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ABSTRACT
Surrogate-modeling is about formulating quick-to-evaluate math-
ematical models, to approximate black-box and time-consuming
computations or simulation tasks. Although such models are well-
established to solve continuous optimization problems, very few
investigations regard the optimization of combinatorial structures.
These structures deal for instance with binary variables, allowing
each compound in the representation of a solution to be activated
or not. Still, this field of research is experiencing a sudden renewed
interest, bringing to the community fresh algorithmic ideas for
growing these particular surrogate models. This article proposes
the first surrogate-assisted optimization algorithm (WSaO) based
on the mathematical foundations of discrete Walsh functions, com-
bined with the powerful grey-box optimization techniques in order
to solve pseudo-boolean optimization problems. We conduct our ex-
periments on a benchmark of combinatorial structures and demon-
strate the accuracy, and the optimization efficiency of the proposed
model. We finally highlight how Walsh surrogates may outperform
the state-of-the-art surrogate models for pseudo-boolean functions.
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1 INTRODUCTION
1.1 Motivations
The optimization or the tuning of numerous systems is based on nu-
merical simulations. As a consequence, the associated optimization
problem is black-box, i.e. only the design variables and the value of
the fitness function are known. Moreover, it is often computation-
ally time expensive (from minutes to hours) to get the fitness value
of one single solution [1, 5]. To face such optimization problem,
one classical solution in surrogate-assisted optimization (SaO) is to
learn a surrogate model to approximate the fitness function and
then reduce the number of sampled potential solutions during the
search process.

Despite the number of research works dealing with surrogate
models for numerical optimization problems [14], SaO for combi-
natorial optimization received little attention [3]. However, design
problems with discrete variables can be met in different fields such
as bike sharing system [24], bus stop position in public transporta-
tion system [23], drug discovery [22] or more generally problems
with design variables to represent the presence/absence of a com-
ponent. Typically, on such kind of real-world applications, the opti-
mization problems have hundred of binary decision variables. That
seems far from the actual surrogate-assisted methods [3]. In this
work, we target optimization problems considering the search space
of binary strings, i.e. pseudo-boolean functions with a dimension
of the order of one hundred.

A surrogate-assisted method is the combination of three com-
ponents (see Algorithm 1). The first component is the surrogate
model itself which is a regression model of the fitness function.
The model must be enough expressive to catch the complexity of
the fitness function, but at the same time with low complexity in
order to be easier to learn with a small sample of solutions. The
second component is an acquisition function defined from the surro-
gate model. This acquisition function can be directly the surrogate
model or a trade-off between the prediction and the estimation er-
ror of the surrogate model. The goal is to guide the search keeping
the balance between exploration that increases the quality of the
surrogate model and exploitation that pushes toward high-quality
solutions according to the surrogate model. The last component is
the algorithm to optimize the acquisition function. This algorithm
has to be efficient in time and in quality to converge quickly to
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the promising solutions given by the acquisition function. An effi-
cient surrogate-assisted optimizer for combinatorial problems is a
relevant combination of these three components.

Some recent works renew the interest of surrogate models for
combinatorial optimization [2, 3, 26]. A recent approach [26] pro-
poses the orthogonal basis of Walsh functions as a surrogate model
for pseudo-boolean functions. On pseudo-boolean functions, the
regression quality of this surrogate model outperforms the previous
models. Although the model seems to be promising, a complete
surrogate-assisted algorithm has not been proposed. Indeed, such
model must be combined with a relevant optimization algorithm to
be efficient in an optimization context. We bring a step forward in
this approach by combiningWalsh functions surrogate models with
powerful techniques of the grey-box optimization [6, 7] dedicated
to Walsh functions decompositions of pseudo-boolean functions.
In this article, we propose a way to couple both techniques in an
operational manner. We also test the proposed Walsh functions
Surrogate-assisted Optimization algorithm (WSaO) against state-
of-art methods on a benchmark of pseudo-boolean functions up to
dimension one hundred.

1.2 Related works
Both numerical and combinatorial surrogate-assisted optimization
algorithm follow a similar approach. A sample of evaluated solu-
tions builds a surrogate model. Based on this model and an acquisi-
tion function, a new promising solution is selected, evaluated and
added to the sample for the next iteration of the search algorithm
(see Algorithm 1). However, numerical and combinatorial domains
mainly differ on the model of the fitness function approximation
used for the surrogate. Although there are models for mixed repre-
sentation with continuous and discrete variables in the context of
parameter tuning such as SMAC [13], only few works are dedicated
to combinatorial, even less for pseudo-boolean optimization prob-
lems [3]. Indeed, to our best knowledge, only 3 main alternatives
have been proposed for pseudo-boolean optimization problems: Ra-
dial Basis Function model [21], Kriging approach [31], and Bayesian
approach [2].

Algorithm 1: Surrogate-assisted optimization framework.
1 S ← Initial sample {(x, f (x)), . . .}
2 while computational budget is not spent do
3 M ← Build model S
4 x ← OptimizeM w.r.t. an acquisition function
5 Evaluate x using f

6 S ← S ∪ {(x, f (x)}

7 end

One state-of-art approach for combinatorial optimization uses
Kriging approach, based on Gaussian Process (GP) [30, 31]. This
approach is a direct extension of the numerical surrogate approach
where the Euclidean distance is replaced by the Hamming distance
for pseudo-boolean functions, or more sophisticated discrete dis-
tance for the search space of permutations. Kriging is then embed-
ded within the well-known Efficient Global Optimizer framework

(EGO) [15]. In this framework, the solution with the highest Ex-
pected Improvement (EI) is selected with an evolutionary algorithm.
The EI takes into account the uncertainty of the approximation
given by the GP. This is one advantage of the EGO algorithm. It
selects relevant solutions to increase the accuracy of the model
toward promising solutions. We can mention that the computa-
tional complexity of the function EI is high, and can not be reduce
by some classic techniques in combinatorial optimization such as
incremental evaluation. Besides, the authors use a genetic algo-
rithm, a black-box optimizer, to maximize the EI function. However,
this surrogate-assisted optimization has been shown to outperform
Radial Basis Function model [21], one of few others related works
in combinatorial surrogate optimization. For a complete overview
of this approach see [29]. Notice that such approaches have been
tested on small dimensions up to n = 25.

Bayesian Optimization of Combinatorial Structures (BOCS) [2]
is another recent state-of-art surrogate-assisted algorithm. The
statistical model of BOCS is the standard multilinear polynomial of
binary variables:

∀x ∈ {0, 1}n, P(x) =
∑
T ⊂N

aT
∏
i ∈T

xi , (1)

where N = {1, . . . ,n}. With this model, Baptista et. al. argue that
interactions between variables can be taken into account.1 In their
article, only a quadratic polynomial model is used:

∀x ∈ {0, 1}n, P2(x) = a0 +
∑
i ∈N

aixi +
∑

i<j ∈N
ai j xix j . (2)

To face the quadratic number of polynomial terms (see Table 1), the
regression technique of the algorithm is the Sparse Bayesian Linear
Regression [20]. The optimizer is a basic simulated annealing that
minimizes the approximation of the fitness function provided by the
surrogate with a regularization term. On low-dimensional quadratic
problems (up to n = 24), BOCS outperforms Kriging approach. A
useful python code of BOCS is available on the web2.

A new surrogate model for pseudo-boolean functions based on
Walsh functions has been proposed [26]. The Walsh functions are
a normal orthogonal basis of the pseudo-boolean functions space.
Although they have been used in Evolutionary Computation in
schemata theory [10], and also in grey-box optimization [6, 8], the
authors proposed to use such functions as a surrogate model. Using
the sparse regression technique LARS (Least-Angle Regression),
the accuracy of the regression model has been demonstrated higher
than GP models on low-dimension functions up to n = 25. How-
ever, these Walsh functions have not been used in a SaO scenario
following the framework of Algorithm 1.

In this work, we show how this novel idea of Walsh functions
for surrogate modeling can be combined with the efficient grey-
box optimization techniques into a surrogate-assisted optimization
algorithm. Specifically, our contributions consist in proposing and
describing the first Walsh Surrogate-assisted Optimization frame-
work based on grey-box optimization methods. We compare the

1Indeed, such multilinear approximation has been already used for the approximation
of pseudo-boolean functions in another context [11].
2https://github.com/baptistar/BOCS
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presented method with the aforementioned state-of-the-art algo-
rithms on large size problems up to n = 100. Besides, we open the
discussion to understand the pros and cons of the Walsh basis and
to show how the interactions between variables can be interpreted
in the surrogate models.

In section 2, we recall the mathematical foundations of Walsh
functions as well as their application to design surrogate models and
present the first Walsh Surrogate-assisted Optimization algorithm.
Section 3 is devoted to experiments specifications and their analyses.
In section 4, we conclude the paper and discuss future works.

2 WALSH FUNCTIONS
SURROGATE-ASSISTED OPTIMIZATION

In this section, we present the Walsh Surrogate-assisted Optimiza-
tion Algorithm (WSaO) based on the Walsh functions. We first
recall how surrogate models can be designed with Walsh functions.
Then we propose how these models can be employed in an SaO
approach.

2.1 Walsh Functions as Surrogate Models
Initially defined by the author who gave them his name, Walsh
functions [27] describe a normal and orthogonal basis of discontin-
uous functions that can be employed to decompose any function
of the Hilbert space. As far as we are concerned in the context of
combinatorial structures, we employ such functions as a normal
orthogonal basis for the space of pseudo-boolean problems. More
formally, for any integer l represented in its binary form, the Walsh
function φℓ is defined for any binary string x = (x1, . . . , xn ) of size
n as:

φℓ(x) = (−1)
∑n
i=1 ℓixi , (3)

where ℓi and xi stand for the i-th bit in the binary strings ℓ and
x . In a surrogate-modeling perspective and following Verel et. al.
works [26], we assume that the pseudo-boolean function f we want
to approximate can be substituted by the following polynomial f̂ ,
for every binary string x ∈ {0, 1}n :

f̂L(x) =
∑

ℓ s .t . o(φℓ )⩽L

ŵℓ · φℓ(x), (4)

where o is the order of the Walsh function, i.e. the number of binary
digits equals to 1 in the binary representation of ℓ. We restrain the
expansion of the polynomial to a given order L. For example, the
Walsh function of order 2 can be written as:

f̂2(x) = w0 +
n∑
i=1

wi (−1)xi +
∑

i<j ∈N
wi j (−1)xi+x j . (5)

One should notice the potential of approximation for such a formu-
lation grows when L increases. All things considered, we thus aim
to estimate the values of the coefficients ŵ : the better the quality
of the estimation, the more accurate the model. This estimation
can be performed thanks to classical linear regression methods,
as the Walsh decomposition of Equation 4 can be interpreted as
a linear model whose predictors are the Walsh functions’ values.
Furthermore, when the number of predictors is getting large (see
Table 1), i.e. when the selected order L increases, as shown in [26],

Table 1: Number of coefficients both in multilinear and
Walsh decompositions, according to problem dimension n,
and order L.

n
L 10 15 20 25 50 100
0 1 1 1 1 1 1
1 11 16 21 26 51 101
2 56 121 211 326 1, 276 5, 051
3 176 576 1351 2, 626 20, 876 166, 751

sparse linear regression techniques should be considered in order to
minimize the number of non-zero coefficients. In this work, we pro-
pose to use the Lasso linear model [25], as it tends to favor solutions
with fewer parameter values, i.e. to maximize the number of zero
coefficients in the model. Thus, it appears as a convenient method
in our context, since the number of L-order Walsh functions, i.e.
the number of ŵ coefficients to be estimated, might be greater than
the budget dedicated to train the Walsh surrogate. Mathematically,
such a model is trained with ℓ1-norm as regularizer, often weighted
by a constant α (see section 3). This geometrical property makes
Lasso a method of choice for training the proposed surrogate, as the
latter relies on a normal and orthogonal basis of functions. Finally,
this surrogate-building phase can be related to line 3 of Algorithm
1.

2.2 Surrogate-Assisted Optimization
As discussed in section 1.2, SaO algorithm consists in optimizing
the quick-to-evaluate surrogate model instead of the expensive
real one. The optimal solution found by the surrogate is expected
to be promising when evaluated with the true model. Then, this
optimal solution and its associated true fitness value are added to
the surrogate’s learning sample for the next iteration. In this article,
we propose to use the so-called Efficient Hill-climber (EH) from
Chicano et. al. [9], in order to optimize the Walsh surrogates (line
4 of Algorithm 1). Indeed, this EH is extremely fitted for pseudo-
boolean functions expressed as a Walsh decomposition. Without
loss of generalization, we will consider the case of maximization.
The optimization algorithm, summarized in Algorithm 2, consists
in identifying improving moves in a Hamming-ball, so as to focus
the optimizer on flipping promising variables in the solution. In
this work, we define a score for each move in a ball of radius 1, i.e.
each possible bit-flip in a given solution:

δm (x) = f̂ (x ⊕m) − f̂ (x), (6)
where x is a solution represented as a binary string,m is a potential
move and ⊕ denotes the bit-flip operation. This step is related to
line 3 of Algorithm 2. The next step consists in flipping them-th
bit in x that maximizes Equation 6, which is related to lines 5 and
7. Actually, it can be shown that only some scores are affected by
this flip, depending on the interactions of variables [9]. As a conse-
quence, only specific scores are updated in line 8. This process is
iterated until the computation budget is spent or no more improv-
ing moves are possible, i.e. all δm are lower or equal to zero (δ⋆i is
the best move so far). Finally, if the proposed optimal solution is
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already known in the surrogate’s learning sample from previous
optimizations, then the new point to be added to the learning set
is sampled randomly (line 13), in order to provide diversity and
ease the learning phase. As a result, we expect this algorithm to
tackle large size combinatorial optimization problems in a fast and
computationally-efficient way.

Algorithm 2:Maximization of the Walsh surrogate model.
1 while restarts budget is not spent do
2 x ← Random solution
3 δ ← Compute scores for each move
4 while iterations budget is not spent do
5 i⋆ ← Find argmaxδi
6 if δi⋆ > 0 then
7 x ← Flip i⋆-th bit in x

8 δ ← Update affected scores
9 else
10 break

11 x⋆ ← Update best solution if x is an improving solution
12 if x⋆ is already known then
13 x⋆ ← Sample random solution

3 EXPERIMENTAL ANALYSIS
We first introduce the two combinatorial problems studied and
their respective experimental setup. Then, the regression accuracy
of the Walsh surrogates and the performances of the proposed
optimization algorithm are compared to other methods.

3.1 Benchmark
Unconstrained Binary Quadratic Programming. TheUnconstrained

Binary Quadratic Programming (UBQP) problems are defined by
the minimization of the function:

n∑
i=1

n∑
j=1

qi j xix j , (7)

where xi denotes the i-th bit in the binary string x of size n and
Q = (qi j ) is a n-by-n square, symmetric matrix of random co-
efficients. In the optimization field, this matrix is usually sparse,
i.e. some coefficients are set to zero, according to a density pa-
rameter d . Otherwise, coefficients are set uniformly in the range
[−100, 100] [19]. These models, although simple in their definitions,
actually represent challenging computational questions and em-
brace a wide variety of combinatorial optimization problems, such
as traffic management, facility positionings, resources allocation, or
even economic analysis, as surveyed by Kochenberger et. al. [17].
Due to its NP-hard nature and its large application range, UBQP
has continually motivated the scientific community to propose
novel metaheuristics, mostly based on tabu search as pioneered by
Beasley [4].

nk-Landscapes. The nk-landscapes (NKL) are mathematical mod-
els proposed by Kauffman [16]. They involve fitness landscapes of
varied sizes and ruggedness that are tunable thanks to the parame-
ters n and k , respectively. For every binary string x = (x1, . . . , xn )
of size n, the fitness of x is based on the sum of fitness contributions
дi . These component functions take into account the value of each
variable xi in the string and the values of its k interacting vari-
ables (xi1 , . . . , xik ). The function f to maximize is hence defined
as follows:

f (x) =
1
n

n∑
i=1

дi (xi , xi1 , . . . , xik ). (8)

Typically, the component functions дi assign an uniformly dis-
tributed real-valued contribution in [0, 1[ for every possible com-
bination of xi and its k epistatic interactions. In some sense, the
component functions дi are peek at random in the space of pseudo-
boolean functions with codomain [0, 1[. The interactions are chosen
uniformly at random among the (n − 1) variables other than xi .
Therefore, the nk-landscapes functions describe gradually challeng-
ing optimization problems when k increases, providing a variety of
landscapes from smooth to hilly ones. For instance, functions are
linear when k = 0, whereas they are quadratic when k = 1. In an
optimization perspective, it is usual to search for the binary strings
x that maximize these functions. Considering these blueprints, NKL
may abstractly portray a wide range of real-world optimization
problems [28].

Walsh vs. Multilinear basis. Walsh coefficients, and multilinear
coefficients can be computed for nk-landscapes [12] and UBQP
problems. For nk-landscapes, due to the linearity of both decom-
positions, the decomposition is the average of the decomposition
of each component function. For example, when k = 1, the di-
mension of the component functions is 2. In this case there are
4 coefficients for both decompositions. The values of Walsh and
multilinear coefficients can be computed respectively withW2 д
and L2 д, where

W2 =
1
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 and L2 =


1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1


with д = [д(00),д(01),д(10),д(11)]t is the vector with the com-

ponent function’s values. As a consequence, when д is a vector
of random values following independent random distributions of
mean µ and variance σ 2, then the mean of the first Walsh coeffi-
cient is µ

4 and the mean of the others coefficients is 0. Moreover,
the variance of all Walsh coefficients is equal to σ 2

4 . For multilinear
basis, the mean of the first coefficient is µ and the mean of the other
ones is 0. Yet, the variance of the multilinear coefficients increases
with the order, respectively σ 2, 2σ 2, and 4σ 2 for the coefficients of
order 0, 1, and 2. Concerning nk-landscapes, the number of null
coefficients is the same for both Walsh and multilinear decompo-
sitions, but the distribution of coefficients is not the same. UBQP
problems are directly defined in the multilinear basis. Table 2 gives
the transformation between multilinear and Walsh bases. The bilin-
ear coefficient qi j with i , j gives the coefficient 1

4qi j in the Walsh
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Table 2: Multilinear vs.Walsh bases for linear and quadratic
functions.

Multilinear basis Walsh basis
xi

1
2 −

1
2 (−1)

xi

xix j
1
4 −

1
4 (−1)

xi − 1
4 (−1)

x j + 1
4 (−1)

xi+x j

1 −2xi (−1)xi
1 −2xi −2x j +4xix j (−1)xi+x j

basis and adds some linear terms. Thus, for UBQP problems, the de-
composition has the same null coefficients for the quadratic terms,
but not for the linear ones. Again, the distribution of the coefficients
will be different in Walsh and multilinear bases. This suggests that
the quality of the regression for nk-landscapes and UBQP will not
be the same for different surrogate bases of functions.

Experimental Setup. We consider both of the aforementioned
combinatorial problems for our empirical studies.We involve binary
strings of size n ∈ {10, 25, 50, 100}. For UBQP, according to [19],
we set the density of zero parameter d to 90%. For nk-landscapes,
we vary k ∈ {1, 2} which represents quadratic (k = 1), and cubic
interaction (k = 2). For every combination of parameters (4 for
UBQP, 4 × 2 = 8 for NKL), five instances of the corresponding
problem are generated. For both combinatorial problems, the regu-
larization parameter α of the LASSO regression method is chosen
empirically from the order of the fitness value of random solutions.
The regularization parameter α is set to 10−1 and 10−5 for UBQP
and nk-landscapes, respectively. We validate the accuracy of the
so-trained models against a test-set of 1000 solutions generated
uniformly at random. Competing learning methods are run 20 times
on each instance. Competing surrogate-assisted optimization algo-
rithms are restarted and iterated 100 times each, related to lines
1 and 4 in Algorithm 2, respectively. The following results report
the accuracy of the trained surrogates and their performances in a
surrogate-assisted optimization approach. Algorithms and experi-
ments are fully implemented in Python, using standard machine
learning and optimization packages. The code is available on the
web3.

3.2 Accuracy of Surrogate Models
At first, we simply experiment the accuracy of three surrogate mod-
els, based on gaussian process (GP), multilinear functions basis
used in BOCS, and Walsh functions basis (see sections 1 and 2). No
optimization algorithm is involved yet. Solutions selected in order
to learn the model are sampled randomly from {0, 1}n . In Figures 1,
2 and 3, we compare the mean absolute error made by the models
as a function of the random samples dedicated to their learning.
For both benchmark problems, each surrogate model converges
towards a null error when the sample size grows, yet with differ-
ent convergence speeds. Overall, gaussian process appears as the
slowest of the three compared methods. For UBQP instances re-
ported in Figure 1, the accuracy of multilinear andWalsh surrogates
evolves in essentially the same way, regardless of the considered
sizes of the problems. Nevertheless, Walsh surrogates always reach
an absolute-zero error, while multilinear ones need about twice the
3https://gitlab.com/florianlprt/wsao
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Figure 1: Mean absolute error with confidence interval as a
function of random samples for UBQP problems.

sample size required by Walsh surrogates to achieve this accuracy
when n = 100. In the other hand, Figures 2 and 3 show significant
differences in convergence speed for these same two methods ap-
plied to NKL problems. The sample size required to achieve a zero
absolute error is substantially lower for Walsh surrogates, about
twice as fast as multilinear ones when n = 50 or n = 100. This con-
trast is even more noticeable when the size of the problem increases
or when the epistatic interactions per variable is set to k = 2 which
is the cubic interaction. Indeed, we clearly notice in Figure 4 that
the sample size required for the Walsh surrogates to reach a null
error grows rapidly with the number of epistatic interactions.

3.3 Performances of Optimization Algorithms
Secondly, we experiment the Walsh-based surrogate-assisted opti-
mization algorithm (WSaO) proposed in Algorithm 2. We compare
its performances with the state-of-the-art algorithms discussed in
section 1.2: EGO based on gaussian process and BOCS for opti-
mizing models based on a decomposition of multilinear functions.
In addition, we also compare the performances of Algorithm 2
when applied to a multilinear-based surrogate learned with Lasso
regression method. Unlike the regression analysis of the previous
section 3.2, the solution added each iteration to the surrogate’s
learning sample is now the solution that maximizes (or minimizes)
the surrogate model, according to Algorithm 1. Due to a lack of
computational time, the results presented in the following only
consider UBQP problems and NKL problems where k is set to 1
(quadratic interaction). Further analyses involving more epistatic
interactions are left for future works. Though, in order to provide
exploitable results to the reader, Table 3 records the average quality
of solutions found by these four optimization algorithms, regarding
two computational budgets. We define high budgets approximately

https://gitlab.com/florianlprt/wsao
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Figure 2: Mean absolute error with confidence interval as a
function of random samples for NKL problems. k is set to 1.
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Figure 3: Mean absolute error with confidence interval as a
function of random samples for NKL problems. k is set to 2.
α = 10−5 for Lasso.

equal to the number of samples that are required for the fastest
surrogate models to plenty converge to an absolute-zero error in
section 3.2. Then, low budgets are defined as the third of these high
budgets. Statistical tests are employed to determine a significant
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Figure 4: Required sample to reach a null error for Walsh
surrogates, according to the size of the problemand thenum-
ber of epistatic interactions.

difference between those presented averages. Regarding UBQP in-
stances, EGO and a multilinear model optimized with EH provide
lower quality solutions. Both get stuck in local optima, all the more
the size of the problems increases. BOCS algorithm appears to be
very efficient when the dimension is low (up to n = 25), as it re-
quires low budget to converge to optimal solutions. However, the
algorithm drastically stalls as soon as the size of the problem gets
larger. This explains the abrupt stops in Figures 5 and 6: the algo-
rithm could not complete in the allowed computational time (i.e. 96
hours parallelized on 4 CPU cores) for sizes n = 50 and n = 100. In
contrast, only the proposedWSaOmanage to find high-quality solu-
tions, regardless of the dimension of the problem. Concerning NKL
problems, performances are quite similar for every algorithm when
dimension is low, although EGO appears less effective. Once again,
BOCS algorithm gets hampered when the dimension increases. Nev-
ertheless, Walsh surrogates-assisted optimized with EH (WSaO)
reach solutions with the highest quality on large size NKL, even
with a low computational budget (Walsh provides slightly better-
quality solutions from 500 samples when n = 100). As a conclusion,
it appears that BOCS provides efficient optimization for both low-
dimension problems up to n = 25. However, these performances
do not scale with higher dimensions, unlike WSaO. The latter are
effective independently of the size of the problem until at least size
n = 100. From our experimental analysis, BOCS algorithm can not
be used when the problem dimension is larger than 50, whereas
WSaO can scale at least up to 100 dimensions.

Overall, we notice the sample size needed to reach optimal val-
ues is larger for UBQP problems than the one required for NKL
problems. For instance, when n = 100, a sample size of 3000 is
required for UBQP, whereas the required sample size is 1000 to
reach an optimum for NKL.

4 DISCUSSIONS
Walsh Surrogate-assisted Optimization algorithm (WSaO) combines
a relevant basis orthogonal of Walsh functions, and a very efficient
optimization method dedicated for this Walsh decomposition from
grey-box optimization. It has been compared with two state-of-art
algorithms based on Gaussian Process, on sparse bayesian estima-
tion of the coefficient multilinear polynomial model (BOCS). Note
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Table 3: Average quality of solutions found by the four optimization algorithms, with low or high budget dedicated to the
search. For UBQP problems, the lower the better. For NKL problems, the higher the better. EH stands for Efficient Hill-climber.
The * symbol stands when the method has not been completed for the considered problem. Averages appear in bold when the
difference is statistically significant with Mann-Whitney tests at level 5%, according to problems and computational budgets.

Problems Low budget High budget
EGO Multilinear (EH) WSaO BOCS EGO Multilinear (EH) WSaO BOCS

UBQP10 -104.67±27.62 -178.00±0.00 -176.67±5.16 -178.00±0.00 -146.27±23.81 -178.00±0.00 -178.00±0.00 -178.00±0.00
UBQP25 -539.27±71.34 -679.07±50.91 -831.80±30.50 -845.00±0.00 -586.13±59.27 -707.73±34.83 -845.00±0.00 -845.00±0.00
UBQP50 -1727.14±197.87 -2069.60±133.17 -3080.73±70.58 * -1924.67±237.10 -2161.93±122.73 -3141.00±0.00 *
UBQP100 * -3756.50±152.03 -6909.50±120.40 * * -3811.00±74.95 -7522.00±0.00 *
N10K1 0.75±0.04 0.80±0.00 0.79±0.01 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00
N25K1 0.59±0.01 0.62±0.01 0.62±0.01 0.62±0.00 0.62±0.01 0.63±0.00 0.63±0.00 0.63±0.00
N50K1 0.70±0.01 0.72±0.01 0.71±0.01 * 0.72±0.00 0.73±0.00 0.73±0.00 *
N100K1 0.67±0.01 0.69±0.01 0.69±0.01 * 0.67±0.01 0.70±0.00 0.71±0.00 *

that this model is able to represent any pseudo-boolean function
[11], but is not an orthogonal basis. The results show that WSaO is
competitive on small dimension problems although BOCS approach
can be outperformed by WSaO, but WSaO can scale to middle size
problems up to n = 100 which is targeted dimension for the future
applications of the algorithm.

It opens many directions of future research. First, we would like
to use the WSaO on real-world problems related to city mobility.
One target optimization problem is the setting of the bus stop posi-
tion in the city. This problem is then an expensive pseudo-boolean
problem of dimension of the order of 100. The running time of sim-
ulator used to test the position is around few minutes [18]. WSaO is
then a good candidate to face such real-world problem. According
to the complexity of the fitness functions that could be different as
in our experiments, one optimization process to find one high qual-
ity solution can take between 7 days and 20 days of computation on
a single core machine. From an algorithm side of research, it will
push us to design a parallel version of the WSaO. In this work, we
use a simple Iterated Local Search with a pure random restart. We
also intend to improve the efficiency of the optimization algorithm
by using a population-based algorithm and the cross-over based
on articulation points recently proposed in grey-box optimization
[6]. Finally, the performance gap of different surrogate models and
regression methods according to the problem dimension, and com-
plexity suggest to design an ensemble of surrogate models that
combines the different approaches.

ACKNOWLEDGMENTS
Experiments presented in this paper were carried out using the
CALCULCO computing platform, supported by SCOSI / ULCO
(Service COmmun du Système d’Information de l’Université du
Littoral Côte d’Opale). We thank Fabio Daolio for his insightful
suggestions. We are grateful to PMCO for its funding.

REFERENCES
[1] Rolando Armas, Hernán Aguirre, Saúl Zapotecas-Martínez, and Kiyoshi Tanaka.

2015. Traffic signal optimization: minimizing travel time and fuel consumption.
In International Conference on Artificial Evolution (Evolution Artificielle). Springer,
29–43.

[2] Ricardo Baptista and Matthias Poloczek. 2018. Bayesian Optimization of Com-
binatorial Structures. In International Conference on Machine Learning (ICML).
462–471.

[3] Thomas Bartz-Beielstein and Martin Zaefferer. 2017. Model-based methods for
continuous and discrete global optimization. Applied Soft Computing 55 (2017),
154–167.

[4] John E Beasley. 1998. Heuristic algorithms for the unconstrained binary quadratic
programming problem. London, England (1998).

[5] Juergen Branke. 2018. Simulation Optimization Tutorial. In Proceedings of the
Genetic and Evolutionary Computation Conference Compagnion. ACM.

[6] Francisco Chicano, Gabriela Ochoa, Darrell Whitley, and Renato Tinós. 2018.
Enhancing partition crossover with articulation points analysis. In Proceedings of
the Genetic and Evolutionary Computation Conference. ACM, 269–276.

[7] Francisco Chicano, Darrell Whitley, and Enrique Alba. 2014. Exact computation
of the expectation surfaces for uniform crossover along with bit-flip mutation.
Theoretical Computer Science 545 (2014), 76–93.

[8] Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós. 2017.
Optimizing one million variable NK landscapes by hybridizing deterministic
recombination and local search. In GECCO. 753–760.

[9] Francisco Chicano, Darrell Whitley, and Andrew M. Sutton. 2014. Efficient Identi-
fication of ImprovingMoves in a Ball for Pseudo-boolean Problems. In Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO
’14). ACM, New York, NY, USA, 437–444. https://doi.org/10.1145/2576768.2598304

[10] David E Goldberg. 1989. Genetic algorithms and Walsh functions: Part I, a gentle
introduction. Complex systems 3, 2 (1989), 129–152.

[11] Peter L Hammer and Ron Holzman. 1992. Approximations of pseudo-Boolean
functions; applications to game theory. Zeitschrift für Operations Research 36, 1
(1992), 3–21.

[12] Robert B. Heckendorn. 2002. Embedded Landscapes. Evo. Comp.
10, 4 (2002), 345–369. https://doi.org/10.1162/106365602760972758
arXiv:https://doi.org/10.1162/106365602760972758

[13] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[14] Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[15] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global
optimization of expensive black-box functions. Journal of Global optimization 13,
4 (1998), 455–492.

[16] S. A. Kauffman. 1993. The Origins of Order. Oxford University Press.
[17] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo

Wang, and Yang Wang. 2014. The unconstrained binary quadratic programming
problem: A survey. Journal of Combinatorial Optimization 28 (07 2014). https:
//doi.org/10.1007/s10878-014-9734-0

[18] Florian Leprêtre, Cyril Fonlupt, Sébastien Verel, and Virginie Marion. 2018.
SIALAC benchmark: on the design of adaptive algorithms for traffic lights prob-
lems. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, 288–289.

[19] Arnaud Liefooghe, Sébastien Verel, Luis Paquete, and Jin-Kao Hao. 2015. Experi-
ments on local search for bi-objective unconstrained binary quadratic program-
ming. In EMO - 2015 8th International Conference on Evolutionary Multi-Criterion
Optimization (Lecture Notes in Computer Science), Vol. 9018. Guimarães, Portugal,
171–186. https://doi.org/10.1007/978-3-319-15934-8_12

[20] Enes Makalic and Daniel F Schmidt. 2016. A simple sampler for the horseshoe
estimator. IEEE Signal Processing Letters 23, 1 (2016), 179–182.

[21] Alberto Moraglio and Ahmed Kattan. 2011. Geometric generalisation of surrogate
model based optimisation to combinatorial spaces. In European Conference on
Evolutionary Computation in Combinatorial Optimization. Springer, 142–154.

[22] Diana M Negoescu, Peter I Frazier, and Warren B Powell. 2011. The knowledge-
gradient algorithm for sequencing experiments in drug discovery. INFORMS

https://doi.org/10.1145/2576768.2598304
https://doi.org/10.1162/106365602760972758
http://arxiv.org/abs/https://doi.org/10.1162/106365602760972758
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/978-3-319-15934-8_12


GECCO ’19, July 13–17, 2019, Prague, Czech Republic Florian Leprêtre, Sébastien Verel, Cyril Fonlupt, and Virginie Marion

20 40 60 80 100
−200

−150

−100

−50

0

50

100

150

F
it

n
es

s

UBQP10

Gaussian Process (EGO)

Multilin (EH)

Walsh (WSaO)

Multilin (BOCS)

0 100 200 300 400 500 600

−800

−600

−400

−200

0

200

F
it

n
es

s

UBQP25

Gaussian Process (EGO)

Multilin (EH)

Walsh (WSaO)

Multilin (BOCS)

0 250 500 750 1000 1250 1500 1750 2000

−3000

−2500

−2000

−1500

−1000

−500

0

500

F
it

n
es

s

UBQP50

Gaussian Process (EGO)

Multilin (EH)

Walsh (WSaO)

Multilin (BOCS)

0 500 1000 1500 2000 2500 3000

Samples

−6000

−4000

−2000

0

F
it

n
es

s

UBQP100

Gaussian Process (EGO)

Multilin (EH)

Walsh (WSaO)

Multilin (BOCS)

Figure 5: Minimization of fitness according to sample size
for UBQP problems. Four optimization algorithms are com-
pared. EH stands for Efficient Hill-climber.
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Figure 6: Maximization of fitness according to sample size
for NKL problems, with k fixed to 1. Four optimization algo-
rithms are compared. EH stands for Efficient Hill-climber.
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