_REF] Nicolle | Cfd configurations for hydraulic turbine startup[END_REF], no-load or part-load configurations [START_REF] Krappel | Investigation of francis turbine part load instabilities using flow simulations with a hybrid rans-les turbulence model[END_REF][START_REF] Nennemann | Challenges in dynamic pressure and stress predictions at no-load operation in hydraulic turbines[END_REF][START_REF] Morissette | Stress predictions in a francis turbine at no-load operating regime[END_REF] and even hydrodynamic damping estimations [START_REF] Nennemann | Hydrodynamic damping and stiffness prediction in francis turbine runners using cfd[END_REF]. However, the results still show discrepancies in structural parameters due to deviations from real operating conditions: rotating machinery [START_REF] Presas | Influence of the rotation on the natural frequencies of a submerged-confined disk in water[END_REF], fluid-structure interaction added mass, damping and stiffness [START_REF] Trivedi | Fluid-structure interactions in francis turbines: A perspective review[END_REF][START_REF] Presas | Accurate determination of the frequency response function of submerged and confined structures by using pzt-patches[END_REF], cavitation influence [START_REF] Ducoin | An experimental analysis of fluid structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow[END_REF][START_REF] Lelong | An experimental analysis of the structural response of flexible lightweight hydrofoils in cavitating flow[END_REF][START_REF] Liu | Cavitation effects on the structural resonance of hydraulic turbines: failure analysis in a real francis turbine runner[END_REF] or boundary condition sensitivity [START_REF] Valentin | Influence of the boundary conditions on the natural frequencies of a francis turbine[END_REF]. On the other hand, experimental characterization is highly fragmented, but in general closer to reality for a given measured operating condition. The features obtained from experimental data relie on statistical models [START_REF] Gagnon | On the stochastic simulation of hydroelectric turbine blades transient response[END_REF][START_REF] Poirier | Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling[END_REF], indirect measurements [START_REF] Diagne | Modeling the dynamic behavior of turbine runner blades during transients using indirect measurements[END_REF], time-frequency analysis [START_REF] Moisan | Self-excitation in francis runner during load rejection[END_REF], but can also be obtained by modal parameter identification using Operational Modal Analysis (OMA) [START_REF] Gagnon | Oma en presence d'excitations harmoniques : etude de cas sur des composantes de turbine hydroelectrique[END_REF] or Experimental Modal Analysis (EMA) [START_REF] Valentin | Feasibility to detect natural frequencies of hydraulic turbines under operation using strain gauges[END_REF]. In addition, the experimental hydraulic instability study can be used to compare different computational turbulence models [START_REF] Presas | Detection and analysis of part load and full load instabilities in a real francis turbine prototype[END_REF][START_REF] Liu | Experimental investigation of inter-blade vortices in a model francis turbine[END_REF][START_REF] Goyal | Review of hydrodynamics instabilities in francis turbine during off-design and transient operations[END_REF]. Typically, the two sources of information (simulations and experiments) are crossed to obtain a hybrid representation of the dynamic behavior, which is used to obtain accurate load levels and allow a better prediction of fatigue [START_REF] Liu | A review on fatigue damage mechanism in hydro turbines[END_REF]. Those predictions are used to assess the runner life duration and reliability of the capacity [START_REF] Gagnon | Influence of load spectrum assumptions on the expected reliability of hydroelectric turbines: A case study[END_REF][START_REF] Huang | Fatigue analyses of the prototype francis runners based on site measurements and simulations[END_REF][START_REF] Seidel | Dynamic loads in francis runners and their impact on fatigue life[END_REF].

One of the problems with experimental analysis is the cost of data acquisition. To reduce financial burden of measurements, the idea is to extract a maximum of information from transient records instead of several stationary records, which would make the measurement less time-consuming. Furthermore, the processing of transient records allows obtaining real structural parameters of highly damaging regimes [START_REF] Goyal | Review of hydrodynamics instabilities in francis turbine during off-design and transient operations[END_REF][START_REF] Trivedi | Effect of transients on francis turbine runner life: a review[END_REF] (what numerical analysis still struggles to perform, as aforementioned). Our goal is to determine whether a signal processing methodology is able to extract precise and suitable features from these transient measurements. For this, a combined methodology using Order Tracking, OMA and Phase-Shift Analysis is implemented and performed on a case study. The case study data come from a medium-head Francis Turbine in Quebec (Canada). The paper first presents the theoretical background, including literature and the different OMA tools to be used. Afterwards, the model is tested on the case study of an operational runner prototype.

Resonance Detection Using Phase-Shift Diagrams

Resonances are usually found with the study of experimental correlograms where the amplified regions are treated as Operating Deflecting Shape (ODS). But there is another alternative to detect resonances with more confidence: Phase-Shift Analysis (PSA) [START_REF] Leonard | Spectrogramme de phase et spectrogramme de frequence[END_REF][START_REF] Leonard | Phase spectrogram and frequency spectrogram as new diagnostic tools[END_REF]. Resonance amplitudes are time-dependent and phases are relative to a reference in experimental data, but the modal phase-shift from one sensor to another is a theoretical time invariant absolute quantity that is specific to each mode. Especially, when a harmonic (timevariant pulsation) and a mode (almost constant pulsation) intersect with the same phase-shift, the observed ODS is very likely the resonance of the only excited mode. This resonance can be extracted and processed with OBMA through a Single Degree of Freedom (SDoF) formulation (Section 3 & 4). Once the mode has been detected, it is possible to feature its shape: the mode shape is assumed to be the nodal diameter that fits the best the modal phase-shift (e.g. [START_REF] Moisan | Self-excitation in francis runner during load rejection[END_REF] in which a self-excited vibration of a hydroelectric runner is studied during load rejection). It is also possible to determine the shape by identifying the pattern of the exciting harmonic, particularly if this last comes from a well-known phenomenon (vortex rope [START_REF] Seidel | Dynamic loads in francis runners and their impact on fatigue life[END_REF][START_REF] Dorfler | Flow-induced pulsation and vibration in hydroelectric machinery[END_REF][START_REF] Blommaert | Etude du comportement dynamique des turbines francis : controle actif de leur stabilite de fonctionnement[END_REF][START_REF] Favrel | Experimental identification and study of hydraulic resonance test rig with francis turbine operating at partial load[END_REF][START_REF] Favrel | Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load francis turbine operation[END_REF], Rotor-Stator Interactions (RSI) [START_REF] Huang | Fatigue analyses of the prototype francis runners based on site measurements and simulations[END_REF][START_REF] Seidel | Dynamic loads in francis runners and their impact on fatigue life[END_REF][START_REF] Dorfler | Flow-induced pulsation and vibration in hydroelectric machinery[END_REF][START_REF] Nicolet | Hydroacoustic simulation of rotor-stator interaction in resonance conditions in francis pump-turbine[END_REF][START_REF] Tanaka | Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines[END_REF]).

Order Tracking Procedure

Once PSA and resonance mapping is achieved, it is still required to extract accurate damping ratios and frequencies, and eventually other modal properties (modal force etc.). In order to do this, identification algorithms are implemented to process multi-channel resonance signals. The first pre-processing step is to extract the resonance component and isolate it from the rest of the signal. This is the purpose of Order Tracking. This class of method gathers all the tools able to extract one harmonic from the signal by shifting the time domain to a harmonic one, called order domain. Orders, measured in times per revolution, are analog to frequencies. Order Tracking is a classical and very used diagnosis tool for rotating machineries. There are four main techniques that are commonly used: direct method using Fourier Transform of a time series (FS), Angular Resampled-based Order Tracking (AD), Time-Variant Discrete Fourier Transforms (TVDFT) and Vold-Kalman filters (VK).

FS extracts the nth harmonic from a signal by tracking the X X X[nω 0,k ] response with a short-time Fourier transform at each time step, where ω 0,k is the runner angular velocity at time step k. This procedure is highly biased due to tapering, leakage effects and bandwidth control. In the classical approach with constant time intervals, low rotating frequencies are less accurate than higher ones. If time intervals are non-constant, some power spectral density rescaling issues rise and must be taken into account.

Another technique relies on an adaptative Fourier transform with settable kernel [START_REF] Blough | The time variant discrete fourier transform as an order tracking method[END_REF]: the kernel of the analytic exponential function tracks the frequency of interest. Consequently, a precise targeted order is extracted. In early works, the kernel orthogonality was lost and a compensation matrix had to be introduced to partly fix the problem. This issue is now easily fixed by introducing a change of variable in the integration domain, and gives a Velocity Synchronous Fourier Transform [START_REF] Borghesani | The velocity synchronous discrete fourier transform for order tracking in the field of rotating machinery[END_REF]. Vold-Kalman (VK) Bank Filters can extract orders from a signal with an instantaneous analysis instead of an averaging procedure [START_REF] Stephens | Order tracking signal processing for open rotor acoustics[END_REF]. Consequently, VK filtering is the most accurate technique in terms of resolution but entails a heavy computational burden, that is irreconcilable with industrial applications.

AD is a resampled-based method that avoids any leakage effect and phase issues [START_REF] Lorenzo | Operational modal analysis for rotating machines, challenges and solutions[END_REF]. The asynchronous time series are turned into synchronous time series (constant ∆α instead of ∆t) by the means of interpolation and tachometer record (Computed Order Tracking [START_REF] Fyfe | Analysis of computed order tracking[END_REF]). Then, a short-time Fourier transform is performed on the resampled signal, with intervals corresponding to one runner revolution (so that the spectrum resolution coincides with orders). Intervals are neither overlapped nor windowed. An order spectrum is obtained for each studied revolution. Each of those revolutions is converted into frequency by averaging the rotational speed over the lap. It can be noticed that the lower the studied dynamic, the weaker the quasi-static assumption over a revolution, the higher the response estimation quality. The bias of AD comes from both interpolation and synchronous interval split. Interpolation bias is due to interpolating method (e.g. linear, quadratic, splines) and shaft torsion that induces tachometer signal fluctuations. The issue with synchronous interval split is that each interval must represent exactly one revolution, that is not necessarily the case. Most of those biases can be reduced if data are recorded with a extensively high sampling frequency compared to the structure natural frequencies. For the purpose of this paper, the classical COT-based AD will be used, because the data sampling frequency is far higher than the natural frequencies of studied modes.

Operational Modal Analysis

Few has been done in the field of OMA for hydroelectric runner dynamic featuring. Gagnon et al. used this technique to characterize guide-vane behavior for different operating conditions [START_REF] Gagnon | Oma en presence d'excitations harmoniques : etude de cas sur des composantes de turbine hydroelectrique[END_REF]. The same point is made for EMA for which the study achieved on a runner obtained results that were in well agreement with simulations, but for experimental setting not representative of actual operating conditions [START_REF] Valentin | Feasibility to detect natural frequencies of hydraulic turbines under operation using strain gauges[END_REF]. Moreover, in many cases EMA cannot be implemented and when it is possible, suffers from major drawbacks like experimental set-up cost or structural size and complexity. The point of OMA is to extract modal parameters from outputonly measurements containing both unknown excitation and response of the system. When those signals are extracted with Order Tracking, the procedure is called OBMA (Order Based Modal Analysis) [START_REF] Lorenzo | Operational modal analysis for rotating machines, challenges and solutions[END_REF][START_REF] Janssens | Order-based resonance identification using operational polymax[END_REF][START_REF] Lorenzo | Industrial applications of advanced modal identification on operational rotating machineries[END_REF][START_REF] Lorenzo | Gear dynamics characterization by using order-based modal analysis[END_REF]. OMA is of interest for several reasons: it is fast in terms of computing effort and measurement (mere sensors replace excitation set-up), ambient excitation is appropriate to linearize the dynamic behavior and so on.

OMA techniques are divided into different classes: they can process in the time domain (TD) or frequency domain (FD), and can be parametric or non-parametric [START_REF] Van Der Auweraer | Modal and path contribution models from in-operation data: Review and new approaches[END_REF]. TD approaches are straightforward, and are generally parametric. They mainly study the auto-regression degree with (AR)MA-(X) models [START_REF] Poulimenos | Parametric time-domain methods for non-stationary random vibration modelling and analysis : A critical survey and comparison[END_REF] and Subspace Identification technics [START_REF] Ljung | System identification[END_REF] or the output correlations between channels (Polyreference, LSCE, Subspace Identification, ERA) [START_REF] Brinker | Introduction to operational modal analysis[END_REF]. Frequency approaches can be parametric (Polymax or Polyreference) [START_REF] Peeters | The polymax frequency-domain method: a new standard for modal parameter estimation[END_REF] or nonparametric (Pick-Peaking, (E)-FDD) [START_REF] Brinker | Modal identification from ambiant responses using frequency domain decomposition[END_REF][START_REF] Brinker | Modal identification of output-only systems using frequency domain decomposition[END_REF]. Non-parametric methods often rely on Single Degree of Freedom (SDoF) theory, so that a pre-processing step is mandatory to separate modal contributions.

In OBMA, Polymax model has typically been implemented as identification support [START_REF] Lorenzo | Operational modal analysis for rotating machines, challenges and solutions[END_REF][START_REF] Janssens | Order-based resonance identification using operational polymax[END_REF]. However, Polymax does not seem to be the best candidate for such an identification, because parametric models always generate spurious modes (due to noise and numerical bias). Furthermore, the model order is always difficult to define (methods are based on stabilization diagrams or parsimony principle through the minimization of criteria, e.g. Akaike and Bayesian Information Criterion, AIC or BIC). In order-tracked signals, it is easy to know in advance the number of excited modes, which allows using non-parametric methods. Thus, the authors propose to perform the following procedure: different modes are decomposed into SDoF responses and bandlimited using a partial E-FDD procedure. Then, each mode is identified using a classical ambient SDoF transfer function with a maximum likelihood estimator.

SDoF Separation

SDoF separation is performed using a modal coherent criterion applied on the singular vectors of the discrete spectral density matrix. The classical input-output relation of density matrices under the condition of white-noise input, low damping and uncoupled modes, can be developed according to the Heaviside partialfraction expansion theorem in the vicinity of its modal pulsations [START_REF] Zhang | A frequency-spatial domain decomposition (fsdd) method for operational modal analysis[END_REF][START_REF] Qu | Closely spaced modes identification through modified frequency domain decomposition[END_REF].

E E E k | ω k ≈ω r ≈ Φ Φ Φ * diag β r (ξ r ω r ) 2 δ r Φ Φ Φ T (1) 
Eq. 1 shows that the excitation density matrix is diagonal, and thus the output density matrix E is equivalent to a diagonal one. The change of basis is done with the modal matrix Φ Φ Φ = (ϕ ϕ ϕ 1 , ...ϕ ϕ ϕ n ). The diagonal matrix contains only one non-zero term expressed as the contribution of the investigated mode through (β r , ξ r , ω r ), respectively a characteristic scalar value, the damping ratio and the natural pulsation of mode r. The Kronecker symbol δ r is 1 for the rth position of the diagonal matrix, else 0. In the vicinity of a natural pulsation, the associated mode is the only contributor to the global dynamic of the system. The associated mode shape is ϕ ϕ ϕ r , rth column of Φ Φ Φ. In other terms, it is shown that the Singular Value Decomposition of the experimental density matrix in the vicinity of a mode returns only one dominant singular value. The associated singular vector in ω k = ω r (within the limit of frequency resolution) is the mode shape estimator. The set of the first singular values {s 1,k } is called Complex Modal Identification Function (CMIF) and is a unilateral representation of the previous spectral density functions. The resonance function of each SDoF is identified from the CMIF thanks to a discriminating criterion, the Modal Assurance Criterion (MAC) [START_REF] Pastor | Modal assurance criterion[END_REF]. MAC varies from 0 to 1 as the modal coherence increases. It compares the degree of agreement of two vectors:

MAC(ϕ ϕ ϕ i ,ϕ ϕ ϕ j ) = < ϕ ϕ ϕ i |ϕ ϕ ϕ j > 2 < ϕ ϕ ϕ i |ϕ ϕ ϕ i >< ϕ ϕ ϕ j |ϕ ϕ ϕ j > (2) 
This criterion is able to separate two uncoupled close modes and discriminate spike noises. Brinker et al. set the threshold to MAC thr = n/ √ N S , where n is an integer so that MAC thr is close but lower than 1, and N S the number of studied sensors [START_REF] Brinker | Automated frequency domain decomposition for operational modal analysis[END_REF]. If MAC( ϕ ϕ ϕ r ,ϕ ϕ ϕ j ) > MAC thr , where ϕ ϕ ϕ r is the shape estimator and ϕ ϕ ϕ j a singular vector of the CMIF, then s 1 [ω j ] belongs to the resonance function of the SDoF. This ensures to select a bandwidth with high modal coherence. Figure 1 shows an example of the use of MAC. The E-FDD theory shifts back in time domain to make the identification. But this procedure is a bad damping estimator, especially in the case of short signals [START_REF] Danial | Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates[END_REF]. For this reason, the identification support is different and presented in the next subsection.

A last point can be raised about the E-FDD limits: this procedure is only proper to separate uncoupled signals. In the case of coupled modes, it is unable to differentiate modal contributions. In future works, a Frequency-Domain Blind Source Separation developed by Castiglione et al. should be used instead [START_REF] Castiglione | Separation and identification of structural modes in largely underdetermined scenarios using frequency banding[END_REF]. FD-BSS is able to separate coupled modes with an impressive accuracy, and relies on a more rigorous mathematical approach.

Identification Using Maximum Likelyhood

After being extracted using AD method and bandlimited with MAC, the N S experimental frequency responses are concatenated into a vector X X X k and are modelled with the classical SDoF response described in eq. [START_REF] Nicolle | Cfd configurations for hydraulic turbine startup[END_REF][START_REF] Krappel | Investigation of francis turbine part load instabilities using flow simulations with a hybrid rans-les turbulence model[END_REF], where X X X k is the theoretical response vector, h r,k is the modal transfer function depending on modal parameters (ω r , ξ r ) and p k ,ε ε ε k are the normalized Fourier transforms of excitation and noise respectively. Figure 1: Modal contributions are framed using MAC, which compares the agreement level between two mode shapes.

X X X k = ϕ ϕ ϕ r h r,k p k +ε ε ε k (3) h r,k = - 1 ω 2 k -ω 2 r -2iξ r ω r ω k (4) 
The associated Negative Log-Likelihood Function (NLLF) is given in eq. ( 5), where N f is the number of point per channel, E E E k [θ θ θ ] the theoretical SDoF density matrix arising from eq. ( 3) and |E E E k [θ θ θ ]| the determinant of the density matrix ; the analytical determination of both determinant and inverse matrix of E E E k [θ θ θ ] is far from being trivial, and described in [START_REF] Au | Operational modal analysis, modeling, bayesian inference, uncertainty laws[END_REF]. θ θ θ r = (ω r , ξ r , S r , S er ,ϕ ϕ ϕ r ) is the parameter vector, including natural pulsation, damping ratio, modal force, PSD error and mode shape. θ θ θ is the parameter variable, used to estimate θ θ θ r . The NLLF is minimised using a Nelder-Mead algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF]. A such identification method was chosen because it shows the best asymptotic properties.

L (θ θ θ ) = N S N f ln(π) + N f ∑ k=1 ln(|E E E k [θ θ θ )]|) + N f ∑ k=1 X X X * k E E E -1 k [θ θ θ ] X X X k (5) 

Case Study

The studied measurements come from a vertical medium head Francis hydroelectric runner exploited in Quebec, Canada. This facility was chosen because the turbine was designed and is operated by two partners of the current project. The measurement data were recorded during a slow transient from no-load overspeed to stop. Two blades separated with an angle of 111 • were instrumented with strain gauges. Intrados were instrumented with three strain gauge rosettes, located in the band junction to blade leading edge and trailing edge, and in the middle crown-blade weld, as shown in Figure 2. Extrados were instrumented with two uniaxial gauges, one close to the crown, the other close to the band. The locations are the same from one blade to another to ensure a redundant signal. Accelerometers and pressure sensors are located in different points (blade, structure and penstock) and sensors are also installed on the shaft to record torque, flexion and thrust. The rosette and uniaxial gauges are oriented in agreement with the expected strain flow direction, .e. in the direction of the principal stresses.

An analysis of experimental correlograms (amplitude of short-time Fourier transforms) and absolute phaseshift spectra between redundant sensors was made first. Some examples are shown in Figures 3 and4, related to 1 summarizes all the detected modes in the range [0, 100]Hz, and reports the related resonant harmonic index. Phase-shifts are averaged over the region where the mode is found.

In the studied data, all the time series are recorded with an extensively large sampling frequency, and the use of AD technique to extract harmonics should be straightforward. The next subsections present typical case studies based on previous identified modes. The first mode to be studied, mode 1, is excited by the 13th harmonic of the rotating speed. This corresponds to the blade passing frequency. Such an excitation can come for instance from the spiral case intake or the drat tube elbow that can create a stationary disturbance that is seen by the rotating runner each time a blade passes in front of the intake or the draft tube direction. The investigation of torsion measurements shows that the studied mode is a natural torsion mode of the shaft line. What is observed on blades is only the propagation of shaft natural vibrations. Thus, all the runner is excited with the same phase, and the nodal diameter is 0, that is confirmed by the absence of phase-shift between blades. An axial thrust pulsation is measured on the shaft, and indicates that the inflow to the runner is not symmetric to the guide vane orientation [START_REF] Dorfler | Flow-induced pulsation and vibration in hydroelectric machinery[END_REF]. Examples of extracted resonances are shown in Figure 5. The MAC narrows the bandwidth with a threshold MAC thr = 0.875, as depicted in Figure 6. The maximum likelihood estimator raises optimal parameters, shown in Table 2 The shape relative amplitudes are the same on the two blades, as testifies Figure 7.a.. The mode shape is in phase opposition from leading edge to crown, and is not spotted neither on trailing edge intrados or on band extrados signals. That attests a ND -0 "in umbrella", as depicted in Figure 7.b. The modal force is very difficult to extract and is likely very biased. The bias on damping ratio mainly depends on experimental data. The leakage and tapering bias due to the windowing is avoided thanks to COT-based AD. However, the global uncertainty level remains likely high because of the unknown excitation.

Results

Table 3 shows the result of the identification process performed on all detected resonance harmonics. The information presented is: the exciting harmonic (indexed on the rotating frequency), the most likely nodal diameter, the Signal-to-Noise Ratio (SNR), the bandwidth and the associated method (MAC or SENS for sensitivity analysis) and the modal parameters. Except for the torsion mode, resonance signals have a low SNR that renders impossible the use of MAC, because the singular value spectrum is still buried in noise. Instead, a sensitivity analysis was made on modal parameters as a function of the bandwidth. The selected band corresponds to the parameter convergence. This method gives wider bands (around ten times the width of a MAC selected bandwidth), where noise has a significant influence. Rather, MAC criterion selects a narrower frequency band with very few noise. The two methods return quite equivalent results. The experimental data reveals five isolated modes numbered from 1 to 4 in Figure 4, and a multi-mode band. Amongst the 4 well-separated modes, only the first 3 are excited by a harmonic and then identifiable. Into the multi-mode band, one mode is excited by a harmonic. It is thus possible to feature it, but the SNR is particularly low. Notice that the first mode of table 3 is the torsion mode featured in table 2.

Conclusion

This paper shows that Francis runner structural modes can be identified from ambient vibration data during transient conditions. These modes have been successfully extracted and identified through an enhanced OBMA technique (E-OBMA). E-OBMA combines three existing techniques and takes benefit from the best of each: Order Tracking separation quality, MAC bandlimiting rigor and maximum likelihood accuracy. This work shows that experimental transient data contains accurate frequency information that can be used to assess numerical model validity. The presented results are the first effort in creating OMA strategy tailored for Francis runners. The E-OBMA still has to be validated on an analytical case, which is now being developed. The Order Tracking quality should be evaluated in conjunction with EMA sine-sweep excitation theory. Also, further improvements will make possible the uncertainty quantification which is a major stake in signal processing. 
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Figure 2 :

 2 Figure 2: Strain gauge location on the instrumented blades. Circles represent rosette gauges, triangles represent uni-axial gauges.

Figure 3 :

 3 Figure 3: ODS Analysis of principal direction of intrados crown Rosette gauge. On the left, phase-shift spectrum of the redundant gauges. On the right, redundant amplitude spectra.

Figure 4 :

 4 Figure 4: ODS Analysis of extrados crown Rosette gauge.

Figure 5 :

 5 Figure 5: On the left, Order Spectra. All the harmonic contents are on the same line. On the right, the related Bode Diagrams of the harmonic 13.

Figure 6 :

 6 Figure 6: Resonance function extraction from the first singular values spectra (CMIF).

Figure 7 :

 7 Figure 7: a) Partial mode shape extracted with maximum likelihood. b) Schematics of the observed mode shape.

  

Table 1 :

 1 Experimentally Detected Modes 5.1 Identification Example: Shaft Torsion Mode with f 0 = 18Hz

	Mode Reference Frequency [Hz] Phase-Shift ×π[rad] Harm. Order
	1	18.0	0	13
	2	28.0	±3/4	42
	3	50.0	±1/7	63
	4	91.0	±1/9	/ 0
	5	58.0	±6/7	61

Table 2 :

 2 and Figure 7.a. Torque Mode Featuring

	Natural Frequency Damping Ratio	Modal Force	PSD Error
	f 0 [Hz]	ξ [%]	S [ms 2 /Hz]	S e [µ S/Hz]
	17.43	1.26	2.22E6	1.73E-2

Table 3 :

 3 OBMA Identification Results

			Identification BandWidth	Modal Parameters
	Mode	Nodal Diameters	Bandwidth (Hz)	Frequency (Hz)	Modal Force (ms 2 /Hz)
	Harm. Index	SNR (dB)	Method	Damping ratio (%)	PSD Error (µ s/Hz)
	1	0	1.5	17.43	2.22E6
	13	7.4	MAC	1.26	1.73E-2
	2	1	8	28.71	3.31E5
	42	1.8	SENS	3.26	1.18E-3
	3	3/5	9	49.84	1.40E6
	63	1.9	SENS	1.67	8.00E-4
	Multi.	6	12	59.35	4.31E6
	61	0.96	SENS	2.30	2.00E-3