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Abstract
Assessing the dynamic response of vibrating structures which are described by means of finite element (FE)
models with many degrees of freedom (DOFs) is usually computationally cumbersome. The fact that the man-
ufacturing process and the material properties of structures are usually subject to variability means a dispersion
of the physical parameters which can be important. The parameters are therefore considered as uncertain DOFs,
which makes FE models more complex. The Monte Carlo (MC) method is commonly used to analyze the prop-
agation of uncertainties through FE modeling. However, it requires a large number of simulations which are
therefore very cumbersome in terms of CPU times. This work aims at developing a low cost computational
strategy to compute the harmonic response of vibrating structures having uncertain parameters. The strategy
works by considering the Craig-Bampton method to reduce the physical DOFs of a FE model [1]. Also, a sparse
Polynomial Chaos (sPC) expansion is considered to describe the propagation of uncertainties and estimate the
Quantities of Interest (QoIs), e.g., the displacement at some measurement points, or an energy quantity. In this
work, the sPC expansion is applied through a non-intrusive method, which requires a non-negligible number
of simulations of the FE model to be performed to estimate the sPC coefficients, and further the statistics (i.e.,
mean and variance) of the QoIs. The probability law of the QoIs can be obtained by considering the sPC expan-
sions along with the MC method with 10000 trials. The strategy is here applied to model an academic structure
composed of three rectangular Kirchhoff-Love plates made up of various materials and connected together
across one of their edges by means of a lineic density of springs with an uncertain stiffness. Comparisons with
the results obtained from a reference MC solution involving 10000 simulations of the FE model show good
agreement and substantial reduction of the computational effort. The influence of the Craig-Bampton reduction
method on the estimation of the QoIs of the FE model is discussed through numerical comparisons.

1 Introduction

Applying the FE method to perform the dynamic analysis of complex industrial structures usually involves
models characterized by large numbers of DOFs and leads to large computational costs. It may therefore be
necessary to reduce the size of the models to solve. One of the efficient model reduction strategies is the well-
established Craig-Bampton method, which is based on the projection of the system internal DOFs onto bases
of reduced sizes [1, 2].

In addition, the effect of uncertainties are of growing concern in the analysis and design of engineering
structures. These uncertainties in the parameters of the system result from the inevitable variability in the
manufacturing process of the structures and the fact that the material properties of the structures can change with
time [3, 4]. Taking into account these uncertainties in the dynamic analysis of vibrating structures is therefore a
crucial issue. The classic MC approach is usually used to analyze the propagation of uncertainties, and involves
a large number of FEM evaluations for various sets of values of the uncertain parameters. For complex industrial
systems owning a large number of DOFs and/or uncertain parameters, the computational cost associated with
this method becomes prohibitive. Polynomial chaos (PC) expansions have proved efficient to solve this issue,
among which sparse PC expansions (sPC) [6, 7, 8] are of particular interest when a large number of uncertain
parameters is at stake. For instance, Kieu et al. [5] have recently applied sPC expansions to analyze the stability
of a clutch system having uncertain parameters. In that study, comparisons with the generalized polynomial
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chaos (gPC) and the multi-element generalized polynomial chaos (ME-gPC) previously applied to the same
clutch system [9] shew that the sPC expansions ensured substantial time reduction with respect to the other PC
expansions, while providing a high accuracy of the results.

The aim of this paper is to associate an sPC expansion to a CB model reduction in order to reduce the
computational costs in the analysis of the dynamic behavior of a vibrating structure having uncertain parame-
ters. The Craig-Bampton method is briefly recalled in section 2, and the building of a sparse PC expansion is
detailed in section 3. The method is then applied to a system consisting of several plates connected with spring
of uncertain stiffness. The details of the model and the results are finally given in section 4.

2 The Craig-Bampton method

The Craig Bampton method [1] aims at reducing the sizes of FE models involving large numbers of DOFs.
Within the FE framework, the equation of motion of a structure is

[M]{q̈}+ [K]{q} = {F}, (1)

where [M] and [K] denote respectively the mass and stiffness matrices of the structure, {q} the vector of dis-
placements and {F} the vector of external forces. Considering harmonic forces and distinguishing the internal
DOFs qI from the boundary DOFs qB, the above equation may be rewritten as:

−ω2
[

MBB MBI

MIB MII

]{
qB

qI

}
+

[
KBB KBI

KIB KII

]{
qB

qI

}
=

{
FB

FI

}
. (2)

In the classical FE procedure, the unknown DOFs are obtained by inverting the above system, which can
be cumbersome in terms of computational time if the number of DOFs involved is important. The CB method
consists in decomposing the vector of internal DOFs onto a basis of static and fixed interface modes as follows:{

qB

qI

}
=

[
I 0

Xst Xel

]{
qB

α

}
(3)

where Xst is the matrix of static modes, which are computed as −K−1
II KIB, Xel is the matrix of fixed interface

modes, i.e. the matrix of the eigenvectors of (KII , MII), and α is the vector of the modal amplitudes.
To reduce the size of the problem, only a limited number of fixed interface modes of amplitudes α̃ is

retained. The internal DOFs are then approximated by

{q̃I} ≈ [Xst]{qB}+ [X̃el]{α̃} (4)

where X̃el is a matrix of reduced size. Inserting Eqs. (3) and (4) into Eq. (2) leads to a system of reduced size
easier to invert.

3 Sparse Polynomial Chaos

3.1 Generalized polynomial chaos

The generalized polynomial chaos (gPC) has been proposed by Xiu and Karniadakis [10]. It consists in
expanding a random process X(ξ) depending on r independent random variables (ξ1, ..., ξr) = ξ as follows:

X(ξ) =
∑
α∈Nr

x̄αφα(ξ), (5)

where φα(ξ) are orthogonal polynomials which represent the stochastic components of the process, and x̄α are
the PC coefficients that account for the deterministic components of the process.

The Wiener theory as well as the generalized Cameron-Martin theorem [11] state that the series is conver-
gent in the mean square sense. According to the Askey scheme, if ξ is a uniform random vector, the polynomial
functions φα are most suitably obtained from Legendre polynomials [12, 10, 13].

2



In practice, the random process X(ξ), which constitutes the quantity of interest (QoI), is approached by a
truncated expansion as

X(ξ) ≈
∑
α∈Ar,p

x̄αφα(ξ), (6)

where p is the order of the PC expansion and α = {α1, ...,αr} ∈ N
r.

The index set used in the truncated expansion (6) is then defined as

Ar,p =
{
α ∈ Nr : ‖α‖1 ≤ p

}
, (7)

with

‖α‖1 =

r∑
i=1

αi. (8)

Computing the QoI X comes down to finding the coefficients xα of the truncated gPC expansion Eq. (6).
The number of terms Np is linked to the order p and to the number of uncertain parameters r as [10]

Np = card(Ar,p) =
(p + r)!

p!r!
. (9)

In this study, the QoIs are quantities such as a displacement or an energy quantity that are solutions of a FE
model. The PC coefficients are here determined from a non-intrusive regression method that does not require
any modification of the FE model: they are built from a finite number Q = k Np (with k a small integer usually
equal to 2, 3 or 4) of values of the QoI X, computed from numerical Q simulations of the FE model. In practice
the Q sets of values of the uncertain parameters for which the QoI is computed, which will be referred to as the
nested expermimental design (NED) in the following, may be chosen with a Latin Hypercube Samples (LHS)
method [14].

Within the regression framework, the evaluation of the coefficients results from the minimization of the
following criterion [15]

ε2
reg =

Q∑
q=1

X (
ξ(q)

)
−

∑
α∈Ar,p

x̄αφα
(
ξ(q)

)2

, (10)

where ξ(q) =
(
ξ

(q)
1 , ..., ξ

(q)
r

)
(with q = 1, ...,Q) denotes the Numerical Experimental Design (NED), that is the set

of Q vectors of uncertain parameter values generated from the probabilistic support of the parameters; X
(
ξ(q)

)
denotes the vector of the corresponding FE model evaluations. The PC coefficients are finally calculated as

x̄ =
(
φT (ξ(q))φ(ξ(q))

)−1
φT (ξ(q))X(ξ(q)), (11)

with φ(ξ(q)) the matrix defined by

φ(ξ(q)) =


φ0(ξ(1)) . . . φNp−1(ξ(1))

...
. . .

...

φ0(ξ(Q)) . . . φNp−1(ξ(Q))

 . (12)

If the number of uncertain parameters and the order p of the gPC expansion are high, the number of
PC coefficients and therefore the necessary number of simulations to build them become quickly prohibitive.
Strategies to reduce this number of simulations are consequently necessary.

3.2 Sparse Polynomial Chaos

The sparse Polynomial Chaos (sPC) can reduce the number of PC coefficients. In this paper, sPC with
anisotropic hyperbolic index sets will be used.
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3.2.1 Anisotropic hyperbolic index sets

The strategy to truncate the PC expansions favors input random variables ξi with large total sensitivity
indices S T

i . For this purpose, the truncation is based on the following anisotropic norm

‖α‖m,w =

( r∑
i=1

|wiαi|
m
)1/m

, wi ≥ 1. (13)

The corresponding anisotropic index set is then chosen as

A
r,p
m,w =

{
α ∈ Nr : ‖α‖m,w ≤ p

}
, (14)

where w is a set of weights wi defined by

wi = 1 +
max1≤ j≤rS T

j −S T
i∑r

k=1 S T
k

. i = 1, ...,r. (15)

In the above equation, S T
i is the PC-based total sensitivity index [16] of the QoI with respect to the input

random variable ξi, and is computed as

S T
i =

1
DPC

∑
α∈I+

i

x̄2
αE[φ2

α(ξ)], (16)

where I+
i denotes the set of indices having a non-zero ith component

I+
i =

{
α ∈ A

r,p
m,w : αi , 0

}
, (17)

and DPC the variance of the QoI
DPC =

∑
α∈A

r,p
m,w

x̄2
αE[φ2

α(ξ)]. (18)

The anisotropic hyperbolic polynomial chaos expansions are finally defined with the index setsAr,p
m,w as

XAr,p
m,w

(ξ) =
∑

α∈A
r,p
m,w

x̄αφα(ξ). (19)

3.2.2 Error estimates of the polynomial chaos approximations

The building of a sparse PC expansion is based on an iterative search of the significant PC coefficients, and
therefore requires the use of error estimates to assess the accuracies of the consecutive PC approximations.

A relevant theoretical error in this context is defined as follows:

Err = E
[
(X(ξ)− X̂A(ξ))2], (20)

which is based on the difference between the deterministic evaluation X(ξ) of the QoI and its PC approximation
X̂A(ξ) computed from a finite non empty subsetA⊂ Nr, that is

X̂A(ξ) =
∑
α∈A

x̄αφα(ξ). (21)

The generalization error is estimated in practice by the following empirical error:

Erremp =
1
Q

Q∑
q=1

[(
X(ξ(q))− X̂A(ξ(q))

)2
]

(22)

in which the differences are computed specifically at the Q observations of a NED ξ(q) =
(
ξ

(q)
1 , ..., ξ

(q)
r

)
. The

latter will be used in the following to compute a coefficient of determination R2 defined as

R2 = 1−
Erremp

V̂[X]
, (23)
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where V̂[X] is the variance of X
(
ξ(q)

)
:

V̂[X] =
1

Q−1

Q∑
q=1

(
X(ξ(q))− X̄

)2
with X̄ =

1
Q

Q∑
q=1

X(ξ(q)).

An overfitting phenomenon is likely to occur when using the empirical error, which, as a consequence,
underestimates the generalization error. The leave-one-out error [17], which is based on a sum of squared
predicted residuals ∆(i) defined hereafter, may be useful to avoid this drawback. A predicted residual expresses
the difference between the deterministic evaluation X(ξ(i)) of the QoI at the ith observation of the NED ξ(q), and
its prediction X̂(−i)

A
(ξ(i)) obtained with a PC expansion X̂(−i)

A
built from a reduced NED

(
ξ(1), ..., ξ(Q)

)
\ξ(i) (that is

the original NED from which the observation ξ(i) has been discarded) [7]:

∆(i) = X(ξ(i))− X̂(−i)
A

(ξ(i)). (24)

The leave-one-out error is then defined as

ErrLOO =
1
Q

Q∑
i=1

(
∆(i))2. (25)

In practice, the predicted residual ∆(i) may be computed as [17]

∆(i) =
X(ξ(i))− X̂A(ξ(i))

1−hi
, (26)

where hi is the ith diagonal term of the matrix φ(ξ(q))(φT (ξ(q))φ(ξ(q)))−1φT (ξ(q)). The leave-one-out error is in
that case given by

ErrLOO =
1
Q

Q∑
i=1

(X(ξ(i))− X̂A(ξ(i))
1−hi

)2
. (27)

A determination coefficient S 2 equivalent to that of the empirical error, R2, may be defined for the leave-
on-out error:

S 2 = 1−
ErrLOO

V̂[X]
. (28)

The two coefficients R2 and S 2 defined above will be used in an algorithm whose aim is to build an optimal
sparse PC expansion involving the most significant terms from an adapted NED of reduced size. This algorithm
is described in the next section.

3.2.3 sPC expansion building algorithm

As explained previously, the efficiency of the method may be increased by retaining only the most signif-
icant PC polynomials [7] among those corresponding to the index sets Ar,p

m,w. In the following, the final index
sets of the kept terms are denoted asAp

m,w.
The search for those most significant coefficients is performed through an iterative procedure which is

summarized below in 5 basic steps.
Step 1
Select a NED (ξ(q)), e.g. a random design based on LHS [14], of arbitrary size Qk = 4Np, where Np is

determined by Eq. (9) with r uncertain parameters and p = 1. The FE model evaluations at the NED points are
gathered in the vector X(ξ(q)). Set arbitrarily the values of the parameters corresponding to the chosen sparse
PC method: the maximal PC order pmax and the coefficient m used for the m-norm of truncation, as well as the
target accuracy S 2

target and two thresholds ε1 and ε2.
Step 2

Initialize the algorithm: the PC order is set to p = 0, and the truncation index set to the null element of Nr, {0};
the vector of weights wi is set to w = {1, ...,1}. The corresponding initial values of the determination coefficients
are denoted as R2

0 and S 2
0.

Step 3: Training step - Enrichment of the PC basis
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Increment the order value: p→ p + 1 ∈ [1, ..., pmax].
⇒ Forward step (Addition step): For each term from the candidate set

{
α ∈ Nr : p− 1 ≤ ‖α‖m,w ≤ p

}
, add it

to the set Ap−1
m,w and compute, as above, the PC coefficients and the determination coefficient R2. Retain only

terms which lead to a significant increase in the value of the coefficient R2, i.e. ∆R2 = R2 −R2
0 ≥ ε1. Let Ap+

m,w
be the final truncation set at this stage.
⇒ Backward step (Elimination step): Remove in turn each term in Ap+

m,w of order strictly lower than p, and
compute again the PC expansion coefficients and the associated coefficient R2 in each case. Discard fromAp+

m,w
the terms that lead to an insignificant decrease in R2, i.e. ∆R2 = R2

0 −R2 < ε2. Let Ap
m,w be the final truncation

set. The total sensitivity indices S T
i of the current PC approximation are computed and the weights wi are

updated (Eq. (15)).
Step 4: Verification of the conditioning of the regression information matrix
If the conditioning is satisfying, i.e. the size Qk of the NED (ξ(q)) is larger than 2.card(Ap

m,w) go to step 5.
If the conditioning is poor, i.e. the size Qk of the NED (ξ(q)) is smaller than 2.card(Ap

m,w), an enrichment of the
NED is done using nested Latin Hypercube designs [18, 7] to reach a size Qk+1. In this case, the truncation set
is reset to {0} and the enrichment procedure is restarted from step 2.

Step 5: Test step
Stop if either the leave-one-out error S 2

0 is larger than the target value S 2
target or if the order of the PC expansion

is equal to pmax. Otherwise, go back to step 3.
The detailed algorithms are presented in Figure 1.

-	Select	an	initial	NED	 	based	on	LHS	of	size	

-	Collect	the	FEM	of	initial	NED	in	 	

ξ(q) Q

X( )ξ(q)

Initialization:	 = {0}, = 1(i = 1, . . . r)wi

Enrichment	of	the	PC	basic:	

-	Forward	step:	add	to	 	those	terms	with	 	less	than	or
equal	to	 	and	not	proposed	in	the	privious	interations	which
significantly	increase	the	coefficient	

-	Backward	step:	discard	from	 	those	terms	with	 	less
than	 	that	lead	to	an	insignificant	decrease	in	

Compute	the	total	sensitivity	indices	
Update	the	weights	

p = p + 1

 (m − norm, w)

p

R2

 (m − norm, w)

p R2

(i = 1, . . . , r)ST
i

(i = 1, . . . , r)wi

Enrichment	of	the	NED	
if	Q < 2.card()

STOP	if	either	 	or	≥S2
0

S2
target p = pmax

Step	5

Step	3

Step	4

Step	1

Step	2

Figure 1: Algorithm applied to build a sparse polynomial chaos expansion with anisotropic hyperbolic index
sets

4 Results

4.1 Application model of three plates connected by springs with uncertain stiffness

The method is applied to a system composed of three plates connected together through torsional and
translational lineic springs as shown in Figure 2. Plates 1 and 3 are identical 1 m x 1 m square plates made of
steel, with the following material properties: density ρ = 7850kg/m3, Young’s modulus E = 2× 1011 Pa and
Poisson’s ratio ν = 0.3. The remaining plate 2, of dimensions 0.2 m x 1 m, represents a soft junction made up
of rubber; the corresponding material properties are chosen as ρ = 950kg/m3, E = 15×107 N/m2 and ν = 0.48.
Within the FE framework, the three plates of same thickness 5 mm are meshed using square plate elements of
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length 0.025m having three DOFs per node, namely the displacement uz and two rotations θx, θy. The meshes
of plates 1 and 3 therefore involves 1600 elements and 5043 DOFs, while 320 elements and 1107 DOFS are
used for plate 2.

The torsional stiffness of the springs along the x− and y− directions is assumed to be uniform and equal to
20 Nm/rad, whereas in the z−direction the stiffness kz is supposed to represent a random variable following a
uniform probability law over the range [100,200] N/m. The whole structure is clamped at both extremities (i.e.,
left edge of plate 1 and right edge of plate 3) and subjected to a harmonic point force of amplitude F = 40N
in the z−direction, located at the node of coordinates (0.25 m, 0.25 m) if the origin is chosen as the lower left
corner of plate 1.

F

z

�x
�y

x

y

O

Plate 1

u

1 m 1 m

1 m

k

z

0.2 m

Plate 2 Plate 3
k

Figure 2: Model of three plates connected by springs

The frequency response function of the structure is studied within the frequency band [0,50]Hz using
a frequency step of 10−3 Hz. Examples of FRFs are provided in Figure 3, which represents the frequency
evolutions of the deformation energy of plate 1, Ede f 1, for three values of the spring stiffness kz (namely the
two extreme values 100 N/m and 200 N/m, and the nominal value 150 N/m). As it can be seen in Figure 3, the
curves present a similar trend with extrema at the resonance frequencies of the system, but the amplitudes and
the frequencies of those peaks depend on the value of the stiffness kz.
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Figure 3: Deformation energy Ede f 1 of plate 1: (a) whole frequency range (b) zoom on the first two peaks
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4.2 Quantities of interest and statistics

In the following, we will focus on two particular QoIs related to the second peak visible on the Ede f 1 curves,
which is displayed in a detailed view in Figure 3(b): the frequency and the amplitude of the peak. Both QoIs
are determined from a maximum search over a small frequency band around the frequency of the peak obtained
at the nominal value of kz.

The statistics (e.g. mean value and variance) of each QoI are computed within a Monte-Carlo procedure
involving a number N of simulations that correspond to N values of kz chosen uniformly within the range
[100,200] N/m. Those N simulations may involve:

• the initial FEM model, which involves a total number of 11193 DOFs; the statistics obtained with this
model will be considered as the reference solution in the following;

• a reduced model resulting from a Craig-Bampton decomposition in which a limited number of fixed
interface modes is retained; two CB models will be proposed in the following: the first one, denoted as
CB50130, involves 50 fixed interface modes for plates 1 and 3 (out of 4563 modes), and 130 modes for
plate 2 (out of 819 modes); in the second one, denoted as CB3080, 30 modes are retained for plates 1
and 3 and 80 for plate 2;

• the sPC expansion of the QoI in which the coefficients have been built from a limited number of simula-
tions using the initial FE model, denoted as sPC-FEM;

• an sPC expansion whose coefficients are built from simulations involving one of the two aforementioned
reduced CB models, denoted respectively as sPC-CB50130 and sPC-CB3080.

For each QoI, comparisons between the statistics computed from the first three models will provide infor-
mation on the direct influence of the CB reduction on the accuracy of the results with respect to the full initial
FE model. At a second level, comparisons between the results from the FEM and sPC-FEM methods will give
insight into the influence of the use of a sparse PC expansion on the accuracy of the statistics. Finally, the
influence of the model reduction on the sPC expansions will be studied through the last sPC-CB50130 and
sPC-CB3080 methods.

In the following, the results related to the first QoI, namely the resonance frequency of the second peak of
the deformation energy Ede f 1, are first gathered in section 4.3. The results related to the amplitude of the peak
are then presented in section 4.4.

4.3 Ede f 1 peak 2 resonance frequency

4.3.1 Building of the sPC expansions

The different sPC expansions of the two QoIs are built in accordance with the iterative procedure detailed
in section 3.2.3. The same set of parameters is used in all the cases: the maximal PC order is set to pmax = 6,
the target accuracy is chosen as S 2

target = 0.999, and we use two identical thresholds ε1 = ε2 = 0.001(1−S 2
target).

As explained previously, the optimal order p of the sPC expansion of the QoI depends on the leave-one-out
error S 2

0 that is computed at each step of the iterative procedure and compared to the target accuracy S 2
target. For

the first QoI (peak 2 resonance frequency), the values of S 2
0 obtained for the three sPC expansions (sPC-FEM,

sPC-CB50130 and sPC-3080) are S 2
0 = 0.9820 for p = 1 and S 2

0 = 0.9997 for p = 2. The optimal order for the
three sPC expansions is therefore p = 2.

4.3.2 Accuracy of the QoI statistics obtained from the different methods

The statistics (mean and variance) of the QoI depend on the number of simulations N chosen within the MC
procedure. Several tests ranging from N = 1000 to N = 10000 have been performed for each of the six methods
detailed in the previous section. Figure 4 compares the statistics obtained with the six strategies detailed in the
previous section for ten values of N ranging from N = 1000 to N = 10000. The mean value and the variance
of the frequency are seen to reach a stabilized value from N = 2000. Two groups of curves are visible on each
graph, meaning that the use of an sPC expansion (whatever the model chosen to build the PC coefficients)
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Number of simulations
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Figure 4: (a) Mean and (b) variance of the QoI according to the number of MC simulations

induces a slight change in the resulting mean and variance values; the use of a model reduction does not modify
the statistics significantly.

The low variance levels obtained in Figure 4(b) also reduce the confidence intervals relative to the mean
resonance frequency. For instance, for N = 10000, the mean resonance frequency of peak 2 lies in the interval
f̄2±1.210−4 with a confidence level of 95%.

To further analyze the accuracies of the different method, the relative errors of the mean value of the QoI and
its variance with respect to the reference solution (i.e. N simulations from the initial FE model) are displayed
in Figure 5. The lowest error levels are logically obtained with the CB50130 method, which involves N direct
simulations with the reduced CB model with the largest basis of fixed interface modes. Further reducing the
size of the mode basis slightly increases the error levels, but the accuracy remains in both cases excellent, with
error levels close to 0. The use of an sPC expansion increases the error levels, which remain however lower
than 2.510−3 % for the mean value and 0.5% for the variance. Choosing a reduced model instead of the original
FE model to compute the coefficients of the sPC does not increase the error levels for this QoI.
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Figure 5: Relative errors of (a) the mean value of the QoI and (b) the variance of the QoI with respect to the
reference solution according to the number of MC simulations

Same conclusions arise when studying the mean (Figure 6(a)) and maximum (Figure 6(b)) values of the
relative errors of the QoI for a given N number of simulations (i.e. a relative error is computed for each of
the N kz values between the peak 2 frequency obtained with the considered method and the frequency found
using the initial FE model; the mean value is then computed over the kz range [100,200] N/m, along with the
maximum value). The errors mainly come from the sPC expansions, the influence of the model reduction being
again very limited; the accuracy level is also extremely satisfying with a mean relative error lower than 0.015%
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and maximum error lower than 0.05% whatever the retained N number of simulations.
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Figure 6: (a) Mean and (b) maximum values of the relative errors of the QoI with respect to the reference
solution according to the number of simulations

4.3.3 Evolutions of the resonance frequency according to kz

The results in this section are presented for the highest number N = 10000 of simulations, to ensure that
the QoI is predicted with the highest confidence level. Figure 10 represents the values of the second resonance
frequency obtained for each of the 10000 kz values chosen within the range [100,200] N/m with the different
methods: direct simulations with the initial FE model or the reduced ones, or estimations from the three sPC
expansions. The QoI exhibits a non linear increasing dependency to the stiffness kz, with a global variation of
about 5% with respect to its mean value. An overall good agreement is found between the different strategies, as
the six curves appear superimposed of the whole kz range (Figure 10(a)). However, when zooming on a smaller
range of kz values, such as in Figure 10(b), the slight differences behind the error levels presented previously
become visible. The curves corresponding to the three methods that involve direct FE simulations (FEM,
CB50130 and CB3080) present discontinuities that are linked to the frequency step used in this study, 0.001 Hz;
the peak frequency is either underestimated or overestimated according to the kz value as its precision cannot
exceed the frequency resolution of the simulations. Predicting the frequency value from an sPC expansion
avoids this behavior, as the frequency becomes a polynomial function of kz. The curves corresponding to the
three sPC expansions are therefore continuous plots that can be hardly distinguished from one another.
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Figure 7: Peak 2 resonance frequency according to the spring stiffness kz for N = 10000
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4.4 Amplitude of the deformation energy peak 2

4.4.1 Building of the sPC expansions

The sPC expansions of the second QoI are built using the same parameters and iterative procedure as the
resonance frequency. Leave-one-out error S 2

0 is using to choose the optimal order p of the polynomial chaos to
calculate QoI that is Ede f 1 in this section. The leave-one-out errors S 2

0 for the second QoI are similar for p = 1
and p = 2 to those obtained for the frequency, the optimal PC order being again p = 2.

4.4.2 Accuracy of the QoI statistics

As for the resonance frequency, the statistics related to the amplitude of the deformation energy at the
second peak are computed from N simulations corresponding to N values of kz, from N = 1000 to N = 10000.
The same trends as for the first QoI are retrieved, that will be illustrated hereafter for the variance only.

Figure 8(a) displays the variance of the QoI with respect to the number of simulations N, a stabilized
value being again reached from N = 2000. As for the first QoI (frequency), two groups of curves emerge from
the figure, which correspond respectively to the simulations involving the initial or reduced FE models, and to
those based on the sPC expansions. The relative errors between the variance values with respect to the reference
solution are shown in Figure 8(b), and exhibit overall very satisfying levels although they are higher than those
obtained for the the resonance frequency. The use of a reduced basis instead of the initial FE model has again
little impact in terms of variance errors, as the highest level error, corresponding to the CB3080 method, is about
0.02%. The influence of the sPC expansions on the accuracy of the variance estimation is more important, as
they induce error levels of about 1%. The best results are obtained when the sPC coefficients are computed
using the initial FE model (sPC-FEM case) while the error levels increase up to 1,1% with the sPC-CB3080
methods.
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Figure 8: (a) Variance and (b) relative error of the variance of the second QoI according to the number of MC
simulations

Figure 9 displays the mean and maximum error levels attained when computing the relative errors, for each
kz value, between the peak 2 amplitudes resulting of a given method (involving a reduced basis or an sPC
expansion) and those obtained with the reference solution (involving the initial FE model). As previously, the
error levels are constant from N = 2000 and result mainly from the use of an sPC expansion, while the CB
reduction induces low additional errors. All the methods provide an excellent accuracy with overall very low
error levels. For instance, the mean error level is about 0.002% with the CB50130 method, 0.01% with the
CB3080 method and 0.065% with any of the sPC expansions. The maximum error values are of the same order
of magnitude, from 0.005% and 0.02% with the reduced models (CB50130 and CB3080 respectively) to 0.2%
with the sPC expansions, the highest value being obtained when the sPC coefficients are computed using the
CB2080 model.
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Figure 9: (a) Mean and (b) maximum values of the relative errors of the QoI with respect to the reference
solution according to the number of simulations

4.4.3 Evolutions of the amplitude of peak 2 according to kz

The evolutions of the amplitude of the second resonance peak of Ede f 1, directly computed with N = 10000
simulations of the initial FE model or a reduced CB model, or predicted by one of the three sPC expansions,
are finally plotted in Figure 10. The QoI is here a decreasing non linear function of the stiffness kz, and the
six curves appear again superimposed throughout the whole kz range. The discrepancies between the solutions
are revealed in the detailed view (Figure 10(b)), where two groups of curves are again visible. The first group
gathers the simulations involving direct FE simulations, for which the frequency of peak 2 could be under-
or overestimated due to the limited frequency step of 0.001 Hz (cf. Figure 10(b)). These approximations in
the resonance frequency values lead to an underestimation of the peak amplitude and results in the uneven
appearances of the curves. The latter reach their maximum values when the peak resonance frequency value
coincides with a multiple value of the frequency step. The use of an sPC expansion to predict the peak amplitude
appears again efficient to solve this issue, as the resulting curves are smooth and match the maximum values of
the first group.

Regarding the accuracy of the predictions, it can be seen that within the first group, the CB50130 is perfectly
superimposed with the reference FEM curve, while the CB3080 is slightly shifted (but remains very close to the
first two curves). This trend is retrieved in the second group, where the curve corresponding to the sPC-CB3080
does not perfectly superimpose with the two other curves, although the differences are extremely weak.
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Figure 10: Peak 2 amplitude according to the spring stiffness kz for N = 10000
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4.5 Computational costs

The previous results have clearly established that an sPC expansion was efficient to produce accurate pre-
dictions of the different QoIs evolutions with respect to the uncertain parameter (i.e. the spring stiffness kz).
The main interest of the method is that the computational costs are also extremely decreased due to the limited
number of simulations necessary to compute the sPC coefficients. To illustrate this benefit, the computational
costs per QoI related to the six aforementioned methods are presented in table 1 for N = 10000. The reference
solution is obviously the most expensive as it implies N = 10000 simulations with the FE model owning the
highest number of DOFs. Substantial cost reductions are already achieved when using a FE model of reduced
size instead of the original model to perform those 10000 simulations. With the most reduced basis (CB3080),
the computational time reduction reaches 73.16% without loss of accuracy. The advantage of the sPC expan-
sions is that the number of simulations necessary to compute the PC coefficients is very limited. Applying the
iterative procedure depicted previously, we obtain the coefficients for p = 2 and one uncertain paramters with
only 14 simulations. Once the coefficients are known, performing 100000 computations to calculate the QoI is
costless. The computational time reduction therefore exceeds 99% for the three proposed sPC expansions. The
highest reduction (99.96%) is logically obtained when the coefficients are computed using the most reduced
CB3080 model.

Method FEM CB50130 CB3080 sPC-FEM sPC-CB50130 sPC-CB3080

Computational
time

formula

Nb of FEM
x

Unit time
per full FEM

Nb of reduced
FEM

x
Unit time

per reduced FEM

Nb of reduced
FEM

x
Unit time

per reduced FEM

Nb of FEM
to build chaos

x
Unit time

per full FEM

Nb of reduced
FEM to

build chaos
x

Unit time
per reduced FEM

Nb of reduced
FEM to

build chaos
x

Unit time
per reduced FEM

Nb of
simulations

with full
or reduced

FEM

10000 10000 10000 14 14 14

Computational
time 15 days 20h 5 day 6h 6 days 6h 32 min 11 min 9 min

Computational
time reduction

(%)
- 66.84 73.16 99.86 99.95 99.96

Table 1: Computational costs for one QoI and N = 10000 with the different methods

5 Conclusion

In this paper, we have proposed a strategy to analyze the dynamic response of a structure having a large
number of DOFs and uncertain parameters in the FE framework. The retained method associates the use of a
sparse PC expansion to compute the quantities of interest (e.g. a displacement or a energy quantity such as a
deformation energy) and a model reduction based on the Craig-Bampton decomposition to obtain at low cost
the PC coefficients.

This strategy has been successfully applied to the case of a structure, composed of several plates connected
with springs, presenting one uncertain parameter, namely the spring stiffness kz. The CB reduction has shown to
produce a negligible loss of accuracy while ensuring a substantial reduction of the computational cost. Combin-
ing the use of such a reduced model with an sPC expansion, the accuracy of the results remains fully satisfying
and the computational time reduction reaches exceptional levels.

In a near future, the proposed strategy will be applied to complex systems characterized by a larger number
of uncertain parameters. The benefits of using a sparse PC expansion instead of the classic generalized PC
expansion will then become more evident, as the computational cost necessary to compute the PC coefficients
can also become prohibitive when a large number of uncertain parameters is involved.
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