Overview of GeoLifeCLEF 2019: plant species prediction using environment and animal occurrences - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Overview of GeoLifeCLEF 2019: plant species prediction using environment and animal occurrences

Résumé

The GeoLifeCLEF challenge aim to evaluate location-based species recommendation algorithms through open and perennial datasets in a reproducible way. It offers a ground for large-scale geographic species prediction using cross-kingdom occurrences and spatialized environmental data. The main novelty of the 2019 campaign over the previous one is the availability of new occurrence datasets: (i) automatically identified plant occurrences coming from the popular Pl@ntnet platform and (ii) animal occurrences coming from the GBIF platform. This paper presents an overview of the resources and assessment of the GeoLifeCLEF 2019 task, synthesizes the approaches used by the participating groups and analyzes the main evaluation results. We highlight new successful approaches relevant for community modeling like models learning to predict occurrences from many biological groups and methods weighting occurrences based on species infrequency.
Fichier principal
Vignette du fichier
paper_257.pdf (2.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02190170 , version 1 (22-07-2019)

Licence

Identifiants

  • HAL Id : hal-02190170 , version 1

Citer

Christophe Botella, Maximilien Servajean, Pierre Bonnet, Alexis Joly. Overview of GeoLifeCLEF 2019: plant species prediction using environment and animal occurrences. CLEF 2019 - Conference and Labs of the Evaluation Forum, Sep 2019, Lugano, Switzerland. ⟨hal-02190170⟩
402 Consultations
235 Téléchargements

Partager

More