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Abstract
The paper presents the system optimization (SO) framework of Tripod, an integrated bi-level transportation management
system aimed at maximizing energy savings of the multi-modal transportation system. From the user’s perspective, Tripod is a
smartphone app, accessed before performing trips. The app proposes a series of alternatives, consisting of a combination of
departure time, mode, and route. Each alternative is rewarded with an amount of tokens which the user can later redeem
for goods or services. The role of SO is to compute the optimized set of tokens associated with the available alternatives to
minimize the system-wide energy consumption under a limited token budget. To do so, the alternatives that guarantee the
largest energy reduction must be rewarded with more tokens. SO is multi-modal, in that it considers private cars, public tran-
sit, walking, car pooling, and so forth. Moreover, it is dynamic, predictive, and personalized: the same alternative is rewarded
differently, depending on the current and the predicted future condition of the network and on the individual profile. The
paper presents a method to solve this complex optimization problem and describe the system architecture, the multi-modal
simulation-based optimization model, and the heuristic method for the online computation of the optimized token allocation.
Finally it showcases the framework with simulation results.

An efficient, reliable, and sustainable transportation sys-
tem is vital to the prosperity of society and the well-being
of people. Urban transportation networks worldwide,
however, are beset by issues of excessive congestion and
energy consumption, which are critical obstacles to
achieving these goals. Given the limitations in adding
capacity, travel demand management has received signif-
icant attention from researchers and practitioners as an
effective means of achieving a more efficient utilization
of existing infrastructure. From the real-time demand
management perspective, externalities such as congestion
and vehicular emissions have been historically addressed
with information provision (1) or pricing strategies (2,
3). Indeed, one of the most widely discussed demand
management strategies is congestion pricing (see Lindsey
(4) or Tsekeris and Voß (5) for comprehensive reviews).
Congestion pricing is based on the idea that transporta-
tion users should pay for the full cost of travel, which
includes both their own costs and costs imposed on other

users because of congestion. It aims at curbing excessive
demand and making efficient use of the existing trans-
portation facilities. Singapore, London, and Stockholm
are among the few major cities worldwide that have such
a scheme area-wide. For example, in London, one is
required to pay £11.50 to drive a personal vehicle within
Central London between 7:00 a.m. and 6:00 p.m., with
more polluting vehicles paying more. Congestion pricing
is controversial for a range of reasons, however,
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including the general aversion to charges, as well as
equity concerns, in that it is seen as benefiting high
income users at the expense of low income users.

Incentive policies are alternative demand management
approaches that, instead of charging people for using a
congestion-inducing or polluting travel option, reward
them for using a less congestion-inducing or polluting
travel option. There have been a number of pilot studies
at various scales. One of the most notable is the ‘‘peak
avoidance’’ (6) experiment conducted in the Netherlands
in 2006 on a heavily congested highway. Volunteers par-
ticipated in a scheme whereby they could receive daily
rewards, either monetary or in the form of credits that
could be exchanged for a smartphone. Participants could
earn a reward by driving at off-peak times, switching to
another mode of transportation, such as cycling, public
transport or carpooling, or by working from home.
Researchers found that between 30% and 40% of parti-
cipants avoided peak hour driving. Other experiments
have explored the behavioral reaction to points-based,
lottery-based, personalized, or smartphone based static
incentives (7–10).

Intuitively appealing and empirically verified with
simple schemes (11–14), the design, implementation, and
evaluation of a real-time, personalized incentive scheme
that is also optimized at a multi-modal system level
remains a challenging problem. The challenge is first of
all methodological: which formulation should be used to
compute, in real time, the amount of incentives to reward
any traveler entering the transportation system? How
can the incentive strategy be adapted to a network state
that is continuously evolving? How can we consider the
impact of the strategy on future time intervals?

This study proposes an ensemble of methods to
address these questions and demonstrates their imple-
mentation in Tripod, a smartphone based system that
provides, in real time, personalized incentives in the form
of tokens, with the objective to nudge travelers toward
more globally efficient choices of mode, departure time,
and route. The primary contribution of this paper is the
design and implementation of a framework and an algo-
rithm to perform real-time system-level token optimiza-
tion in a rolling horizon fashion, based on predictive
multi-modal traffic simulation. A novel aspect of the
approach is that it reduces this complex optimization
problem to one with a single scalar decision variable,
termed the token energy efficiency (TEE). Conceptually,
the TEE corresponds to the amount of energy a traveler
must save to earn one token (15). The framework adjusts
this value in real time, adapting to the state of the net-
work, to induce the largest overall energy reduction.
Once the TEE for a certain time interval is decided, the
tokens awarded to the traveler for choosing a specific
alternative are proportional to the TEE. The

contribution of this paper is in the methodology to com-
pute this TEE.

The remainder of the paper is organized as follows.
First the overall Tripod architecture is presented, fol-
lowed by the system optimization architecture within
Tripod. Next, the paper presents the multi-modal
demand and supply simulators, which are the basis of
the simulation-based optimization. The system optimiza-
tion problem is then formulated and the solution algo-
rithm presented. Next, the paper presents and discusses
the results of a simulation using the Boston Central
Business District (CBD) network. Finally, there is a con-
clusion and discussion of directions for future research.

Overview of Tripod

As presented by Lima Azevedo et al. (15), Tripod maxi-
mizes in real time the system-wide energy efficiency of
multi-modal transportation by offering personalized
incentives to encourage travelers to select alternatives
with smaller energy impact.

First,Tripod is reviewed from the user’s perspective,
to quote Lima Azevedo et al. (15): ‘‘When starting a trip,
travelers can access Tripod’s personalized menu via a
smartphone app and are offered incentives in the form of
tokens for a variety of energy-reducing travel options, in
relation to route, mode, ride-sharing, departure time,
driving style and actual trip making. Options are pre-
sented with information to help travelers understand the
energy and emissions consequences of their choices. By
accepting and executing a specific travel option, a trave-
ler earns tokens that depend on the system-wide energy
savings she or he creates, encouraging them to consider
not only their own energy cost, but also the impact of
their choice on the system. Tokens can then be redeemed
for services and goods from participating vendors and
transportation agencies.’’ Tripod incentives are provided
through a personalized mobility menu, presented to the
traveler via Tripod’s smartphone user interface (UI) (see
Figure 1).

To achieve system-wide energy efficiency, it is neces-
sary to optimize in real time the incentives offered in the
menu, taking into account that the incentive budget is
limited. System-wide maximization of energy savings is a
challenging problem. It needs to consider system-wide
supply and demand interactions as well as individual spe-
cific preferences toward different alternatives and token
awarding. To tackle this complexity, Lima Azevedo
et al. (15) decomposed the energy efficiency maximiza-
tion into a bi-level structure with two loosely coupled
problems: system optimization (SO) and user experience
(UE) (see Figure 2). SO is the top level, defining the
overall policy optimization, while UE is the lower layer,
taking care of individual specific optimization, and thus
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personalization. The link between these two loosely
coupled problems consists in the computation in real
time of the current TEE, defined as the amount of energy
a traveler must save to be rewarded with one token. The
TEE is the key decision variable of SO and is used in
every menu personalization triggered by each trip request
issued by Tripod users on the app (see Figure 2). Along
with the TEE, the SO also provides the UE with the full
choice set of alternatives (and its policy-consistent pre-
dicted attributes) to be considered in the menu personali-
zation. This paper focuses precisely on the SO, detailing
in the remaining sections its formulation, implementa-
tion, and performance.

The second component, UE, includes three modules:
user optimization (UO), UI, and a preference updater.
The first is responsible for generating a personalized
menu of travel options to the Tripod user upon request,
with updated information and incentives based on the
system-wide TEE, the transportation performance pre-
dictions, and the energy impacts generated by SO. To
compute the tokens associated with each menu alterna-
tive, UO first computes the energy saving, that is, the
amount of energy that this alternative saves compared
with the predicted user choice (i.e., the individual pre-
dicted choice without incentives). The tokens offered in
each alternative are then obtained by just dividing the
saving by the current TEE. The UO then selects the alter-
natives that are attractive to the traveler based on a util-
ity function, where coefficients for explanatory variables
that represent personal tastes are estimated from histori-
cal choices, and values of alternative attributes such as
travel time and energy cost are calculated based on the
predicted information from Tripod’s SO. Such a persona-
lized menu aligns with the traveler’s interests and makes
the system’s architecture sustainable. It encourages
energy efficient choices by presenting users with explicit
and accurate energy cost information, notifications of
accidents, and alternatives. The UO formulation and pre-
ference updater is described in more detail by Song et al.
(16).

To summarize, there are two optimization cycles: SO
optimizes the entire transportation system at every roll
period, that is, every 5 min, whereas the UE optimizes in
real time an individual menu for each trip request. UE
also keeps track of Tripod users’ preferences from their
menu selections. In addition, UE provides the

Figure 1. Tripod menu UI (15).

Figure 2. Tripod architecture (15).
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information about the updated preferences of Tripod
users to SO, for better predictions of SO strategies. For
more details on the overall Tripod architecture and the
UE optimization framework the reader is referred to
Lima Azevedo et al. (15) and Song et al. (16),
respectively.

System Optimization Architecture

In summary, SO executes the following operations:

1. It estimates the current state of the multi-modal
transportation network.

2. It predicts the state of the network given different
token awarding strategies, that is, different TEE
values.

3. It estimates the energy savings based on the pre-
dicted network conditions for the different token
awarding strategies.

4. It provides the UE with a system-wide optimum
TEE value in relation to energy savings per token
(15).

To do so, SO builds upon a state-of-the-art real-time
simulation-based dynamic traffic assignment model,
called DynaMIT (Ch.10 of (17)), to provide predictions
of the multi-modal network performance, considering
how users respond to the information and incentives
provided. SO also builds upon TripEnergy (18), a model
that estimates the energy impacts of traveling. The next
section describes the extensions to DynaMIT to model
multiple modes (including transit, carpooling, walk, etc.)
and to incorporate the behavioral response of users to
information and incentives from Tripod. Carpooling is
here a private mode which consists in two travelers with
the same origin-destination (OD) and departing in the
same 5-min interval choosing to travel with just one pri-
vate vehicle.

The four steps above are carried out at every roll
period (typically 5 min, but it can be longer for more
complex networks). The obtained TEE maximizes the
system-wide energy savings, based on predicted traffic
conditions and energy savings in a future prediction hori-
zon. This is achieved by performing a simulation-based
optimization in real time that consists of three major
components: the supply simulator, the demand simulator
and the system optimizer. The first two components are
the supply and demand simulators that interact to simu-
late the multi-modal system-wide response to different
TEE values. The system optimizer searches for the opti-
mal TEE based on the simulated system response. The
demand and supply simulators of DynaMIT are
extended with new functions. First, modes other than
private cars are included. Second, the demand simulator

is extended with simulated user optimization (SUO),
which simulates the user optimization of the UE, that is,
the generation of the menu of the alternatives shown by
the Tripod app, including the tokens allocated to the
alternatives. SUO is important to simulate accurately the
response of the Tripod users to tokens. Third, the supply
simulator is extended with energy estimation, which
allows the computation of the energy consumption of
the whole system, as well as for each travel alternative.
Figure 3 shows the SO architecture and how the three
components are integrated to produce the optimal TEE.

At the beginning of a roll period, a state estimation is
performed to estimate the current state of the system.
The state estimation takes historical demand/supply
parameters as starting values, considers real-time events
such as accidents, and performs online calibration
against real-time measurements such as counts, speed, or
travel time measurements. The output from the state esti-
mation is an estimate of the current network state, OD
trips, and behavioral parameters governing travelers’
choices, including Tripod users’ responses to tokens.
Within the state estimation, the extended demand and
supply simulators interact to produce estimated traffic
conditions. In the supply simulator, vehicle trajectories
from the supply simulation are fed to the energy estima-
tion module to produce energy consumption estimates.
In the demand simulator, SUO receives trip requests
from simulated Tripod users and produces personalized
menus to simulate users’ response. SUO allocates tokens
based on TEE generated in the previous roll period. The
optimization module is then triggered with the estimated
network state as an input. DynaMIT predicts traffic and
energy conditions for the future prediction horizon, by
making the supply and demand simulators interact for
different candidate values of TEE. The SO then chooses
the best TEE, which will be employed in the next roll
period.

The next section describes the multi-modal extensions
of the demand and supply simulators of DynaMIT,
including the extensions needed to model the response of
the Tripod users.

Multi-Modal Transportation Demand and
Supply Models

This section describes the multi-modal demand and sup-
ply simulators of DynaMIT that are used in the state esti-
mation and prediction modules described previously.

Multi-Modal Demand Simulator

The multi-modal demand simulator employs disaggre-
gate and aggregate representations of demand in relation
to both travelers and vehicles (passenger car equivalents).

4 Transportation Research Record 00(0)



The disaggregate representation is used to model individ-
ual travelers’ pre-trip and en-route decisions, including
response to information and tokens. An aggregate repre-
sentation in the form of time-dependent OD matrices
(expressed in passenger car equivalents per time interval
and travelers per time interval) is also used to estimate
and predict multi-modal OD demands.

Figure 4 presents the demand simulator flow diagram.
The historical information consists of mode-wise time-
dependent OD demand matrices specified in relation to
traveler trips.

In the first step, the historical OD matrices are disag-
gregated to generate a population of travelers who are
assigned a habitual route, mode, and departure time.
Next, a pre-trip behavioral update is performed, where
each traveler updates her choice of mode, route, and
departure time based on information of prevailing traffic

conditions and tokens awarded to alternatives (in case of
Tripod users). The pre-trip choice is formulated as a
nested logit model (19) whose structure is given in
Figure 5 (DT refers to departure time interval). The spe-
cification of the choice model involves attributes such as
travel time, travel cost, and monetary value of tokens
awarded, as well as alternative specific constants. For
example, the utility of an arbitrary path p under the
mode-change (to car) and path-change nest for a habi-
tual transit traveler n with a habitual departure time
interval h is given by:

Unp =bn�TT TTph +bC(Cph � anpgTKnph)+ enp ð1Þ

where bn�TT is the travel time coefficient generated based
on a log-normal value-of-time distribution, bC is the cost
coefficient, TTph is the predicted (or historical, depending

Figure 3. The System Optimization architecture.

Figure 4. Multi-modal demand simulator.
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on whether the traveler has access to information) travel
time on path p in time interval h, Cph is the monetary cost,
g is the market value of the token, anp is a unit-free token
value inflation/deflation factor, TKnph is the number of
tokens allocated to individual n for using path p in interval
h, and enp is a random error component that is indepen-
dently and identically distributed Gumbel distributed.

Step 2 yields an updated list of travelers, which are
aggregated in Step 3 back into mode-wise OD matrices in
relation to traveler trips. For the private vehicle modes,
the ODs in relation to traveler trips are converted to vehi-
cle trips using an average occupancy. The fourth step is
OD estimation utilizing the most recent surveillance data
from the network. This involves adjusting or estimating
OD demands so as to minimize the difference between
simulated and observed traffic counts. The OD estima-
tion module makes use of the supply simulator discussed
in the next section and results in the estimated number of
private vehicle ODs (vehicle trips). These are then used to
compute estimates of mode-wise private vehicle ODs
(vehicle trips) based on historical modal splits which, in
combination with the historical transit ODs, yield the
estimated mode-wise OD demands in traveler trips.

These are used to generate the final traveler population
for the current estimation interval.

SUO

For the estimation and prediction to be accurate, it is
necessary to simulate, within the demand simulator, what
will be the options Tripod will provide to the users. This
is the role of SUO. The inputs to SUO include all travel
options available for a given origin/destination/departure
time (from DynaMIT), TEE (from previous roll period
or optimization trial value), and Tripod users’ character-
istics and preference parameters. Three steps are involved
in generating a personalized menu of travel options with
tokens.

1. For a specific user n, the number of tokens
assigned to travel option i(i= 1, � � � ,Cn) is

max 0,
En0 � Eni

e

� �
, 8n, 8i 2 Cn: ð2Þ

Figure 5. Structure of pre-trip behavior update model.
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Eni is the energy consumption of travel option i for
user n, En0 is the expected energy consumption of user n

without tokens,
PCn

i= 1 EniPni, where Pni is the probability
of user n choosing option i without tokens, and e is the
TEE.

2. A personalized menu (a subset of travel alterna-
tives out of all travel alternatives Cn) is generated
based on choice probabilities of travel alternatives
with tokens assigned in Step 1. SUO maximizes
the expected choice probability across the M

options on the menu by solving the following
problem.

maxPN
i= 1

xni ł M , xni2f0, 1g

XCn

i= 1

P�nixni: ð3Þ

The binary decision variable xni denotes whether to
include option i or not in the menu. P�ni is the probability
of user n choosing option i with tokens. The solution is
simply to pick the top M options by sorting P�ni.

3. Remove tokens assigned to options not on the
menu generated in Step 2.

Multi-Modal Supply Simulator

The supply simulator of DynaMIT is mesoscopic (Sec.
1.4.3 of (17)), that is, individual vehicle movement is
simulated, but in a simplified manner. The simulator
captures traffic dynamics and evaluates the performance
of the network, including formation and dissipation of
queues, spillback effects, impacts of accidents, and bot-
tlenecks. It represents traffic dynamics using macro-
scopic speed-density relationships and queuing theory.
The multi-modal supply simulator derives largely from
the original (Ch.10 of (17)) with two key enhancements:
(1) traveler movement: transit travelers agents are intro-
duced and (2) buses: a controller has been developed to
manage the fleet of buses.

The various stages of a transit trip are shown in
Figure 6 (PT refers to public transit). There are two main
actors: (1) traveler and (2) vehicle.

The bus controller operates the fleet of buses on the
network (this could involve fleets of multiple operators).
It obtains from a database a list of bus lines with the
related stops and frequencies/headways.

The existing vehicle movement models are adapted to
capture appropriately the dwelling of buses at stops and
their impact on the traffic stream. Since DynaMIT natu-
rally models spillback effects and congestion through a

Figure 6. Traveler movement: stages of a transit trip.
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queuing part at the downstream end of each segment, all
segments containing a bus stop are split at the location of
the stop to capture the queuing caused by bus dwelling.

The movement of buses can be split into two parts: (i)
movement between bus stops and (ii) movement into and
out of a bus stop. The movement between stops is similar
to that of cars: that is, the buses are moved using the
speed-density model and the queuing model. Regarding
the movement into and out of a stop, when the bus
reaches the end of the segment with a bus stop to serve,
it moves into the bus stop if the residual capacity is non-
zero. Otherwise, it starts queuing and affects the vehicles
behind it. When the bus stop’s residual capacity allows
the bus to enter the stop, the queue starts dissipating.
After serving the bus stop, the movement of the bus out
of the bus stop depends on the acceptance capacity of
the downstream segment. If there is no queue, the bus
moves to the downstream segment like any other vehicle.
If the downstream segment has zero acceptance capacity,
the bus remains in the bus stop until it can move to the
downstream segment.

Optimization Formulation

This section provides a high-level formulation of the SO
problem, introduced by Lima Azevedo et al. (15), which
will be solved through the heuristic method presented in
the next section.

The predictions of network state are performed in dis-
crete time steps with a time interval of D, called a roll
period. During time interval ½t � D, t�, the computation is
performed to predict what will be the network state in the
prediction horizon ½t, t+HD�, where H 2 N. The vector
of starting times for the roll periods contained in the
prediction horizon for time t is here denoted
by t =(t, t +D, t+ 2D, . . . , t +HD). Alternatively, the
notation t is also used to refer to the prediction horizon
½t, t+HD�, with the specific use evident from the context.
The decision variable for SO is TEE, which represents the
amount of network-wide energy savings that must be rea-
lized by a user to be awarded one token. The TEE is con-
sidered to be constant within each roll period. The TEE
values related to a prediction horizon are represented by
the vector e(t)= (e(t), e(t+D), . . . , e(t+HD)). The
total energy saving predicted within the horizon is
denoted by ES(e(t)).

DynaMIT state estimation (SE): As described in the
previous sections, at any time t the SO starts an execu-
tion cycle and performs an estimation of the network
state using real-world data collected in the previous roll
period ½t � D, t� as well as historical real-world data for
the same time of day. All the parameters describing
demand (OD matrices, behavioral parameters, etc.) and
supply (link capacities, speed-density function, etc.) are

calibrated to minimize the discrepancy between simu-
lated and real-world measurements. DynaMIT SE also
considers the choices of Tripod users, given their individ-
ual menu and behavioral parameters, including token
related parameters (e.g., sensitivity to tokens).

DynaMIT state prediction (SP): After SE, the SO
loop is initiated by running SP. Given e(t), the previous
network state and supply-demand parameters, SP pre-
dicts how the network performance will evolve during
the prediction horizon t, yielding the predicted network
states x(t), including user trajectories (or parts of the tra-
jectories that lie within the prediction horizon), vn(t).

Energy estimation: Given the predicted network states
x(t), the predicted user trajectories vn(t), and token effi-
ciencies e(t), the total energy savings for the network
during the prediction horizon t, ES(e(t)) is calculated by
TripEnergy (18). It does so by comparing the predicted
energy consumption with the baseline consumption (SP
simulation with no tokens), as expressed below.

ES(e(t))=
XN

n= 1

f (vn
e , u

n)�
XN

n= 1

f (vn
0, u

n), ð4Þ

where vn
e , vn

0 are the user trajectories that result from pro-
viding tokens based on token efficiency e(t) and with no
tokens, respectively, un are the travel mode parameters
(e.g., car design parameters, bus type, driving style, etc.),
N is the number of travelers, and f () is the function that
computes energy consumption for each user trajectory.

SO loop: The objective of the SO loop is to determine
the optimal TEE for the H roll periods within the predic-
tion horizon. For each given TEE value, the SUO mod-
ule determines the menu of travel alternatives (with
tokens) offered to Tripod users on the network; SP
updates the demand and calculates the new network
states; the TripEnergy module evaluates the energy sav-
ings relative to the no-incentive base case. Based on these
inputs, the objective function of maximizing network-
wide, entire-day energy savings potential is evaluated.
The maximization is performed subject to the constraint
that the balance of tokens W (t, e(t)) at the end of the
prediction horizon is non-negative. Note that W (t, e(t))
is the token balance at the beginning of the prediction
horizon minus token consumption during the prediction
horizon for a given vector e(t) of TEEs. This optimiza-
tion can be stated as follows:

max
e(t)

ES(e(t))

subject to :
e(t)ø 0,W (t, e(t))ø 0:

ð5Þ

In the current study the TEE is assumed to be con-
stant in the prediction horizon (still time-varying by roll
period). This results in a single decision variable and
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allows for a simpler search. The continuous interval
(decision space) is discretized using a reasonable step size
obtained by trial and error. The objective function value
for different TEEs can be evaluated in parallel and the
optimal solution obtained in a single iteration of the opti-
mization. This is described in detail in the next section.

Online Optimization

The goal of SO is to find the sequence e(t) of TEE values
for the next prediction horizon that minimizes the energy
consumption of the entire transportation system under
the token budget constraint. The optimization is per-
formed online and adapts to the evolution of network
state. This implies that it does not compute e(t) just when
SO is launched, but computes it continuously over time,
appending new values to it each time. SO is implemented
running M instances of DynaMIT in parallel, all con-
trolled by a coordinator, whose role is to (i) synchronize
the instances and ensure they work in real time, (ii) pass
the information they need, (iii) orchestrate their opera-
tions, and (iv) decide at each roll period t what will be the
next TEE e(t+D). The value e(t +D) will be communi-
cated to the SUO module and will be used to compute
the incentives proposed to the real users during the inter-
val ½t +D, t + 2D�. This real-time requirement is equiva-
lent to requiring that e(t+D) be computed before t+D.

Assume that tokens are granted to travelers on a first-
come-first-served basis. Take into account the constraint
on Equation 5 by assigning a maximum per-period token
budget. Referring to Equation 2, if TEE is too small,
tokens will be given away ‘‘too easily,’’ in return for a
small energy reduction, to the first travelers making trips
in the roll periods. This would prevent it from rewarding
travelers who guarantee greater energy savings but arrive
later. On the other hand, if TEE is too high, the amount
of tokens given to travelers may be too small to affect
their behavior. Therefore, finding the optimal value of
TEE is not trivial. It is done by heuristically exploring
the impact of a set of TEE values within a certain
interval.

At each roll period t, each DynaMIT instance per-
forms an estimation phase (SE), followed by a prediction
phase (SP). All instances have identical states during esti-
mation, since they all read the same real-time data and
historical data. The instances differ during prediction,
more precisely, during the prediction performed in a roll
period t, when the coordinator instructs each instance to
predict the network state in the prediction horizon. Each
instance m= 1, . . . ,M predicts the effect of a different
future candidate TEE value, which is indicated with
em(t), assuming it applies to the entire prediction horizon

t. At the end of the prediction, each instance returns the
predicted energy consumption Em(t). The coordinator
chooses the instance m� that predicted the least energy
consumption, that is, m�=argminm Em(t). The respec-
tive TEE value em� (t) becomes the TEE to be employed
in the next roll period, that is, e(t+D)= em� (t).

The operations for the computation of the sequence
e(t) are depicted in Figure 7. Let us suppose a roll period
of duration D= 5 min and prediction interval 15min,
that is, H = 3. Let us start to describe the system when it
is at time t= 8:00, which is the start of the roll period
½8 : 00, 8 : 05�. Before the end of this period, SO must be
able to provide the values of e(t +D), that is, the TEE of
the roll period [8:10,8:15]. To do so, the following
sequence of operations takes place at 8:00:

1. The coordinator triggers all the DynaMIT
instances to execute their estimation phases, based
on sensor data related to the previous 5min, that
is, [7:55,8:00] and e(t � D). The goal of executing
these estimation phases is to make the internal
simulation model consistent with real data. As
discussed previously, all the instances have the
same internal state in this phase. Observe that the
parallel execution of the estimation phases of the
instances corresponds to Step 1 in the section ‘‘SO
Architecture’’.

2. The coordinator assigns to each instance m a can-
didate TEE em(t).

3. Each instance predicts the evolution of the net-
work in the interval [8:05,8:20] and returns the
predicted energy consumption Em(t).

4. The coordinator chooses e(t +D)= em� (t), where
m�=argminm Em(t) and communicates this value
to the SUO module, which will use this value to
determine the incentives that will be shown in the
menus generated during the next roll period
[8:05,8:10].

5. At 8:05, these operations start again, with estima-
tion based on real data related to [8:00,8:05].

Results

This section evaluates the impact of Tripod optimization
on the multi-modal transportation system in relation to
energy consumption, mode share, and travel times. To
simplify the analysis, first, static scenarios are analyzed,
in which a static TEE allocation is fixed and the penetra-
tion rate is varied, that is, the percentage of travelers who
are Tripod users. The penetration rate is then fixed and
the benefits of the online optimization over the static set-
tings can be studied.
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Simulation Scenario

The experiments are conducted on the Boston Central
District (CBD) network with 843 nodes, 1879 links, 3075
segments, and 5034 lanes including both highways and
arterials between 6:00 and 9:00 a.m. Note that the focus
is restricted to the peak hours when the transportation
system energy consumption is maximum. As expected,
the energy savings would be lower in other time intervals,
which are not shown for lack of space.

The total number of travelers is 47,588. The parameter
values in the utility function (Equation 1) are postulated
as follows: bT = � 0:01, based on empirical studies in
the literature, the value of time (VOT) is assumed to be
log-normal distributed with a mean of $18 per hour and
standard deviation of $5 per hour, the cost parameter bC

n

of an individual n is calculated based on a sampled VOT
from the log-normal distribution. The monetary value of
a token is g = 0:50 $. Tokens instead of dollars are used,
as the full design of Tripod includes a marketplace where
tokens can be exchanged and their monetary value deter-
mined by the market. In the current implementation, the
marketplace is not in place and thus a fixed value is
assumed. The perception parameter an = 1 for each indi-
vidual n. As for the parameters of SO, the roll period

length is D= 5 min and there is a token budget con-
straint of 20,000 per roll period.

Impact on Multi-Modal Transportation

In this section, mode shares, average personal energy
consumption, average personal travel time, and token
consumption with respect to different penetration rates
(percentage of travelers using Tripod) are presented.
Note that the energy saving of Tripod depends on a myr-
iad of factors, including but not limited to the penetra-
tion rate, the sensitivity of travelers to incentives, the
spatial-temporal distribution of the demand, and the
availability of attractive transit options. The penetration
rate is a major factor that is directly related to the invest-
ment in the app deployment and thus the focus of the
following computational tests. In contrast, other factors
are less controllable, for example, the spatial-temporal
distribution of demand and the sensitivity of travelers to
incentives mainly depend on the broader economic,
social, and demographic developments and the availabil-
ity of attractive transit options requires significant capi-
tal investment besides the app. Note that, for the sake of
simplicity, the possibility that a Tripod user might opt

Figure 7. The online optimization procedure.
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out is not modeled. However, if a user does not find the
propositions from Tripod attractive, she will simply
ignore them, thus not contributing to the energy savings
to be shown later.

Figure 8 shows the mode share at various penetration
rates (PRs) of Tripod. Not surprisingly, higher PR
results in higher share of greener modes, that is, carpool,
bus, walk, and bike. The increase of carpool share is
more significant than that for bus, walk, bike, or any
combination of these, probably because of the travel
time advantage of carpool compared with the other
green modes as no pick-up or drop-off travel time is
accounted for in carpool.

Figure 9a shows the average personal energy con-
sumption per trip in megajoules (MJ) as a function of
the PR of Tripod. Not surprisingly, as more travelers are
incentivized (higher PR), the energy saving per person is
higher. There is also an indication of the saturation
effect, in that the rate of the change decreases with the
PR. For example, an additional 4% saving is achieved
when the PR increases from 50% to 75%, while an addi-
tional 2.5% saving is achieved when the PR increases
from 75% to 100%. Figure 9b shows the personal energy
consumption, that is, the energy consumed by an individ-
ual (different from Figure 9a, in which the energy is per
trip). The breakdown by major mode (bus, carpool, and

Figure 8. Mode share with various penetration rates (PR %).

Figure 9. Average energy consumption per trip: (a) overall and (b) mode-specific. Monetary values of energy savings per trip at $3.00/
gallon are shown on the bars (left).
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drive-alone) shows that that average personal energy
consumption decreases for all three major modes. The
personal energy consumption of the two private vehicle
based modes (drive-alone and carpool) decreases because
of improved traffic conditions, that is, lower travel times
(see Figure 10). The personal energy consumption of the
bus mode decreases because of higher bus ridership.
Note that bus schedule is exogeneous in the system and
thus bus vehicle energy consumption almost remains the
same regardless of incentives. With higher ridership,
the bus vehicle energy is shared by more riders, and thus
the energy contribution of each decreases. Observe that
mode switching is not the only source of energy savings:
even the users who drive alone may contribute energy
savings by taking more energy efficient routes.

Figure 10 shows the average personal travel time as
an increasing function of the PR of Tripod. Note that
travel time is not an objective of the optimization, and
thus such an increasing trend is not surprising. A break-
down by major mode (bus, carpool, and drive-alone)
shows that the travel time of the two private modes
(drive-alone and carpool) decreases with the PR, while
that of bus riders increases with the PR. Note that travel
time of a bus rider includes access, egress, and in-vehicle
travel times. The travel time decrease of private modes is
because of fewer vehicles on the road, resulting from

mode shift to bus, walk, and bike. The average travel
time increase of bus riders is because of more travelers
incentivized to take bus, despite its longer access, egress
time, or both. The personal travel time averaged over the
system is shown beside the bars. Collectively, at lower
PRs, the mode shares of drive-alone and carpool are
higher and thus the overall average travel time is lower,
while at higher PR, the longer travel time of bus riders
dominates. However, it should be noted that those who
switch to transit and thus have increased personal travel
times do so at their own will, that is, the fact that they
have switched indicates that they perceive that the incen-
tives more than compensate for their travel time losses.

Figure 11 shows the token consumption by mode as a
function of the PR of Tripod. The total consumption
increases with PR, as expected. Carpool has the highest
token consumption, followed by bus. Both have high
energy saving potentials, and yet carpool is in general
more attractive than bus because of shorter travel time.
Drive-alone has the least token consumption because of
the least energy saving potential through route choice.

Average monetary values of the consumed tokens per
trip as perceived by the travelers are presented in
Figure 11 as numbers above the bars. Note that here the
‘‘tokens per trip’’ are obtained by dividing the total num-
ber of distributed tokens by the number of trips. We also
compute the ‘‘tokens per Tripod-trip’’ where a Tripod-
trip is a trip of a traveler who accepted a Tripod option,
thus consuming a positive amount of tokens. The per-
ceived monetary values of tokens per Tripod-trip are, as
expected, higher: $2.45, $2.68, $2.76, and $2.86 for the
PRs in the figure. Monetary values of energy savings
estimated at an assumed fuel price of $3/gallon are
shown in Figure 9a as numbers on the bars. It should be
noted that the perceived monetary value of a token is dif-
ferent from the cost of providing the token, for example,
if the tokens are exchanged for goods as in-kind gifts
from participating vendors, the cost of the token to the
public is in fact zero. Similarly, the cost saving from a
consumption reduction of one gallon of fuel is not neces-
sarily the same as the prevailing market price, if the goal
is to evaluate the societal cost of consuming one gallon
of fuel, especially when the market does not have an ade-
quate mechanism to reflect the external costs of fuel con-
sumption such as environmental costs. Therefore, these
monetary values are presented for information purpose
and should not be used directly to do a benefit-cost
analysis.

Performance of the Online Optimization

Figure 12 shows the benefit of the dynamic aspect of the
online optimization strategy, which continuously recom-
putes the TEE e(t) over time to adapt to the network

Figure 11. Token consumption per 5 min. The number above
each bar is the average perceived monetary value of tokens per
trip.

Figure 10. Average personal travel time.
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evolution. For these results M = 8 parallel instances
are employed. A logarithmic search is implemented in
the interval TEE = 1 and TEE = eMAX = 2000, by
assigning to each instance m= 0, . . . ,M � 1 a candidate
TEE em(t) such that lnem(t)=m � (lneMAX )=(M � 1),
which results in the following discrete values:
f1, 3, 8, 26, 77, 228, 675, 2000g. The overall energy con-
sumption is compared with the case of static allocation,
in which the e(t) does not change along the time.
Different possible values of static e(t) belonging to the
same discrete set above are tested. Note that, in reality, if
we were to implement a static TEE policy, only one sta-
tic allocation can be implemented at a time and it is
impossible to know in advance what is the best value to
apply. On the contrary, online optimization does not
require this a-priori knowledge, it adapts automatically
to the current conditions of the network, guaranteeing
energy reduction.

It should be noted that the optimization is quite
demanding in relation to computational resources.
However, at least in the scenario considered, with a roll
period of 5min and a prediction horizon of 15min, the
framework has been shown to be scalable, that is, the
entire SO operations described in this paper have been
done in real time. This means that at each roll period, it
is possible to complete the computation of the next TEE
before the beginning of the next roll period. The machine
used in this study is a PowerEdge T630, equipped with
two Intel Xeon E5-2695 v4 2.1GHz processors, 128GB
of memory and an SSD disk.

Conclusion

This paper describes the implementation of Tripod’s (15)
optimization framework. Tripod is a novel demand

management system that incentivizes travelers in real
time to reduce the overall energy consumption of a trans-
portation system, under an incentive budget constraint.
The optimization tackled in this paper is challenging
since it is performed online, it includes several modes of
transportation, it computes personalized incentives, and
it is guided by the current state of the network and the
predicted state. A methodology is proposed to imple-
ment a heuristic method that reduces this complex prob-
lem to the search of a single value, called token energy
value. Predictions are based on multi-modal traffic simu-
lation and models of individual travel decision making,
including the response to incentivization. Simulation
results show that this system is potentially effective in
reducing energy consumption under different scenarios
and that large benefits come from the dynamic nature of
our optimization.

While this paper has shown Tripod’s potential for a
specific setting, the analysis was limited to (i) a small net-
work, which does not capture the full extension of travel
patterns, network complexity, and computational burden
of large networks, (ii) the morning peak period, thus
ignoring some behavioral time-dependencies in individ-
ual decision making and the budget allocation across
longer periods, (iii) a single configuration of Tripod, as
one can easily design a system with different user seg-
ment participation rates, menu generation constraints, a
relaxation in having just a single token energy value or
even subsets of choice dimensions to be incentivized, and
(iv) a single system objective of energy saving while other
viable objectives such as travel time saving and reliability
improvement are not accounted for. For this, the authors
are working on integrating the proposed framework with
an agent-based simulator (20) for impact validation and
scenario exploration. Field trials are also being pursued
to evaluate the feasibility and the effectiveness of Tripod
in realistic settings.
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