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Abstract: This paper investigates the statistical estimation of a discrete mixing
measure µ0 involved in a kernel mixture model. Using some recent advances in `1-
regularization over the space of measures, we introduce a “data fitting and regularization”
convex program for estimating µ0 in a grid-less manner from a sample of mixture law,
this method is referred to as Beurling-LASSO.

Our contribution is two-fold: we derive a lower bound on the bandwidth of our data
fitting term depending only on the support of µ0 and its so-called “minimum separation”
to ensure quantitative support localization error bounds; and under a so-called “non-
degenerate source condition” we derive a non-asymptotic support stability property. This
latter shows that for a sufficiently large sample size n, our estimator has exactly as many
weighted Dirac masses as the target µ0, converging in amplitude and localization towards
the true ones. Finally, we also introduce some tractable algorithms for solving this convex
program based on “Sliding Frank-Wolfe” or “Conic Particle Gradient Descent”.

Statistical performances of this estimator are investigated designing a so-called “dual
certificate”, which is appropriate to our setting. Some classical situations, as e.g.mixtures
of super-smooth distributions (e.g. Gaussian distributions) or ordinary-smooth distribu-
tions (e.g. Laplace distributions), are discussed at the end of the paper.

MSC 2010 subject classifications: Primary: 62G05, 90C25; Secondary: 49M29.
Keywords and phrases: Beurling Lasso; Mixture recovery; Dual certificate; Kernel
approach; Super-resolution.

1. Introduction

1.1. Mixture problems

In this paper, we are interested in the estimation of a mixture distribution µ0 using some i.i.d.
observations X := (X1, . . . , Xn) ∈ (Rd)n with the help of some `1-regularization methods.
More precisely, we consider the specific situation of a discrete distribution µ0 that is given by
a finite sum of K components:

µ0 :=

K∑
k=1

a0
kδtk (1)
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where the set of positive weights (a0
k)1≤k≤K defines a discrete probability distribution, i.e.

each δtk is a Dirac mass at point tk ∈ Rd while

K∑
k=1

a0
k = 1 and ∀k ∈ [K] := {1, . . . ,K} : a0

k > 0 .

We denote by S0 := {t1, . . . , tK} the support of the target distribution µ0. This distribution
is indirectly observed: we assume that our set of observations X in Rd satisfies

Xi
iid∼

K∑
k=1

a0
kFtk , ∀i ∈ [n] := {1, . . . , n} ,

where (Ft)t∈Rd is a family of known distributions on Rd. Below, we consider the so-called
location model where each distribution Ft has a density with respect to the Lebesgue measure
on Rd given by the density function ϕ(· − t), where ϕ denotes a known density function. In
this case, the density function f0 of the data X can be written as a convolution, namely

f0(x) =

K∑
k=1

a0
kϕ(x− tk) , ∀x ∈ Rd . (2)

Remark 1. Equation (2) has a simple interpretation in the context considered here: the law
of one observation Xi is given by a sum of two independent random variables U0 and E:

Xi ∼ U0 + E ,

where U0 ∈ S0 is distributed according to µ0 (i.e., the mixing law (1)) and E has a distribu-
tion of density ϕ with respect to the Lebesgue measure on Rd. In this context, recovering the
distribution of U0 from the sample X appears to be an inverse (deconvolution) problem. The
main difference with former contributions (see, e.g. [28] for a comprehensive introduction) is
that the probability measure associated to U0 is discrete, which avoids classical regularization
approaches.

Equation (2) is known in the literature as a mixture model. A mixture model allows to
describe some practical situations where a population of interest is composed of K different
sub-populations, each of them being associated to a proportion a0

k and to a location parame-
ter tk. Mixture models have been intensively investigated during the last decades and have been
involved in several fields as biology, genetics, astronomy, among others. We refer to [20, 27]
for a complete overview.

1.2. Previous works

The main goal of this paper is to provide an estimation of the discrete mixture law µ0 intro-
duced in (1). When the component number K is available, the maximum likelihood estimator
(MLE) appears to be the most natural candidate. Although no analytic expression is available
for the model (2), it can be numerically approximated. We mention for instance the well-
known EM-algorithm and refer to [40], who established some of the most general convergence
results known for the EM algorithm. However, the MLE (and the related EM-algorithm) does
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not always provide satisfactory results. First, the MLE suffers from several drawbacks (see,
e.g., [25]) such as non-uniqueness of the solution, and second, obtaining theoretical guarantees
for the EM-algorithm is still a difficult question (see, e.g., the recent contributions [3, 17]).
Several alternative methods have been proposed in this context. Some contributions exten-
sively use the MLE point of view to derive consistent properties in general semi-parametric
models, including the Gaussian case (see e.g. [38]), whereas some other ones developed some
contrast functions in a semi-parametric framework: with symmetry and number of component
assumptions in [6, 8], or with a fixed number of component settings in [21] and a L2 contrast.
As a particular case, the Gaussian setting has attracted a lot of attention: a model selection
strategy is developed in [26] and a specific analysis of the EM algorithm with two Gaus-
sian components is provided in [41]. The article [3] provides a general theoretical framework
to analyze the convergence of the EM updates in a neighborhood of the MLE, and derives
some non-asymptotic bounds on the Euclidean error of sample-based EM iterates. Some of
the aforementioned papers provide better results (for instance with parametric rates of con-
vergence for the estimation of the weights a0

k, see e.g. [29, 22]), but are obtained in more
constrained settings: known fixed number of components (often K = 2), univariate case, ...

Our estimator will be any solution to a convex program and it does not require to know the
number K of components in the mixing law µ0. This estimator is based on ideas from super-
resolution and “off-the-grid” methods [5, 9], where one aims at recovering a discrete measure
from linear measurements. The so-called “sparse deconvolution” problem fits this framework
since it concerns with estimating a target measure from the observation of some product of
convolution between the target measure and known kernel as f0 in (2). Note that in mixture
models, we do not observe f0 but rather a sample drawn from it, and standard strategies such
that (1.15) in [9] cannot be invoked here. However, remark that one of the main advances has
been the construction of the so-called “dual certificate” in [9] which is the key to demonstrate
the success of discreteness inducing norm regularization (see e.g. [13, 9, 16, 14]).

Recent works have addressed mixture models while assuming that the sampling law is
known. For example, the authors of [31] study some dimension reduction techniques such
as random “sketching” problems using “off-the-grid” minimization scheme. They prove con-
vergence of random feature kernel towards the population kernel. We emphasize that the
statistical estimation in terms of the sample size n has not been considered in the super-
resolution research field. To the best of our knowledge, this paper is the first that bridges the
gap between the recent “off-the-grid” sparse regularization methods and a sharp statistical
study of this estimation procedure in terms of the sample size and the bandwidth of the data
fitting term.

1.3. Contribution

In this paper, we propose an estimator µ̂n of the measure µ0 (see Equation (1)) inspired by
some recent results in `1-regularization on the space of measures, sometimes referred to as
super-resolution methods (see, e.g., [13, 9]). We investigate the statistical theoretical perfor-
mances of µ̂n. This estimator µ̂n is built according to the minimization of a criterion on the
space of real measures on Rd and does not require any grid for its computation. The stability
result and the construction of the dual certificate given in [9] played a central role in our work
to obtain the statistical recovery. However, these authors work on the torus and their construc-
tion provides periodic dual certificates which are not useful in our present framework. One
important contribution of this paper is thus a novel dual certificate construction, interpolating
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phases/signs on Rd (and not the d-dimensional torus as in [9]). We also investigate the stability
with respect to sampling of our estimation strategy, i.e. the ability of our procedure to recover
the mixture when we compute µ̂n up to some i.i.d. observations (Xi)i∈[n] with n→ +∞, which
is a different problem from the stability issue studied in [9] that asserts the variation of the
super-resolution solutions with respect to an `1 norm control on the low-frequency data.

The minimized criterion requires to tune two parameters: a bandwidth parameter of the
data fitting term denoted by m ≥ 1 and an `1-regularization tuning parameter denoted by
κ > 0 below. We prove that the bandwidth parameterm depends only on the intrinsic hardness
of estimating the support S0 of the target µ0 through the so-called “minimum separation” ∆
introduced in [9] that refers to the minimal distance between two spikes:

∆ := min
k 6=`
‖tk − t`‖2 .

We now assess briefly the performances of µ̂n. We emphasize that a complete version is dis-
played in Theorem 10 (for points i) and ii)) and Theorem 11 (for point iii)) later on.

Theorem 1. Assume that the kernel ϕ satisfies (Hη) with η = 4m (see Section 2.3 for a
definition) for a bandwidth m verifying

m &
√
Kd3/2∆−1

+ where ∆+ = min(∆, 1). (3)

Then, some quantity Cm(ϕ) > 0 exists such that, setting

ρn = O
(√md

n

)
, (4)

our estimator µ̂n satisfies:

i) Spike detection property:

∀A ⊂ Rd, E[µ̂n(A)] & ρnCm(ϕ) =⇒ min
k∈[K]

inf
t∈A
‖t− tk‖22 .

1

m2
.

ii) Weight reconstruction property:

∀k ∈ [K] : E
[
|a0
k − µ̂n(Nk(ε))|

]
. ρnCm(ϕ),

where Nk(ε) denotes a region that contains tk and ε = εn,m(d) is made explicit later on.
iii) Support stability property: if ϕ satisfies the Non-Degenerated Bandwidth condi-

tion (NDB) (see Section 4.4 for a definition), for n large enough, with an overwhelming
probability, µ̂n can be written as

µ̂n =
K̂∑
k=1

âkδt̂k ,

with K̂ = K. Furthermore, (âk, t̂k)→ (a0
k, tk) for all k ∈ [K], as n tends to infinity.

Note that the constant Cm(ϕ) will depend on other quantities introduced later. It will be
specified in Proposition 9.

These three results deserve several comments. First, i) indicates that when a set A has
enough mass w.r.t. the estimated measure µ̂n, it includes a true spike with an accuracy of the
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order m−2. The second result ii) provides some statistical guarantees on the mass set by µ̂n
near a true spike tk that converges to µ0({tk}) = a0

k. Condition (NDB) is inspired from the so-
called “non-degenerated source condition” (NDSC) introduced in [16] and allows to derive the
support stability. The last result iii) shows that, for large enough sample size, `1-regularization
successfully recovers the number of mixing components. The estimated weights on the Dirac
masses then converge towards the true ones in amplitudes and localizations.

The bandwidth m has to be adjusted to avoid over and under-fitting. Condition (3) ensures
that the target point is admissible for our convex program and it may be seen as a condition
to avoid a large bias term and under-fitting. Condition (4) ensures that the sample size is
sufficiently large with respect to the model size m and it might be seen as a condition to avoid
over-fitting and therefore to upper-bound the variance of estimation.

Below, we will pay attention to the role of Fourier analysis of ϕ and to the dimension d of
the ambient space. These results are applied to specific settings (super-smooth and ordinary-
smooth mixtures).

1.4. Outline

This paper is organized as follows. Section 2 introduces some standard ingredients of `1 regu-
larization methods and gives a deterministic analysis of the exact recovery property of µ0 from
f0. Section 3 provides a description of the statistical estimator µ̂n derived from a deconvolu-
tion with a Beurling-LASSO strategy (BLASSO) (see e.g. [13]). Tractable algorithms solving
BLASSO when the observation is a sample from a mixing law are introduced in Section 3.3.
Section 4 focuses on the statistical performances of our estimator whereas Section 5 details
the rates of convergence for specific mixture models. The main proofs are gathered in Section
6 whereas the most technical ones are deferred to the appendix.

2. Assumptions, notation and first results

This section gathers the main assumptions on the mixture model (2). Preliminary theoretical
results in an “ideal” setting are stated in order to ease the understanding of the forthcoming
paragraphs.

2.1. Functional framework

We introduce some notation used all along the paper.

Definition 1 (Set (M(Rd,R), ‖ · ‖1)). We denote by (M(Rd,R), ‖ · ‖1) the space of real
valued measures on Rd equipped with the total variation norm ‖ · ‖1, which is defined as

‖µ‖1 :=

∫
Rd

d|µ| ∀µ ∈M(Rd,R) ,

where |µ| = µ+ + µ− and µ = µ+ − µ− is the Jordan decomposition associated to a given
measure µ ∈M(Rd,R).

A standard argument proves that the total variation of µ is also described with the help of a
variational relationship:

‖µ‖1 = sup

{∫
Rd
fdµ : f isµ-measurable and |f | ≤ 1

}
.
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Recall that ϕ used in Equation (2) is a probability density function so that ϕ ∈ L1(Rd).

Definition 2 (Fourier transform over L1(Rd) and M(Rd,R)). We denote by F the Fourier
transform defined by:

∀x ∈ Rd,∀f ∈ L1(Rd), F [f ](x) :=

∫
Rd
e−ıx

>ωf(ω)dω .

A standard approximation argument extends the Fourier transform toM(Rd,R) with:

∀x ∈ Rd,∀µ ∈M(Rd,R), F [µ](x) :=

∫
Rd
e−ıx

>ωdµ(ω) .

We denote by C0(Rd,R) the space of continuous real valued functions vanishing at infinity
on Rd and recall that F

(
L1(Rd)

)
is a dense subset of C0(Rd,R). We shall also introduce the

convolution operator Φ as

µ 7→ Φ(µ) := ϕ ? µ =

∫
Rd
ϕ(· − x)dµ(x) , µ ∈M(Rd,R) , (5)

and it holds equivalently that (see e.g. [33, Section 9.14]):

∀µ ∈M(Rd,R) , F [Φ(µ)] = F [ϕ]F [µ] . (6)

Concerning the density ϕ involved in (2), we will do the following assumption.

The function ϕ is a bounded continuous symmetric function of positive definite type. (H0)

In particular, the positive definite type property involved in Assumption (H0) is equivalent to
require that for any finite set of points {x1, . . . , xn} ∈ Rd and for any (z1, . . . , zn) ∈ Cn:

n∑
i=1

n∑
j=1

ϕ(xi − xj)ziz̄j ≥ 0.

In what follows, we consider h : Rd × Rd −→ R the function defined by h(x, y) = ϕ(x − y)
for all x, y ∈ Rd. In such a case, Assumption (H0) entails that h(·, ·) is a bounded continuous
symmetric positive definite kernel. By Bochner’s theorem (see, e.g., [33, Theorem 11.32]), ϕ is
the inverse Fourier transform of a nonnegative measure Σ referred to as the spectral measure.
The Fourier inversion theorem states that Σ has a nonnegative density σ ≥ 0 with respect
to the Lebesgue measure on Rd such that σ ∈ L1(Rd). Hence, it holds from the preceding
discussion that

ϕ = F−1[σ] for some nonnegative σ ∈ L1(Rd) . (7)

Below, the set of points where the Fourier transform of a function does not vanish will play
an important role. We will denote this support by Supp(σ):

Supp(σ) =
{
ω ∈ Rd : σ(ω) 6= 0

}
.

Some examples of densities ϕ that satisfies (H0) will be given and discussed in the forthcoming
sections. We emphasize that this assumption is not restrictive and concerns for instance
Gaussian, Laplace or Cauchy distributions, this list being not exhaustive.

Additional notation. Given two real sequences (an)n∈N and (bn)n∈N, we write an . bn
(resp. an & bn) if there exists a constant C > 0 independent of n such that an ≤ bn (resp.
an ≥ bn) for all n ∈ N. Similarly, we write an � bn if an/bn → 0 as n → +∞. The set N∗

stands for N \ {0}.
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2.2. Exact Recovery of µ0 from f0 - Case Supp(σ) = Rd

In this paragraph, we are interested in an “ideal” problem where we are looking for µ0 not
from a sample X1, . . . , Xn distributed according to Equation (2), but from the population law
f0 itself. Of course, this situation does not occur in practice since in concrete situations, we do
not observe f0 but an empirical version of it and we will have to preliminary use an estimation
of f0 before solving the deconvolution inverse problem. Nevertheless, this toy problem already
provides the first ingredients for a better understanding of the difficulties that arise in the
context we consider.

We stress that f0 := Φ(µ0) where Φ is defined by (5). Hence, this paragraph concerns the
recovery of µ0 from its convolution by the kernel ϕ. We thus face an inverse (deconvolution)
problem. Several solutions could be provided and a standard method would rely on Fourier
inversion

µ0 = F−1
[
F(f0)σ−1

]
,

where σ is given by (7).
Here, we prove in a first step that this deconvolution problem can be efficiently solved using

a `1-regularization approach. We will be interested in the convex program (8) given by:

min
µ∈M(Rd,R) : Φ(µ)=f0

‖µ‖1 . (8)

In particular, we investigate under which conditions the solution set of (8) is the singleton {µ0},
that we referred to as the “Perfect Recovery” property. We introduce the set of admissible
points to the program (8), denoted byM(f0) and defined as:

M(f0) := {µ ∈M(Rd,R) : Φ(µ) = f0}.

In this context, some different assumptions on the kernel ϕ shall be used in our forthcoming
results.

A first reasonable situation is when the spectral density σ = F(ϕ) has its support equal
to Rd and in this case we denote σ > 0. This requirement can be summarized in the next
assumption on the function ϕ:

ϕ = F−1[σ], σ(ω) = σ(−ω) a.e. with Supp(σ) = Rd : ∀ω ∈ Rd σ(ω) > 0. (H∞)

Example 1. It may be shown that the set of densities ϕ that satisfy both Assumptions (H0)
and (H∞) include the Gaussian, Laplace, B2`+1-spline, inverse multi-quadrics, Matérn class
(see, e.g., [36, top of page 2397]) examples.

Under Assumptions (H0) and (H∞), any target measure µ0 ∈M(Rd,R) is the only admis-
sible point of the program (8).

Theorem 2 (Perfect Recovery under (H0) and (H∞)). Assume that the convolution kernel
satisfies (H0) and (H∞), then for any target µ0 the program (8) has µ0 as unique solution
point:

M(f0) = {µ0}.

We emphasize that the previous result also holds for measures µ0 that are not necessarily
discrete. The proof is given in Appendix C.1.
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2.3. The Super-resolution phenomenon

Theorem 2 entails that the measure µ0 can be recovered as soon as the spectrum of f0

is observed and as soon as its support is Rd. Surprisingly, this latter assumption can be
relaxed and reconstruction can be obtained in some specific situations. Such a phenomenon is
associated to the super-resolution theory and has been popularized by [9] among others.

Of course, this reconstruction is feasible at the expense of an assumption on the Fourier
transform of ϕ. For the sake of simplicity, we assume that the spectral density σ has a support
that contains the hypercube [−η, η]d for some frequency threshold η > 0:

ϕ = F−1[σ], σ(ω) = σ(−ω) a.e. with [−η, η]d ⊂ Supp(σ). (Hη)

Remark 2. The densities ϕ that satisfy (Hη) and for which Supp(σ) = [−η, η]d act as “ low
pass filters”. The convolution operator Φ described in (5) cancels all frequencies above η, see
for instance (6). Of course, the larger η, the easier the inverse deconvolution problem.

Under (H0) and (Hη), the target measure µ0 ∈ M(Rd,R) is not the only admissible point
in M(f0) to the program (8). We will need to ensure the existence of a specific function,
called in what follows a dual certificate, that will entail that µ0 is still the only solution of the
program (8).

Theorem 3 (Dual Certificate for (8)). Assume that the density ϕ satisfies (H0) and (Hη)
for some η > 0. Assume that µ0 and S0 = {t1, . . . , tK} are given by Equation (1) and that a
function Pη exists such that it satisfies the interpolation conditions:

• ∀t ∈ {t1, . . . , tK} : Pη(t) = 1 and ∀t /∈ {t1, . . . , tK} : |Pη(t)| < 1,

and the smoothness conditions:

• Pη ∈ C0(Rd,R) ∩ L1(Rd),
• the support of the Fourier transform F [Pη] satisfies Supp (F [Pη]) ⊂ [−η, η]d.

Then the program (8) has µ0 as unique solution point (Perfect Recovery).

The proof is given in Appendix C.2. A construction of such a certificate Pη is presented in
Appendix Fwith some additional constraints. In particular, it will make it possible to address
the more realistic statistical problem where only an empirical measure of the data is available.

Remark 3. The previous theorem can be extended to the case where the convolution kernel is
bounded, continuous and symmetric positive definite. The proof is the same substituting [−η, η]d

by the support Ω of its spectral density. Remark that since σ is nonzero, necessarily Ω has a
nonempty interior.

3. Off-The-Grid estimation via the Beurling-LASSO (BLASSO)

In this section, we consider the statistical situation where the density f0 is not available and
we deal instead with a sample X = (X1, . . . , Xn) of i.i.d. observations distributed with the
density f0. In this context, only the empirical measure

f̂n :=
1

n

n∑
i=1

δXi , (9)
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is available, and our aim is to recover µ0 from f̂n. To this end, we use in this paper a BLASSO
procedure (see e.g. [2]). Namely we deal with the following estimator µ̂n of the unknown
discrete measure µ0 defined as:

µ̂n := arg min
µ∈M(Rd,R)

{
C(Φµ, f̂n) + κ‖µ‖1

}
, (10)

where κ is a regularization parameter whose value will be made precise later on, and C(Φµ, f̂n)
is a data fidelity term that depends on the sample X. The purpose of the data fidelity term is
to measure the distance between the target µ0 and any candidate µ ∈M(Rd,R).

Some examples of possible cost functions C : H ×M(Rd,R) → R are discussed in Sec-
tion 3.1. Our goal is then to derive some theoretical results associated to this estimation
procedure.

3.1. Kernel approach

3.1.1. RKHS functional structure

In order to design the data fidelity term, we need to define a space where we can compare the
observations X = (X1, . . . , Xn) and any model f = ϕ ? µ = Φµ for µ ∈ M(Rd,R). In this
work, we focus our attention on a kernel approach.

Reminders on RKHS The difficulty lies in the fact that the empirical law f̂n introduced
in (9) does not belong to C0(Rd,R). To compare the prediction Φµ with f̂n, we need to embed
these quantities in the same space. We consider here a Reproducing Kernel Hilbert Space
(RKHS) structure, which provides a lot of interesting properties and has been at the core of
several investigations and applications in approximation theory [39], as well as in the statistical
and machine learning communities, (see [36] and the references therein). We briefly recall the
definition of such a space.

Definition 3. Let (L, ‖.‖L) be a Hilbert space containing function from Rd to R. The space L
is said to be a RKHS if δx : f 7→ f(x) are continuous for all x ∈ Rd from (L, ‖.‖L) to (R, |.|).

The Riesz theorem leads to the existence of a function ` that satisfies the representation
property:

〈f, `(x, .)〉L = f(x) ∀f ∈ L, ∀x ∈ Rd. (11)

The function ` is called the reproducing kernel associated to L. Below, we consider a kernel `
such that `(x, y) = λ(x − y) for all x, y ∈ Rd where λ satisfies (H0). Again, the Bochner
theorem yields the existence of a nonnegative measure Λ ∈ M(Rd,R) such that λ is its
inverse Fourier transform

λ = F−1(Λ), namely ∀x ∈ Rd, λ(x) =

∫
Rd
eıx
>ωdΛ(ω) .

Moreover, since λ is continuous, Λ is then a bounded measure and the Mercer theorem (see
e.g. [4]) proves that the RKHS L is exactly characterized by

L =

{
f : Rd → R s.t. ‖f‖2L =

∫
Rd

|F [f ](t)|2

F [λ](t)
dt < +∞

}
, (12)

with dot product

∀f, g ∈ L , 〈f, g〉L =

∫
Rd

F [f ](t)F [g](t)

F [λ](t)
dt .
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Convolution in the RKHS The RKHS structure associated to the kernel λ entails a
comparison between the empirical measure and any candidate Φµ. Indeed, a convolution
operator L similar to the one defined in Equation (5) can be associated to the RKHS as
pointed out by the next result.

Proposition 4. For any ν ∈M(Rd,R), the convolution Lν = λ ? ν belongs to L.

The proof of Proposition 4 is given in Appendix B.1.

3.1.2. Data fidelity term

For any µ ∈ M(Rd,R), both Lf̂n and L ◦ Φµ belong to L. Hence, one may use the following
data fidelity term

Cλ(Φµ, f̂n) := ‖Lf̂n − L ◦ Φµ‖2L, ∀µ ∈M(Rd,R) . (13)

Example 2. An important example is given by the sinus-cardinal kernel sinc. Given a fre-
quency “cut-off” 1/τ > 0, one can consider the kernel

λτ (x) :=
1

τd
λsinc

(x
τ

)
where λsinc(x) :=

d∏
j=1

sin(πxj)

πxj
∀x ∈ Rd.

Then, the spectral measure is given by

dΛτ (ω) = dΛsinc(ωπτ) :=
1

2d

d∏
j=1

1[−1/τ,1/τ ](ωj)dω , ∀ω ∈ Rd.

In this particular case, we deduce that the convolution L is a low-pass filter with a frequency
cut-off 1/τ and the RKHS (denoted by Lτ ) is given by:

Lτ =

{
f s.t. ‖f‖2Lτ =

1

2d

∫
B∞(1/τ)

|F [f ]|2 < +∞ and Supp(F [f ]) ⊆ B∞(1/τ)

}
, (14)

where B∞(1/τ) denotes the centered `∞ ball of radius 1/τ . The RKHS Lτ then corresponds to
the band-limited functions in L2(Rd) whose Fourier transform vanishes for a frequency larger
than 1/τ . In this context, our criterion becomes

Cλτ (Φµ, f̂n) =
1

2d

∫
[−1/τ,1/τ ]d

|F [Φµ− f̂n](ω)|2dω =
1

2d

∫
[−1/τ,1/τ ]d

|σF [µ]−F [f̂n](ω)|2dω ,

and it may be checked that

Cλτ (Φµ, f̂n) =
1

2d

∫
Rd

∣∣∣λτ ? (Φµ− f̂n)(x)
∣∣∣2 dx.

This loss focuses on the L2-error of Φµ−f̂n for frequencies in the Fourier domain [−1/τ, 1/τ ]d.
In some sense, the kernel estimator λτ ?f̂n has a bandwidth τ that will prevent from over-fitting.

We stress that, as it is the case in the previous low-pass filter example, Cλτ (Φµ, f̂n) may
depend on a tuning parameter (the bandwidth τ in Example 2). For the ease of presentation,
this parameter is not taken into account in the notation. However, its value will be discussed
in Section 5.
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3.1.3. Data-dependent computation

The next proposition entails that the criterion Cλ introduced in Equation (13) can be used in
practice giving a useful expression to compute it.

Proposition 5. For all µ ∈M(Rd,R), we have:

Cλ(Φµ, f̂n) = ‖Lf̂n − L ◦ Φµ‖2L

= ‖Lf̂n‖2L +

∫
Rd

[
− 2

n

n∑
i=1

λ(t−Xi)
]
(Φµ)(t)dt+

∫
Rd×Rd

λ(x− y)(Φµ)(x)(Φµ)(y)dxdy .

We stress that ‖Lf̂n‖2L does no depend on µ and can be removed from the criterion when it
is used in the program (8). The proof of Proposition 5 is given in Appendix B.2.

3.2. Estimation by convex programming

Our estimator is defined as a solution of the following optimization program with the data-
fidelity term Cλ(Φµ, f̂n) introduced in (13). Hence, we consider the optimization problem:

inf
µ∈M(Rd,R)

{
1

2
‖Lf̂n − L ◦ Φµ‖2L + κ‖µ‖1

}
, , (Pκ)

where ‖ · ‖L is the norm associated to the RKHS generated by λ (see Section 3.1) and κ > 0
is a tuning parameter whose value will be made precise later on. We emphasize that (Pκ) is
a convex programming optimization problem (convex function to be minimized on a convex
constrained set). The estimator µ̂n is then any solution of

µ̂n ∈ arg min
µ∈M(Rd,R)

{
1

2
‖Lf̂n − L ◦ Φµ‖2L + κ‖µ‖1

}
. (15)

Algorithmic issues related to the computation of (15) are sketched in Section 3.3 and discussed
in depth in Appendix A.

Remark 4. The tuning parameter κ > 0 needs to be chosen carefully. First note that it may
depend on the choice of the frequency cut-off 1/τ in λτ , which is the bandwidth feature map
(see Remark 2 for a definition). Our analysis shows that τ = 1/4m as in (28), and m is a
standard nonparametric bandwidth in mixture models for which rates are given in Section 5.
The main message being that it depends only on the regularity of ϕ and on the sample size n
for n large enough. From a practical view point, it is not excluded to use a Cross-Validation
scheme as it heuristically performs well for L1-based methods such as LASSO. In this case,
the score function can be chosen to be the data fidelity term ‖Lf̂n − L ◦ Φµcv‖2L evaluated on
the validation set. From a theoretical view point, one may choose κ as in Equation (24). Then,
Equation (25) results in

κ ≥ ρn
Cm(ϕ, λ)

,

and these quantities depend only on the regularity of ϕ and the sample size n for n large
enough, as studied in Section 5.

11



Super-resolution is the ability to recover a discrete measure on the torus from some Fourier
coefficients (recall that the Pontryagin’s dual of the torus is Zd) while we want to recover a
discrete measure on Rd from some Fourier transform over Rd (recall that the Pontryagin’s
dual of Rd is Rd). In particular the dual of (Pκ) does not involve a set of fixed degree trigono-
metric polynomials as in super-resolution but inverse Fourier transform of some tempered
distribution.

Hence, new theoretical guarantees are necessary in order to properly define the estimator µ̂n.
This is the aim of the next theorem. In this view, we consider primal variables µ ∈M(Rd,R)
and z ∈ L and introduce the dual variable c ∈ L as well as the following Lagrangian:

L(µ, z, c) :=
1

2
‖Lf̂n − z‖2L + κ‖µ‖1 − 〈c, L ◦ Φµ− z〉L . (16)

It is immediate to check that if z 6= L ◦Φµ, then the supremum of L(µ, z, c) over c is +∞.
Therefore, the primal expression coincides with the supremum in the dual variables, namely

inf
µ,z

sup
c
L(µ, z, c) = inf

µ∈M(Rd,R)

{
1

2
‖Lf̂n − L ◦ Φµ‖2L + κ‖µ‖1

}
⇐⇒ (Pκ).

In the meantime, the dual program of (Pκ) is given by

sup
c∈L

inf
(µ,z)∈M(Rd,R)×L

L(µ, z, c) . (P∗κ)

Theorem 6 (Primal-Dual programs, strong duality). The following statements are true.

i) The primal problem (Pκ) has at least one solution and it holds that

ẑn := L ◦ Φµ̂n and m̂n := ‖µ̂n‖1 are uniquely defined,

hence, they do not depend on the choice of the solution µ̂n.
ii) The dual program of (Pκ), given by (P∗κ) satisfies

‖Lf̂n‖2L
2

− inf
{1

2
‖Lf̂n − c‖2L : c ∈ L s.t. ‖Φc‖∞ ≤ κ

}
⇐⇒ (P∗κ),

and there is no duality gap (strong duality holds). Furthermore, it has a unique solution

ĉn = Lf̂n − ẑn .

iii) Any solution µ̂n to (Pκ) satisfies

Supp(µ̂n) ⊆
{
x ∈ Rd : |η̂n|(x) = 1

}
and

∫
Rd
η̂n dµ̂n = m̂n ,

where
η̂n :=

Φĉn
κ

=
1

κ
Φ(Lf̂n − zn) , (17)

i.e. it is a sub-gradient of the total variation norm at point µ̂n.
iv) If d = 1 and if at least one of the spectral measures Λ or σ has a bounded support, then
{x ∈ R : |η̂n|(x) = 1} is discrete with no accumulation point, any primal solution µ̂n
has an (at most countable) discrete support Ŝ ⊂ R with no accumulation point:

µ̂n =
∑
t∈Ŝ

âtδt . (18)

12



The proof of this result can be found in Appendix D.
It is generally numerically admitted, see for instance [9, Page 939], that the extrema of the
dual polynomial η̂n = Φĉn are located in a discrete set, so that any solution to (Pκ) has a
discrete support by using iii). However, this issue remains an open question. In practice, all
solvers of (Pκ) lead to discrete solutions: greedy methods are discrete by construction, and
L1-regularization methods empirically lead to discrete solutions, see e.g. [9]. Furthermore, as
presented in Theorem 11, our theoretical result shows that for large enough n and under the
so-called (NDB) condition, the support stability property holds. In this case, the solution
of (Pκ) is discrete with K̂ = K atoms.

Example 3. Observe that the low-pass filter defined in Example 2 satisfies the requirements
of iv) in Theorem 6: we deduce that when d = 1, all solutions µ̂n are of the form (18).

3.3. Tractable Algorithms for BLASSO Mixture Models

Available algorithms for solving (15) with “off-the-grid ” methodology can be roughly divided
into two categories: greedy methods and Riemannian descent methods. We emphasize that if
the BLASSO has been studied in the past decade, the formulation (15) has two new important
features. First the observation is a sample from a mixing law. Second, the data fidelity term has
been tuned to incorporate a low pass filter kernel λ. For both methods, we refer to Appendix
A for further details and references.

Algorithm 1 Sliding Frank Wolfe Algorithm (SFW) for BLASSO Mixture Models
1: Initialize with µ̂(0) = 0
2: while the stopping criterion is not met do

3: µ̂(k) =

N(k)∑
i=1

a
(k)
i δ

t
(k)
i

, a(k)i ∈ R, t(k)i ∈ Rd where N (k) = |Supp(µ̂(k))| and find t(k)? such that

t(k)? ∈ argmax
t∈Rd

∣∣η(k)(t)∣∣ where η(k) = −∇F(µ̂
(k))

κ

4: if |η(k)(t(k)? )| ≤ 1 then
5: µ̂(k) is an exact solution Stop
6: else

7: Find µ̂(k+ 1
2
) =

N(k)∑
i=1

a
(k+ 1

2
)

i δ
t
(k)
i

+ a
(k+ 1

2
)

i δ
t
(k)
?

such that

a(k+
1
2
) ∈ arg min

a∈RN(k)+1

FN(k)+1(a, t
(k+ 1

2
)) + κ‖a‖1 (LASSO Step)

where t(k+
1
2
) := (t

(k)
1 , . . . , t

(k)

N(k) , t
(k)
? ) is kept fixed.

8: Obtain µ̂(k+1) =

N(k)+1∑
i=1

a
(k+1)
i δ

t
(k+1)
i

such that

(a(k+1), t(k+1)) ∈ arg min
(a,t)∈RN(k)+1×(Rd)N

(k)+1

FN(k)+1(a, t) + κ‖a‖1 (19)

using a non-convex solver initialized with (a(k+
1
2
), t(k+

1
2
)).

9: Eventually remove zero amplitudes Dirac masses from µ̂(k+1).
10: end if
11: end while
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Greedy method: the Sliding Frank-Wolfe algorithm (SFW) The Frank-Wolfe algo-
rithm is an interesting avenue for solving differentiable convex programs on weakly compact
convex sets, see [15] and references therein for further details, which can be adapted to compute
approximate solutions of the BLASSO Mixture Models (15) with a supplementary sliding step.
For a measure µa,t that may be decomposed into a finite sum of Dirac masses, we define FN
the data-fitting term:

µa,t :=
N∑
i=1

aiδti and FN (a, t) := F(µa,t) =
1

2
‖Lf̂n −

N∑
i=1

aiL ◦ Φδti‖2L . (20)

The SFW method is then described in Algorithm 1. It is a greedy method that recursively
builds

ηµ := −∇F(µ)

κ
=

1

κ
Φ(Lf̂n − L ◦ Φµ) ,

see Line 3 of Algorithm 1.

Conic Particle Gradient Descent (CPGD) Conic Particle Gradient Descent [11] is
an alternative promising avenue for solving BLASSO for Mixture Models (15). The idea is
still to discretize a positive measure into a system of particles, i.e. a sum of N Dirac masses
following (47) with ai = r2

i and use a mean-field approximation in the Wasserstein space
jointly associated with a Riemannian gradient descent with the conic metric. We refer to [11]
and the references therein for further details. This method may be shown to be rapid, with
a log(ε−1) cost instead of ε−1/2 for standard convex programs. Adapted to the BLASSO for
Mixture Models, we derive in Algorithm 2 a version of the Conic Particle Gradient Descent
of [11, Algorithm 1] and we implemented this algorithm for Mixture Models in Figure 1.

More precisely, Figure 1 is a proof-of-concept and CPGD for Mixture Models would be
investigated in future work. One may see that this method uncovers the right number of
targets Dirac masses and their locations as some particules cluster around three poles. Some
of particules vanishes and do not detect the support. Notice that a soft-thresholding effect
tends to zero the small amplitudes as it may standardly be shown in L1 regularization.

Algorithm 2 Conic Particle Gradient Descent Algorithm for BLASSO Mixture Models
1: Choose two gradient step sizes α, β > 0 and the number of Particles N ≥ 1.
2: Define N Particles weights-locations (r(0)i , t

(0)
i )Ni=1 representing the initial measure

µ̂(0) :=
1

N

N∑
i=1

a
(0)
i δ

t
(0)
i

,

where a(0)i := (r
(0)
i )2.

3: while stopping criterion is not met do
4: For all i = 1, . . . , N update (mirror descent step for r associated to the KL divergence over Rd+)

r
(k+1)
i = r

(k)
i exp

(
2ακ

(
η(k)(t

(k)
i )− 1

))
t
(k+1)
i = t

(k)
i + β κ∇η(k)(t(k)i )

where η(k) = −∇F(µ̂(k))
κ

, µ̂(k) :=
1

N

N∑
i=1

a
(k)
i δ

t
(k)
i

and a(k)i = (r
(k)
i )2.

5: end while

14



Figure 1. Conic Particle Gradient Descent for BLASSO Mixture Models. We consider the mixing law µ0

made by three Dirac masses (in blue) at location (−13.1,−0.9, 14.0) (chosen at random) and amplitudes
(0.36, 0.52, 0.12)(chosen at random). We draw n = 200 iid samples with respect to the mixture with den-
sity f0 = µ0 ?ϕ where ϕ is the pdf of standard Gaussian. Then we start CPGD for BLASSO (with parameters
κ = 0.01 and τ = 0.1) with 20 particules (in green) located at random and we run 2, 500 gradient steps (with
parameters α = 0.05 and β = 1) as in Algorithm 2. The final locations (ti) and weights (ai) are given in red
(for readability we represented (ti, 2 ∗ ai)).

4. Statistical recovery of µ0

This section provides some theoretical results for µ̂n, built as the solution of (Pκ). Contrary
to `1-regularization in high-dimensions, standard RIP or REC compatibility conditions do not
hold in our context, and all the cornerstone results of high-dimensional statistics cannot be
used here. In our situation, the statistical analysis is performed using a “dual certificate” Pm
as in super-resolution, see [2, 5, 9, 16] for instance. The construction and the key properties
satisfied by Pm are detailed in Section 4.1. However, our framework is quite different from
super-resolution and we had to address two issues: build a dual certificate on Rd and adapt
its “frequency cut-off” (namely 4m in iii) of Theorem 7) to the sample size n and the tail of
the kernel. This latter point is addressed in Section 5.

4.1. Strong dual certificate

Let S0 = {t1, . . . , tK} be a fixed set of points in Rd and define ∆ := mink 6=` ‖tk − t`‖2. For
any m ∈ N∗, we consider the function pα,βm parameterized by a vector α and a matrix β of
coefficients, defined as:

pα,βm (t) =
K∑
k=1

{αkψm(t− tk) + 〈βk,∇ψm(t− tk)〉} , ∀t ∈ Rd, (21)

where α = (α1, . . . , αK)T , β = (βik)1≤k≤K,1≤i≤d with

ψm(.) = ψ4(m.) with ∀u = (u1, . . . , ud) ∈ Rd ψ(u) =
d∏
j=1

sinc(uj) and sinc(x) =
sin(x)

x
.

(22)
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One important feature of ψm is its ability to interpolate 1 at the origin, while being positive
and compactly supported in the Fourier domain. We then state the next result, which is of
primary importance for the statistical accuracy of our procedure.

Theorem 7 (Strong dual certificate). Let be given a set of K points S0 = {t1, . . . , tK} in Rd
with ∆ := mink 6=` ‖tk − t`‖2 and ∆+ = min(∆, 1). Then, the following properties hold:

• i) A function Pm defined by Pm(t) = [pα,βm (t)]2 exists with m &
√
Kd3/2∆−1

+ such that

∀k ∈ [K], Pm(tk) = 1 and 0 ≤ Pm ≤ 1

and
Pm(t) = 1⇐⇒ t ∈ S0 = {t1, . . . , tK}.

• ii) A universal pair (υ, γ) independent from n,m and d exists such that for ε = υ
md :

– Near region: If we define

N(ε) :=

K⋃
k=1

Nk(ε) where Nk(ε) := {t : ‖t− tk‖2 ≤ ε},

a positive constant C exists such that:

∀t ∈ Nk(ε) : 0 ≤ Pm(t) ≤ 1− Cm2‖t− tk‖22.

– Far region:

∀t ∈ F(ε) := Rd \N(ε) : 0 ≤ Pm(t) ≤ 1− γ υ
2

d3
.

• iii) The support of the Fourier transform of Pm is growing linearly with m:

Supp(F [Pm]) ⊂ [−4m, 4m]d and ‖Pm‖2 . K2m−d/2.

• iv) If (Hη) holds with η = 4m, then an element c0,m ∈ L exists such that Pm = Φc0,m.

The proof of this result is proposed in Appendix F. This construction is inspired from the
one given in [9], which has been adapted to our specific setting. We emphasize that the size of
the spectrum of Pm increases linearly with m, while the effect of the number of points K, the
dimension d, and the spacing ∆ between the location parameters {t1, . . . , tK} is translated in
the initial constraint m &

√
Kd3/2∆−1

+ .
We also state a complementary result, that will be useful for the proof of Theorem 10, iii).

Corollary 8. Let be given a set of K points S0 = {t1, . . . , tK} such that ∆ := mink 6=` ‖tk−t`‖2.
Let m &

√
Kd3/2∆−1

+ . Then, for any k ∈ [K], a function Qkm exists such that

∀i ∈ [K] Qkm(ti) = δi(k) and 0 ≤ Qkm ≤ 1,

and a universal couple of constants (υ, γ) exists such that the function Qkm satisfies for ε = υ
md :

i) Near region Nk(ε): a positive constant C̃ exists such that:

∀t ∈ Rd ‖t− tk‖2 ≤ ε =⇒ 0 ≤ Qkm(t) ≤ 1− C̃m2‖t− tk‖22,
16



ii) Near region N(ε) \Nk(ε):

∀i 6= k ‖t− ti‖2 ≤ ε =⇒ |Qkm(t)| ≤ C̃m2‖t− ti‖22.

iii) Far region F(ε):

∀t ∈ F(ε), 0 ≤ Qkm(t) ≤ 1− γ υ
2

d3
.

iv) A ck,m ∈ L exists such that Qkm = Φck,m.

Proofs of i), ii), iii) are similar to those of Theorem 7 and are omitted: the construction
of Qkm obeys the same rules as the construction of Pm (the interpolation conditions only differ
at points ti, i 6= k and are switched from 1 to 0).

4.2. Bregman divergence DPm(µ̂n, µ
0)

Below, the statistical loss between µ̂n and µ0 will be obtained in terms of the Bregman
divergence associated to the dual certificate Pm obtained in Theorem 7. This divergence is
defined by:

DPm(µ̂n, µ
0) := ‖µ̂n‖1 − ‖µ0‖1 −

∫
Rd
Pmd(µ̂n − µ0) ≥ 0 . (23)

We also introduce the term Γn defined as

Γn = Lf̂n − L ◦ Φµ0,

which models the difference between the target f0 = Φµ0 and its empirical counterpart f̂n in
the RKHS. The next result provides a control between µ̂n and µ0 with the Bregman divergence.

Proposition 9. Let Pm = Φc0,m the dual certificate obtained in Theorem 7. Let (ρn)n∈N∗ be
a sequence such that E[‖Γn‖2L] ≤ ρ2

n for all n ∈ N∗. If κ is chosen such that

κ =
ρn

‖c0,m‖L
(24)

and if µ̂n is defined in (Pκ), then:

i) For any integer n:

E
[
DPm(µ̂n, µ

0)
]
≤ 3
√

2

2
ρn‖c0,m‖L ,

ii) c0,m ∈ L satisfies

‖c0,m‖L≤

√√√√ ‖Pm‖22
inf

‖t‖∞≤4m

{
σ2(t)F [λ](t)

} . K2m−d/2√
inf

‖t‖∞≤4m

{
σ2(t)F [λ](t)

}
︸ ︷︷ ︸

:=Cm(ϕ,λ)

. (25)
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The proof of Proposition 9 is postponed to Section 6.1. The previous results indicate that
the Bregman divergence between our estimator µ̂n and the target measure µ0 depends, up to
some constants, on three main quantities:

• The variance of the empirical measure through the operator L quantified by ρn,
• The Fourier transform σ of the convolution kernel ϕ over the interval [−4m; 4m]d. This

term measures the ill-posedness of the inverse problem, which is associated to the diffi-
culty to recover µ0 with indirect observations (here f0 = Φµ0 and we need to invert Φ),
• The structure of the RKHS used to smooth the problem identified through the kernel λ.

Remark 5. By using similar arguments to prove item ii) of Proposition 9, we can complete
item (iv) of Corollary 8 as follows: A ck,m ∈ L exists such that Qkm = Φck,m and

‖ck,m‖L .
K2m−d/2√

inf
‖t‖∞≤4m

{
σ2(t)F [λ](t)

} . (26)

Remark 6. We will derive from Proposition 9 some explicit convergence rates in each specific
situation, i.e. as soon as the quantities involved in Equation (25) are made precise on some
concrete examples. These rates will depend on the tuning parameter m for solving the opti-
mization problem (Pκ), and on the choice of the kernel λ. Some examples will be discussed
in Section 5. Indeed, κ is related to m through the relationship κ = ρn/‖c0,m‖L. Similarly, we
will see in Section 5 that the kernel λ is also linked to m in a transparent way. We stress that
according to Proposition 9, m &

√
Kd3/2∆−1

+ . Such a condition will be satisfied provided m is
allowed to go to infinity with n whereas K,∆, d are kept fixed.

Remark 7. The upper bound proposed in Proposition 9 only uses items (iii) and (iv) of
Theorem 7. An enhanced control on the performances of µ̂n is provided in the next section.
Alternative features will be also proposed with the alternative certificate Qm introduced in
Corollary 8 .

4.3. Statistical recovery of far and near regions

The next result sheds light on the performance of the BLASSO estimator introduced in Equa-
tion (10). The goodness-of-fit reconstruction of the mixture distribution µ0 by µ̂n is translated
by the statistical properties of the computed weights of µ̂n around the spikes of µ0 (the sup-
port points S0 = {t1, . . . , tK}), which will define a family of K near regions, as well as the
behaviour of µ̂n in the complementary set, the far region. The sets F(ε) and N(ε) have already
been introduced in Theorem 7. Our result takes advantage on the previous bounds and on i)
and ii) of Theorem 7.

Theorem 10. Let m &
√
Kd3/2∆−1

+ and let Pm be a dual certificate given in Theorem 7.
Assume that µ̂n is the BLASSO estimator given by (Pκ) with κ = κn chosen in Proposi-
tion 9. Let Cm(ϕ, λ) be the quantity introduced in Proposition 9, µ̂n = µ̂+

n − µ̂−n the Jordan
decomposition of µ̂n. A universal couple of constants (γ, υ) exists such that, if

ε =
υ

md
, (27)

i) Far region and negative part:

E
[
µ̂−n (Rd)

]
≤ 3
√

2

2
ρn Cm(ϕ, λ) and E

[
µ̂+
n (F(ε))

]
≤ 3
√

2

2

d3

γυ2
ρn Cm(ϕ, λ).
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ii) Near region (spike detection): a positive constant C exists such that

∀A ⊂ Rd, E[µ̂+
n (A)] >

3
√

2

2

d3

γυ2
ρn Cm(ϕ, λ) =⇒ min

k∈[K]
inf
t∈A
‖t− tk‖22 ≤

γυ2

Cd3m2
.

iii) Near region (weight reconstruction): for any k ∈ [K]:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. ρnCm(ϕ, λ).

The proof of this important result is deferred to Section 6.2.

Remark 8. It can be shown in specific situations (see, e.g., iv) of Theorem 6) that the solution
of (Pκ) is indeed a discrete measure that can be written as

µ̂n =
∑
t∈Ŝ

âtδt.

In such a case, the relevance of the locations Ŝ of the reconstructed spikes ât can be derived
from the results of Theorem 10. A discussion is given in some specific cases in Section 5.

4.4. Support stability for large sample size

We introduce P0 := Φc0 the “minimal norm certificate” (see e.g. [16]), which is defined by:

c0 = arg min
{
‖c‖2L : c ∈ L s.t. ‖Φc‖∞ ≤ 1 and (Φc)(tk) = 1 , k ∈ [K]

}
,

when it exists.
We say that the support S0 = {t1, . . . , tK} of µ0 satisfies the Non-Degenerate Bandwidth

condition (NDB) if there exists 0 < q < 1, r > 0 and ρ > 0 such that:

P0 exists , ∀t ∈ F(r) , |P0(t)| < 1− q , ∀t ∈ N(r) , ∇2P0(t) ≺ −ρ Idd . (NDB)

We then have the support stability result for large values of n.

Theorem 11. Let the triple λ, ϕ, µ0 be such that (NDB) holds. Let rκ ∈ (0, 1
2) and set κn =√

λ(0)n−rκ. Let µ̂n be the BLASSO estimator (Pκ) with a tuning parameter κ = κn.

Then for n large enough, and with probability at least 1−Ce−n
1
2−rκ for a universal constant

C > 0, it holds that µ̂n has K spikes with exactly one spike t̂k in each region Nk(r). These
spikes converge to the true ones, and so do the amplitudes âk, as n tends to infinity.

The proof can be found in Appendix E. We emphasize that C is independent from the dimen-
sion d, from the RKHS used L or the location of the spikes for example.

Remark 9. In Theorem 11, note that the data fidelity kernel λ is fixed but in practice, the
bandwidth of λ often depends on the sample size n. Theorem 11 suggests the heuristics that
the data fidelity kernel λ = λn may depend on n and it might be such that κn =

√
λn(0)n−rκ

vanishes as n tends to infinity.

Remark 10. Assume that the mixing kernel ϕ is such that ϕ ? λ = ψm ? λ where ψm is
defined by (82), assume that the data fidelity kernel is such that λ = λ1/(4m) and assume
that m &

√
Kd3/2∆−1

+ . Then our certificate Pm is called the vanishing derivatives pre-
certificate by [16, Section 4, Page 1335]. According to Theorem 7, we know that ‖Pm‖∞ ≤ 1.
In this case, vanishing derivatives pre-certificate and certificate of minimal norm coincide
so that Pm is the minimal norm certificate P0 appearing in (NDB), and Theorem 7 shows
that (NDB) holds.
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5. Rates of convergence for some usual mixture models

5.1. Frequency cut-off and sinc kernel

In this section, we describe the consequences of Theorem 10 for some mixture models with
classical densities ϕ. For this purpose, we will consider the sinus-cardinal kernel sinc with a
frequency cut-off 1/τ , which is introduced in Example 2. As a band-limited function λτ , we
have that

‖t‖∞ ≥
1

τ
=⇒ F [λτ ](t) = 0.

Hence, to obtain a tractable version of Theorem 10 with Cm(ϕ, λ) < +∞ (see Equation (25))
we are led to consider τ such that

1

τ
= 4m. (28)

In that case, F [λτ ] is a constant function over its support and the term Cm(ϕ, λτ ) involved in
Proposition 9 and Theorem 10 appears to be equal to

Cm(ϕ, λτ ) =
K2m−d/22d/2

inf‖t‖∞≤4m σ(t)
.

To make use of Theorem 10, we also need an explicit expression of (ρn)n∈N∗ , which itself
strongly depends on the kernel λτ . In this context, some straightforward and standard com-
putations yield

E
[
‖Γn‖2L

]
= E

[
‖Lf̂n − Lf0‖2L

]
,

= E

[∫
‖t‖∞≤1/τ

∣∣∣F [f̂n](t)−F [f0](t)
∣∣∣2 dt] ,

=

∫
‖t‖∞≤1/τ

Var(F [f̂n](t))dt ≤ 1

nτd
.

This provides a natural choice for the sequence (ρn)n∈N∗ as

∀n ∈ N∗ ρn =
1√
nτd

=
2dmd/2

√
n

.

Therefore, the statistical rate obtained in Theorem 10 satisfies

ρnCm(ϕ, λτ ) ≤ K223d/2

√
n× inf

‖t‖∞≤4m
σ(t)

. (29)

We should understand the previous inequality as an upper bound that translates a tradeoff
between the sharpness of the window where spikes are located (given by ε = O(1/(md))
in (27)) and the associated statistical ability to recover a such targeted accuracy (given by the
bound ρnCm(ϕ, λτ ) on the Bregman divergence). A careful inspection of the previous tradeoff
leads to the following conclusion: the window size ε is improved for large values of m but the
statistical variability is then degraded according to the decrease rate of the Fourier transform σ
of ϕ, which typically translates an inverse problem phenomenon.
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Finally, we emphasize that the dimensionality effect is not only involved in the term 23d/2

of Equation (29) but is also hidden in the constraint

m &
√
Kd3/2∆−1

+ ,

used to build our dual certificate in Theorem 7. By the way, we stress that at the end, the
only tuning parameter involved in (Pκ) appears to be m.

We now focus our attention to some specific and classical examples in mixture models:

• the case of severely ill-posed inverse problems with an exponential decrease of the Fourier
transform for large frequencies, which corresponds to super-smooth distributions. We
emphasize that this class contains the standard benchmark of the Gaussian case, which
will be discussed in details.
• the case of mildly ill-posed inverse problems which encompasses multivariate Laplace

distributions, Gamma distributions, double exponentials among others.

5.2. Super-smooth mixture deconvolution and Gaussian case

5.2.1. Description of the distributions

We consider in this paragraph the statistically hard situation of the general family of mixing
distribution ϕ with an exponential decrease of the Fourier transform. More precisely, we assume
that the spectral density σ of ϕ satisfies:

∃j ∈ N? s.t. F [ϕ](t) = σ(t) = e−α‖t‖
β
j ∀t ∈ Rd, α > 0, β > 0. (Hsupersmoothα,β )

where for any j ∈ N?, ‖.‖j denotes the `j-norm. The assumption (Hsupersmoothα,β ) includes
obviously the Gaussian distribution but also many other distributions as suggested by the list
of examples displayed below (among others).

• The multivariate Cauchy distribution For a dispersion parameter α, ϕ is defined by:

ϕ(x) =
Γ(d+1

2 )

Γ(1
2)π

d
2
√
α{1 + α−1‖x‖22}

d+1
2

∀x ∈ Rd and σ(t) = e−
√
α‖t‖2 , ∀t ∈ Rd.

• The tensor product of univariate Cauchy distribution An alternative example is:

ϕ(x) =
1

πd

d∏
j=1

(
α

x2
j + α2

)
∀x = (x1 . . . xd)

T ∈ Rd and σ(t) = e−α‖t‖1 , ∀t ∈ Rd.

• The multivariate Gaussian distribution A standard benchmark study of the Gaussian
law:

ϕ : x 7−→ (2π)−d/2e−‖x‖
2/2 and σ(t) = e−

‖t‖22
2 , ∀t ∈ Rd.
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5.2.2. General recovery result

In the situations covered by assumption (Hsupersmoothα,β ), we shall observe that ‖t‖j ≤ d1/j‖t‖∞
and we verify that:

inf
‖t‖∞≤4m

σ(t) = e−α(4d1/jm)β .

In that case, we obtain that

ρnCm(ϕ, λτ ) . K223d/2 × eα(4d1/jm)β

√
n

.

A straightforward application of Theorem 10 leads to the following result.

Proposition 12. Assume that ϕ satisfies (Hsupersmoothα,β ). Let m &
√
Kd3/2∆−1

+ . Let µ̂n be the
BLASSO estimator given by (Pκ) with κ = κn chosen as in Proposition 9, then up to some
universal constants (independent from n, d,K and m):

i) Far region and negative part: if ε = O
(

1
md

)
, then:

E
[
µ̂−n (Rd)

]
. K223d/2 × eα(4d1/jm)β

√
n

and E
[
µ̂+
n (F(ε))

]
. K2d323d/2 × eα(4d1/jm)β

√
n

.

ii) Near region (spike detection): a couple of constants (c, C) exists such that

∀A ⊂ Rd, E[µ̂+
n (A)] > c×d323d/2K2×e

α(4d1/jm)β

√
n

=⇒ min
k∈[K]

inf
t∈A
‖t−tk‖22 ≤

1

Cd3m2
.

iii) Near region (weight reconstruction): for any k ∈ [K]:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. 23d/2K2 × eα(4d1/jm)β

√
n

.

According to the results displayed in Proposition 12, our estimation procedure µ̂n leads to
a consistent estimation as soon as m is chosen as

m =

(
δ log n

α

)1/β 1

4d1/j
with δ ∈

]
0,

1

2

[
.

In such a case,

max
(
E
[
µ̂−n (Rd)

]
, E

[
µ̂+
n (F(ε))

]
, E

[
|a0
k − µ̂n(Nk(ε))|

])
. n−

1
2

+δ,

and every set A such that E[µ̂+
n (A)] & n−

1
2

+δ is at least at a logarithmic distance (O(m−2))
of a true spike.

We observe that as it is commonly observed in severely-ill conditioned inverse problems,
we can expect only logarithmic rates of convergence. This logarithmic limitation in the super-
smooth situation has been intensively discussed in the literature and we refer among others
to [19]. To make the situation more explicit, we illustrate it in the Gaussian mixture model.
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5.2.3. Multivariate Gaussian mixtures

As a specific case of super-smooth distribution with β = j = 2 and α = 1/2, Proposition 12
holds and we obtain that if m &

√
Kd3/2∆−1

+ and if ε = O( 1
md), then the weights of the far

region and of the negative parts are upper bounded by:

E
[
µ̂−n (Rd)

]
. K223d/2 × e8dm2

√
n

and E
[
µ̂+
n (F(ε))

]
. K2d323d/2 × e8dm2

√
n
. (30)

Similarly, a couple of constants (c, C) exists such that:

∀A ⊂ Rd, E[µ̂+
n (A)] > cd323d/2K2 × e8dm2

√
n

=⇒ min
k∈[K]

inf
t∈A
‖t− tk‖22 ≤

1

Cd3m2
, (31)

whereas the weights recovery is ensured by the following inequality: for any k ∈ [K]:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. 23d/2K2 × e8dm2

√
n
.

• Quantitative considerations When the dimension d is kept fixed (as the number
of components K and the minimal value for the spacings between the spikes ∆), the
statistical ability of the BLASSO estimator µ̂n is driven by the term e8dm2

/
√
n. In

particular, this sequence converges to 0 provided that the following condition holds:

e8dm2 �
√
n i.e. m = O

(√
log(n)

d

)
and m −→ +∞ as n −→ +∞. (32)

In other words, the maximal admissible value for m is
√

log(n)
16d . In particular, if we

consider m =

√
δ
16

log(n)
d for δ small enough, we observe that

E
[
µ̂−n (Rd)

]
+ E

[
µ̂+
n (F(εn))

]
.
√
n
δ−1

.

The counterpart of this admissible size for m is a slow rate for εn:

εn = O
(

1

md

)
=

δ−1/2

√
d log n

,

Said differently, the size of the near regions recovered with an almost parametric rate
n−1/2 are of the order (d log(n))−1/2.

• Nature of the results Item i) of Proposition 12 and Equation (30) both indicate that
the mass set by µ̂n on the negative part and on the far region tends to 0 as the sample
size n grows under Condition (32). Our estimator is consistent: the mass allowed on
the near region will be close to 1 as soon as n is large enough. At this step, we stress
that the parameter m plays the role of an accuracy index: if m is constant, the mass of
the near region converges to 1 at a parametric rate... but this near region is in this case
not really informative. On the opposite hand, if m is close to the limit admissible value
expressed in (32), Item ii) of Proposition 12 and Equation (31) translate the fact that
the near region is close to the support of the measure µ0 but the convergence of the
associated mass will be quite slow.
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• Case of dimension 1 and number of spikes detection According to Item ii) of
Proposition 12 and Equation (31), any set with a sufficiently large mass is close to a
true spike (a0

k, tk) for some k ∈ [K]. We stress that in the specific situation where d = 1,
µ̂n is a discrete measure (see Theorem 6), namely

µ̂n =
∑
t̂∈Ŝ

ât̂δt̂.

In such a case, we get from Proposition 12 that if a reconstructed spike (ât̂, t̂) is large
enough, it is in some sense close to a true spike. More formally, if m = O(

√
δ log(n))

and t̂ ∈ Ŝ, then
ât̂ & K

2n−1/2+δ =⇒ inf
k∈[K]

|t̂− tk| .
1√

δ log(n)
.

In particular, the BLASSO estimator µ̂n provides a lower bound on the number of true
spikes. Once again, the value of m is critical in such a case. In particular, according
to (32), we cannot expect more than a logarithmic precision.

• Importance of the mixture parameters It is also interesting to pay attention to
the effect of the number of components K, the size of the minimal spacing ∆ and of
the dimension d on the statistical accuracy of our method. In the Gaussian case, the
rate is of the order K2Cde8dm2

n−1/2 but an important effect is hidden in the constraint
brought by Theorem 7:

m &
√
Kd3/2∆−1

+ .

In particular, the behavior of our estimator is seriously damaged in the Gaussian sit-
uation when (∆−1 ∨ K ∨ d) → +∞ since in that case, taking the minimal value of m
satisfying the previous contraint, we obtain a rate of the order

ed
4K∆−2

n−1/2.

We observe that d, K and ∆−1 cannot increase faster than a power of log(n):
d4K∆−2 � log(n).We will observe in Section 5.3 that a such hard constraint disappears
in more favorable cases with smaller degrees of ill-posedness.

• Position of our result on Gaussian mixture models
To conclude this discussion, we would like to recall that the BLASSO estimator µ̂n
depends on m. This parameter plays the role of a precision filter and only provides a
quantification of the performances of our method. This is one of the main differences with
the classical super-resolution theory where in general m is fixed and constrained by the
experiment. We should point out that many works have studied statistical estimation in
Gaussian mixture models with a semi-parametric point of view (see, e.g. [38], [6]). These
investigations are often reduced to the two-component case (K=2): we refer to [8], [22]
or [21] among others. The general case (K ∈ N∗) has been for instance addressed
in [26] using a model selection point of view: the selection of K is achieved through
the minimization of a criterion penalized by the number of components. We also refer
to [7] where a Lasso-type estimator is built for mixture model using a discretization of
the possible values of tk. However, this last approach is limited by some constraints on
the Gram matrix involved in the model that do not allow to consider situations where
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∆ is small: in [7], the minimal separation between two spikes has to satisfy ∆ ≥ ∆0 > 0,
i.e. has to be lower bounded by a positive constant ∆0, which depends on the mixing
distribution ϕ. We emphasize that in our work, we only need an upper bound on K
and a lower bound on ∆ or at least to assume that these quantities are fixed w.r.t.
n. According to Proposition 12, our constraint expressed on these parameters already
allows to cover a large number of interesting situations.

5.3. Ordinary smooth distributions

General result Ordinary smooth distributions investigated in this section are described
through a polynomial decrease of their Fourier transform. The corresponding deconvolution
problem is then said to be mildly ill-posed. In this section, we assume that the density ϕ
satisfies

F [ϕ] = σ and ‖x‖−β2 . σ(x) . ‖x‖−β2 when ‖x‖2 → +∞. (Hsmoothβ )

We refer to [19] and the references therein for an extended description of the class of distri-
butions involved by (Hsmoothβ ) and some statistical consequences in the situation of standard
non-parametric deconvolution (see also the end of this section for two examples). For our
purpose, it is straightforward to verify that

inf
‖t‖∞≤4m

σ(t) ≤ inf
‖t‖2≤4m

√
d
σ(t) . [

√
dm]−β.

In that case, we obtain that

ρnCm(ϕ, λτ ) .
K223d/2mβdβ/2√

n
.

We then deduce the following result (which is a direct application of Theorem 10).

Proposition 13. Assume that ϕ is ordinary smooth and satisfies (Hsmoothβ ). Consider m &√
Kd3/2∆−1

+ . Let µ̂n be the BLASSO estimator given by (Pκ) with κ = κn chosen as in
Proposition 9, then up to universal constants (independent from n, d,K and m):

i) Far region and negative part: if ε = O
(

1
md

)
, then:

E
[
µ̂−n (Rd)

]
. K223d/2dβ/2 × mβ

√
n

and E
[
µ̂+
n (F(ε))

]
. K223d/2d3+β/2 × mβ

√
n
.

ii) Near region (spike detection): a couple of constants (c, C) exists such that

∀A ⊂ Rd, E[µ̂+
n (A)] > cK223d/2d3+β/2 × mβ

√
n

=⇒ min
k∈[K]

inf
t∈A
‖t− tk‖22 ≤

1

Cd3m2
.

iii) Near region (weight reconstruction): for any k ∈ [K]:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. K223d/2dβ/2 × mβ

√
n
.
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The proof of this proposition is omitted, and we only comment on the consequences of this
result for ordinary smooth mixtures. Provided K, d and ∆ are bounded (or fixed), we obtain
a consistent estimation with the BLASSO estimator µ̂n when m is chosen such that

mn = nδ with δ <
1

2β
as n→ +∞.

In such a case, εn = O(d−1n−δ). Now, if K ∨ d∨∆−1 is allowed to grow towards +∞, setting
m ∼

√
Kd3/2∆−1

+ (the minimal value satisfying the constraint (4)) leads to a bound of order

max
(
E
[
µ̂−n (Rd)

]
, E

[
µ̂+
n (F(ε))

]
, E

[
|a0
k − µ̂n(Nk(ε))|

])
.

23d/2K2+β/2∆−β+ d2β+3

√
n

.

In particular, the maximal order for the dimension is O(log(n)) as n → +∞. In the same
way, the minimal size of spacings to permit a consistent estimation should not be smaller than
n−1/(2β). In particular, this indicates that a polynomial accuracy is possible (see e.g. Item ii)
of Proposition 13). This emphasized the strong role played by the mixture density ϕ in our
analysis. We present below two specific examples of ordinary smooth mixture density.

Multivariate Laplace distributions In such a case:

σ(x) =
2

2 + ‖x‖22
.

We obtain here an ordinary smooth density with β = 2. The minimal spacing for a discoverable
spike is therefore of the order n−1/4 while the constraint on the dimension is not affected by
the value of β. Concerning the number of components K, its value should not exceed n1/6 and
the smallest size of the window εn is n−1/4.

Tensor product of Laplace distributions Another interesting case is the situation
where ϕ is given by a tensor product of standard Laplace univariate distributions:

ϕ(x) =
1

2d
e−

∑d
j=1 |xj | and F [ϕ](x) := σ(x) =

d∏
j=1

1

1 + x2
j

∀x ∈ Rd.

In that case, β = 2d and the previous comments apply: the maximal value of m is n1/4d with
an optimal size of the window of the order n−1/(4d) whereas d should be at least of order
O(log(n)).

6. Proof of the Main Results

6.1. Analysis of the Bregman divergence

This paragraph is devoted to the statistical analysis of the Bregman divergence whose defini-
tion is recalled below:

DPm(µ̂n, µ
0) := ‖µ̂n‖1 − ‖µ0‖1 −

∫
Rd
Pmd(µ̂n − µ0) ≥ 0 .
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Proof of Proposition 9. According to the definition of µ̂n as the minimum of our variational
criterion (see Equation (15)), we know that:

‖Lf̂n − L ◦ Φµ̂n‖2L + κ‖µ̂n‖1 ≤ ‖Lf̂n − L ◦ Φµ0‖2L + κ‖µ0‖1.

Proof of i). With our notation Γn = Lf̂n−L ◦Φµ0 introduced in Section 4.2, we deduce that:

‖Lf̂n − L ◦ Φµ̂n‖2L + κ‖µ̂n‖1 ≤ ‖Γn‖2L + κ‖µ0‖1.

Using now Pm obtained in Theorem 7, we deduce that

‖Lf̂n − L ◦Φµ̂n‖2L + κ

[
‖µ̂n‖1 − ‖µ0‖1 −

∫
Rd
Pmd(µ̂n − µ0)

]
+ κ

∫
Rd
Pmd(µ̂n − µ0) ≤ ‖Γn‖2L.

(33)
Hence, we deduce the following upper bound on the Bregman divergence:

‖Lf̂n − L ◦ Φµ̂n‖2L + κDPm(µ̂n, µ
0) + κ

∫
Rd
Pmd(µ̂n − µ) ≤ ‖Γn‖2L. (34)

According to Theorem 7, Pm = Φc0,m for some c0,m ∈ L. In particular, we get∫
Rd
Pmd(µ̂n − µ0) = 〈Pm, µ̂n − µ0〉L2(Rd),

= 〈Φc0,m, µ̂n − µ0〉L2(Rd),

= 〈c0,m,Φ(µ̂n − µ0)〉L2(Rd),

where the last equality comes from the self-adjoint property of Φ in L2(Rd). The reproducing
kernel relationship yields:∫

Rd
Pmd(µ̂n − µ0) =

∫
Rd
〈c0,m, λ(t− .)〉LΦ(µ̂n − µ0)(t)dt,

= 〈c0,m, L ◦ Φ(µ̂n − µ0)〉L,
= 〈c0,m, L ◦ Φµ̂n − Lf̂n + Γn〉L. (35)

Gathering (34) and (35), we deduce that:

‖Lf̂n − L ◦ Φµ̂n‖2L + κDPm(µ̂n, µ
0) + κ〈c0,m, L ◦ Φµ̂n − Lf̂n〉L + κ〈c0,m,Γn〉L ≤ ‖Γn‖2L .

Using now a straightforward computation with ‖.‖L, we conclude that:∥∥∥Lf̂n − L ◦ Φµ̂n −
κ

2
c0,m

∥∥∥2

L
+ κDPm(µ̂n, µ

0) ≤
∥∥∥Γn −

κ

2
c0,m

∥∥∥2

L
.

Since the first term of the left hand side is positive, the previous inequality leads to:

DPm(µ̂n, µ
0) ≤ 3

2κ
‖Γn‖2L +

3κ

4
‖c0,m‖2L, (36)

where we have used ‖a+ b‖2L ≤ 1.5‖a‖2L + 3‖b‖2L with a = Γn and b = −κc0,m/2 for the right
hand side. We now consider a sequence (ρn)n∈N∗ such that E[‖Γn‖2L] ≤ ρ2

n for all n ∈ N∗ and
we choose:

κ =
√

2ρn/‖c0,m‖L.
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Then we deduce from (36) that:

E[DPm(µ̂n, µ
0)] ≤ 3

√
2

2
ρn × ‖c0,m‖L. (37)

Proof of ii). We now derive an upper bound on ‖c0,m‖L. Recall that according to (H0) and in
particular (12) we have:

‖g‖2L =

∫
Rd

|F [g](t)|2

F [λ](t)
dt ∀g ∈ L.

Since ϕ is symmetric and Φ? = Φ, we have according to Theorem 7 that:

‖Pm‖22 = ‖Φc0,m‖22,

=

∫
Rd
|F [ϕ](t)|2|F [c0,m](t)|2dt,

=

∫
Rd
|F [ϕ](t)|2F [λ](t)× |F [c0,m](t)|2

F [λ](t)
dt,

≥ inf
‖t‖∞≤4m

{
|F [ϕ](t)|2F [λ](t)

}
‖c0,m‖2L. (38)

Indeed, iii) of Theorem 7 entails that the support of the Fourier transform of Pm is contained
in [−4m, 4m]d. This embedding, together with (H∞) entails:

Supp(F [Pm]) ⊂ [−4m, 4m]d,

which provides the last inequality. The inequality (38) can be rewritten as:

‖c0,m‖2L ≤
‖Pm‖22

inf‖t‖∞≤4m {|F [ϕ](t)|2F [λ](t)}
. (39)

We use (37), (39) and observe that |F [ϕ]| = σ to conclude the proof.

6.2. Near and Far region estimations

In this paragraph, we provide the main result of the paper that establishes the statistical
accuracy of our BLASSO estimation.

Proof of Theorem 10.
Proof of i) In a first time, we provide a lower bound on the Bregman divergence. This bound
takes advantage on the properties of the dual certificate associated to Theorem 7. First remark
that ∫

Pmd(µ̂n − µ0) =

∫
Pmdµ̂n −

K∑
k=1

a0
kPm(tk)

≤ ‖µ̂n‖1 − ‖µ0‖1,

since Pm(tk) = 1 for all k. This inequality yields the positiveness of the Bregman divergence:

DPm(µ̂n, µ
0) ≥ 0.
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Now, using similar arguments and the Borel’s decomposition µ̂n = µ̂+
n − µ̂−n , we obtain

DPm(µ̂n, µ
0) = ‖µ̂n‖1 − ‖µ0‖1 −

∫
Pmdµ̂n +

∫
Pmdµ0,

= ‖µ̂n‖1 −
∫
Pmdµ̂n,

=

∫
dµ̂+

n +

∫
dµ̂−n −

∫
Pmdµ̂+

n +

∫
Pmdµ̂−n ,

=

∫
(1− Pm)dµ̂+

n +

∫
(1 + Pm)dµ̂−n .

Proposition 9 then implies that:

E

[∫
(1− Pm)dµ̂+

n +

∫
(1 + Pm)dµ̂−n

]
≤ 3
√

2

2
ρnCm(ϕ, λ). (40)

Weight of the negative part. Since the dual certificate Pm is always positive, we have

µ−n (Rd) =

∫
dµ̂−n ≤

∫
(1 + Pm)dµ̂−n ≤

3
√

2

2
ρnCm(ϕ, λ). (41)

Moreover, according to item ii) of Theorem 7,

1− Pm(t) ≥ γ υ
2

d3
∀t ∈ F(ε).

Therefore, we obtain that:

µ̂+
n (F(ε)) ≤ d3

γυ2

∫
F(ε)

(1− Pm)dµ̂+
n ≤

d3

γυ2

∫
(1− Pm)dµ̂+

n . (42)

Finally, the first part of i) of Theorem 10 is a direct consequence of (40)-(42).
Weight of the far region. We consider γ such that d3 ≥ γυ2 and we know that in the far region:

(1− Pm)1F(ε) ≥
γυ2

d3
1F(ε).

Thus,

DPm(µ̂n, µ
0) =

∫
(1− Pm)dµ̂+

n +

∫
(1 + Pm)dµ̂−n

≥
∫
F(ε)

γυ2

d3
dµ̂+

n +

∫
F(ε)

1dµ̂−n

≥ γυ2

d3

∫
F(ε)

dµ̂+
n +

∫
F(ε)

dµ̂−n

≥ γυ2

d3

(∫
F(ε)

dµ̂+
n +

∫
F(ε)

dµ̂−n

)

≥ γυ2

d3
|µ̂n|(F(ε)).
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We then conclude, using the previous expectation upper bound, that:

E[|µ̂n|(F(ε))] ≤ d3

γυ2

3
√

2

2
ρnCm(ϕ, λ).

Proof of ii). Thanks to Theorem 7, we have:

1− Pm(t) ≥
[
Cm2 min

k∈[K]
‖t− tk‖22 ∧

γυ2

d3

]
∀t ∈ Rd.

Then, for any subset A ⊂ Rd,

DPm(µ̂n, µ
0) ≥

∫
(1− Pm)dµ+

n

≥
∫
A

(1− Pm)dµ+
n ,

≥
[
Cm2 min

t∈A
min
k∈[K]

‖t− tk‖2 ∧
γυ2

d3

]
µ̂+
n (A). (43)

Equations (40) and (43) lead to:[
Cm2 min

t∈A
min
k∈[K]

‖t− tk‖2 ∧
γυ2

d3

]
E[µ̂+

n (A)] ≤ 3
√

2

2
ρnCm(ϕ, λ).

Then,

E[µ̂+
n (A)] ≥ 3

√
2

2
ρnCm(ϕ, λ)

d3

γυ2
⇒ min

t∈A
min
k∈[K]

‖t− tk‖22 ≤
γυ2

d3m2C
.

Proof of iii). The idea of this proof is close to the one of [2, Theorem 2.1]. We consider the
function Qkm given by Corollary 8 that interpolates 1 at tk and 0 on the other points of the
support of µ0. From the construction of Qkm, we have that:

a0
k =

∫
Qkmdµ0.

We then use the decomposition:

|a0
k − µ̂n(Nk(ε))| = |a0

k −
∫
Qkmdµ̂n +

∫
Qkmdµ̂n −

∫
Nk(ε)

dµ̂n|

≤ |
∫
Qkmd(µ0 − µ̂n)|︸ ︷︷ ︸

:=A

+

∫
Nk(ε)

|Qkm − 1|d|µ̂n|︸ ︷︷ ︸
:=B

+

∫
N(ε)\Nk(ε)

|Qkm|d|µ̂n|︸ ︷︷ ︸
:=C

+

∫
F(ε)
|Qkm|d|µ̂n|︸ ︷︷ ︸
:=D

. (44)

Study of B + C +D. On the set F(ε), we use that Qkm ≤ 1− γ υ2
d3

so that:

D ≤
∫
F(ε)

(1− γ υ
2

d3
)d|µ̂n| ≤ �

∫
F(ε)

(1−Qkm)d|µ̂n| where � =

(
1− γ υ2

d3

)
γ υ

2

d3

.
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For the term C, we use the upper bound satisfied by Qkm in
⋃
i 6=kNi(ε) and obtain that:∫

N(ε)\Nk(ε)
|Qkm|d|µ̂n| ≤ C̃m2

∫
N(ε)\Nk(ε)

min
i 6=k
‖t− ti‖22d|µ̂n|(t)

≤ C̃
C

∫
N(ε)\Nk(ε)

(1− Pm)d|µ̂n| .

Finally, for B, we use that on the set Nk(ε), we have |Qkm − 1| ≤ C̃m2‖t− tk‖22. Therefore, we
have:

B ≤ C̃
C

∫
Nk(ε)

(1− Pm)d|µ̂n|.

We then conclude that:

B + C +D ≤

(
C̃
C
∨ �

)∫
Rd

(1− Pm)(t)d|µ̂n|(t)

≤

(
C̃
C
∨ �

)[∫
Rd

(1− Pm)(t)dµ̂+
n (t) +

∫
Rd

(1 + Pm)(t)dµ̂−n (t)

]

≤

(
C̃
C
∨ �

)
DPm(µ̂n, µ

0). (45)

Study of A. We use that Qkm may be written as:

Qkm = Φck,m, where ck,m ∈ L.

Since Φ is self-adjoint in L2, we shall write that:

A = |
∫
Qkmd(µ0 − µ̂n)| = |〈Qkm, µ̂n − µ0〉L2 |

= |〈ck,m,Φ(µ̂n − µ0)〉L2 |
= |〈ck,m, L ◦ Φµ̂n − Lf̂n + Γn〉L|
≤ ‖ck,m‖L[‖L ◦ Φµ̂n − Lf̂n‖L + ‖Γn‖L],

where we used the Cauchy-Schwarz inequality and the triangle inequality in the last line. We
then use (33) and obtain:

‖Lf̂n − L ◦ Φµ̂n‖2L + κDPm(µ̂n, µ
0) + κ〈c0,m, L ◦ Φµ̂n − Lf̂n〉L + κ〈c0,m,Γn〉L ≤ ‖Γn‖2L .

Since we have obtained the positiveness of the Bregman divergence, we then conclude that:

‖Lf̂n − L ◦ Φµ̂n‖2L + κ〈c0,m, L ◦ Φµ̂n − Lf̂n〉L ≤ ‖Γn‖2L − κ〈c0,m,Γn〉L .

The Cauchy-Schwarz inequality yields:

‖Lf̂n − L ◦ Φµ̂n‖2L − κ‖c0,m‖L‖L ◦ Φµ̂n − Lf̂n‖L ≤ ‖Γn‖2L + κ‖c0,m‖L‖Γn‖L .

This inequality holds for any value of κ and we choose:

κ =
‖Lf̂n − L ◦ Φµ̂n‖L

2‖c0,m‖L
.
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Using this value of κ, we then obtain:

‖Lf̂n − L ◦ Φµ̂n‖2L
2

≤ ‖Γn‖2L + ‖Γn‖L‖Lf̂n − L ◦ Φµ̂n‖L .

Now, we define �n = ‖Lf̂n − L ◦ Φµ̂n‖L‖Γn‖−1
L and remark that:

�2
n

2
≤ 1 +�n.

This last inequality implies that �n ≤ 1 +
√

3, which leads to:

‖Lf̂n − L ◦ Φµ̂n‖L ≤ (1 +
√

3)‖Γn‖L.

We then come back to A and write that:

A ≤ (2 +
√

3)‖ck,m‖L‖Γn‖L. (46)

Final bound. We use Equations (46) and (45) in the decomposition given in Equation (44)
and obtain that:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. ρn (‖ck,m‖L + ‖c0,m‖L) .

Finally, we conclude the proof using Equation (26) and ii) of Proposition 9:

E
[
|a0
k − µ̂n(Nk(ε))|

]
. ρn

K2m−d/2√
inf

‖t‖∞≤4m

{
σ2(t)F [λ](t)

} .
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Appendix A: Tractable Algorithms for BLASSO Mixture Models

We sketch three algorithms to compute approximate or exact solutions to (15) following the
“off-the-grid ” methodology, e.g., [5, 37, 16, 2, 14]. This methodology searches in a gridless
manner the location of the support points ti of the mixture distribution µ0. We will present
the following methods:

• Greedy methods provide heuristic and theoretical results such as “Sliding Frank Wolfe ”
[15] (also known as conditional gradient with “sliding” step) or “Continuous Orthogonal
Matching Pursuit ” [24, 18]. We describe these methods in Section A.2.
• We discuss in Section A.3 on Conic Gradient Descent using particles. Here, µ̂n is ap-

proximated by a cloud of particles that is optimized all along a set of iterations.

We emphasize that if Beurling-LASSO has been studied in the past decade, the formula-
tion (15) has two new important features. First the observation is a sample from a mixing
law. Second, the data fidelity term has been tuned to incorporate a low pass filter kernel λ.
The next paragraph carefully introduces these new features into the latter algorithms.

A.1. Notation for algorithm design solving BLASSO Mixture Models

We call that primal and dual convex programs of BLASSO for Mixture Models (15) are given
by Theorem 6, and that strong duality holds, leading to Equation (17).

Gradient of the data fidelity term The data fidelity term defined

Cλ(Φµ, f̂n) := ‖Lf̂n − L ◦ Φµ‖2L, ∀µ ∈M(Rd,R)

can be seen is related to the real-valued function F on the space of measures M(Rd,R)
endowed with the total-variation norm ‖ · ‖1, namely:

∀µ ∈M(Rd,R) , F(µ) :=
1

2
Cλ(Φµ, f̂n) =

1

2
‖Lf̂n − L ◦ Φµ‖2L ,

whose Fréchet differential at point µ ∈M(Rd,R) in the direction ν ∈M(Rd,R) is:

dF(µ)(ν) :=

∫
Rd

Φ(L ◦ Φµ− Lf̂n)dν =

∫
Rd
∇F(µ) dν.

Thanks to the convolution by ϕ endowed in Φ, the gradient ∇F (µ) is given by:

∇F(µ) := Φ(L ◦ Φµ− Lf̂n) = ϕ ?
[
λ ? ϕ ? µ− 1

n

n∑
i=1

λ( · −Xi)
]
∈ C0(Rd,R) ∩ L1(Rd) .

Dual functions By (17), note that the dual function η̂n is such that η̂n = −∇F(µ̂n)/κ.
Indeed, for a given µ ∈M(Rd,R), one may define its dual function by ηµ:

ηµ := −∇F(µ)

κ
=

1

κ
Φ(Lf̂n − L ◦ Φµ) so that ∇F(µ) + κ = κ

(
1− ηµ

)
,

and we observe that ηµ corresponds to a residual , which involves the difference between f̂n
and Φµ smoothed by the convolution operator L. Its gradient is given by:

∇ηµ :=
1

κ
∇ϕ ?

[
λ ? ϕ ? µ− 1

n

n∑
i=1

λ( · −Xi)
]
.
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Data fidelity term for measures with finite support We pay a specific attention to
discrete measures with finite support, namely a finite sum of Dirac masses. Given a number
of atoms N ≥ 1, of weights a ∈ RN and locations t = (t1, . . . , tN ) ∈ (Rd)N , we denote by:

µa,t :=
N∑
i=1

aiδti and FN (a, t) := F(µa,t) =
1

2
‖Lf̂n −

N∑
i=1

aiL ◦ Φδti‖2L . (47)

By Proposition 5, a 7−→ FN (a, t) is a positive semi-definite quadratic form and

FN (a, t) =
1

2
‖Lf̂n‖2L +

N∑
i=1

aibi +
1

2

N∑
i,j=1

aiajqij ,

where

bi = − 1

n

n∑
k=1

∫
Rd
λ(x−Xk)ϕ(x− ti)dx and qij =

∫
Rd×Rd

λ(x− y)ϕ(x− ti)ϕ(y − tj)dxdy.

A.2. Greedy methods: Sliding Frank-Wolfe / Continuous Orthogonal Matching
Pursuit

Sliding Frank-Wolfe algorithm (SFW) The Frank-Wolfe algorithm is an interesting
avenue for solving differentiable convex programs on weakly compact convex sets, see [15] and
references therein for further details. Stricto sensu, (Pκ) is convex but not differentiable and
the feasible set is convex but not weakly compact. Following [15, Lemma 4], note that µ̂n is a
minimizer of (Pκ) if and only if (‖µ̂n‖1, µ̂n) minimizes:

inf

{
1

2
‖Lf̂n − L ◦ Φµ‖2L + κm : (m,µ) ∈ R×M(Rd,R) s.t. ‖µ̂n‖1 ≤ m ≤

‖Lf̂n‖2L
2κ

}
,

and this latter program is a differentiable convex program on weakly compact convex set (for
the weak-? topology).

Hence we can invoke the Frank-Wolfe scheme to compute approximate solutions to BLASSO
Mixture Models (15). Unfortunately, the generated measures µ(k) along this greedy algorithm
are not very sparse compared to µ̂n: each Dirac mass of µ̂n is approximated by a multitude
of Dirac masses of µ(k) with an inexact positions. This is why the improvement of sliding
the Frank Wolfe algorithm is suggested in [15]: Equation (19) involved in the resolution of
the BLASSO allows to move the Dirac masses. Algorithm 1 is the sliding Frank-Wolfe [15,
Algorithm 2] adapted for the resolution of the BLASSO Mixture Models (15).

Following the analysis of [15], let us discuss the steps at lines 3, 4, 7 and 8 of Algorithm 1:

• Line 3: This step is an optimal gradient step, with the notations in Section A.1:

η(k) =
1

κ
Φ(Lf̂n − L ◦ Φµ̂(k)) =

1

κ
ϕ ?

[ 1

n

n∑
i=1

λ( · −Xi)− λ ? ϕ ? µ̂(k)
]
,

Note also that this step is the costly step of the algorithm since is relies on a black-box
optimizer computing the global maximum of |η(k)|. In general, this is done using a grid
search and finding a local maxima by gradient descent.
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• Line 4: the stopping condition implies that µ̂(k) is an exact solution and hence, η(k) is
the dual function such that Equation (17) holds. In this sense, we may say that SFW
iteratively construct a dual function such that (17) holds.
• Line 7 (LASSO Step): note that the support is fixed and we are optimizing on the

amplitudes a. It amounts in solving a standard LASSO, which can be efficiently done
using proximal forward-backward schemes such as FISTA for instance.
• Line 8: it requires solving a non-convex optimization program (19). As mentioned in [15],

one does not need to exactly solve this program and their main result (namely finite con-
vergence of the algorithm, see below) pertains if (a(k+1), t(k+1)), obtained by a gradient
step initialized in (a(k+ 1

2
), t(k+ 1

2
)), diminishes the objective function. This is done by a

bounded Broyden-Fletcher-Goldfarb-Shanno (BFGS) method in [15], which is numeri-
cally shown to be rapid with few iterations needed.

An important feature of SFW is that it can actually lead to exact solutions. Under a Non-
Degeneracy Condition alike to (NDB), the result in [15, Theorem 3] proves that Algorithm 1
recovers exactly µ̂n in a finite number of steps. They also show [15, Proposition 5] that the
generated measure sequence (µ(k))k converges towards µ̂n for the weak-? topology.

As mentioned in [15, Remark 8], Algorithm 1 can be adapted to build a positive measure
as follows

• the stopping condition |η(k)(t
(k)
? )| ≤ 1 becomes η(k)(t

(k)
? ) ≤ 1;

• the LASSO is solved on a ∈ RN(k)+1
+ ;

• the step (19) is solved on RN
(k)+1

+ × (Rd)N
(k)+1.

Continuous Orthogonal Matching Pursuit (COMP) Continuous Orthogonal Match-
ing Pursuit (COMP) [18] is another greedy approach that is the Orthogonal Matching Pursuit
approximation algorithm [30] adapted in the context of continuous parametric dictionaries.
This framework fits ours and COMP can be applied to Mixture Models estimation. Continuous
Orthogonal Matching Pursuit (COMP) is an iterative algorithm that add a Dirac mass one at
the time, building a sequence of measures µ̂(k), but it does not solve the BLASSOMixture prob-
lem (15) per se. Nevertheless it builds a sequence of dual functions η(k) = 1

κΦ(Lf̂n−L◦Φµ̂(k)),
referred to as the residual in the framework of COMP. The Dirac mass added to the model is
defined as in Line 3 of Algorithm 1 (SFW for BLASSO Mixture Models) but the weights a are
updated differently (we referred to [24, Algorithm 1]): alternating between hard-thresholding
[24, Step 3 in Algorithm 1] and even some sliding-flavour step [24, Step 5 in Algorithm 1].

A.3. Conic Particle Gradient Descent (CPGD)

Conic Particle Gradient Descent [11] is an alternative promising avenue for solving BLASSO
for Mixture Models (15). The idea is to discretize a positive measure into a system of particles,
i.e. a sum of N Dirac masses, by:

µa,t =
1

N

N∑
i=1

aiδti ,
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with ai = r2
i . We observe that the objective function involved in the minimization of Equa-

tion (15) is given by:

H(r, t) = FN ((r2
i ), (ti)) + κ

∑
i

r2
i with (r, t) = ((ri), (ti)) ∈ (R+)N × (Rd)N ,

where FN is defined in Equation (47). As already emphasized in [11], Equation (15) is a convex
program in µ whereas the parametrization given in H translates this minimization into a non-
convex differentiable problem in terms of r and t. This function H can be seen as an instance
of the BLASSO Equation (15) for the measure µa,t, namely a convex program that does not
depends on the number of Particles N . All the more, it is possible to run a gradient descent on
positions ti ∈ Rd and weights ri > 0 of the N particles system. The crucial ingredient is then
to implement a gradient descent on the lifted problem in the Wasserstein space approximating
the Wasserstein gradient flow. For two step-sizes α > 0 and β > 0, and for any position (r, t),
we define the Riemannian inner product by: ∀(δr1, δr2) ∈ R2

+ ∀(δt1, δt2) ∈ {Rd}2:

〈(δr1, δt1)(δr2, δt2)〉r,t :=
δr1δr2

α
+ r2

∑d
i=1(δt1)i(δt2)i

β
.

The gradient w.r.t. this conic metric is given by:

∇riH = 2αri(∇riF (µa,t) + κ) = −2αriκ(ηµa,t − 1) ,

∇tiH = −βκ∇ηµa,t ,

and the Wasserstein gradient [11, Section 2.2] is gµ(r, t) = (−2αrκ(ηµ(t)− 1),−βκ∇ηµ(t)) for
a.e. point (r, t) ∈ Ω.

Using standard mean-field limits of gradient flows in Wasserstein space (see e.g. [34]), it
is possible to prove that the approximate gradient flows of the N -particles system converge
towards the gradient flow on the Wasserstein space when N −→ +∞ (see Theorem 2.6 and
Theorem 3.5 of [12]). Hence, for a large enough number of particles N , it then implies the con-
vergence towards the global minimizer of µa,t 7−→ F (µa,t) itself, despite the lack of convexity of
the function (r, t) 7−→ FN (r, t). We refer to Theorem 3.9 of [11] that establishes the convergence
of the particle gradient descent with a constant step-size under some non-degeneracy assump-
tions, i.e. the convergence of the CPGD toward µ̂n (15) in Hellinger-Kantorovich metric, and
hence in the weak-? sense. Furthermore, Theorem 3.9 provides an exponential convergence
rate: CPGD has a complexity scaling as log(1/ε) in the desired accuracy ε, instead of ε−1/2

for general accelerated convex methods.

Appendix B: Proofs related to the kernel construction

B.1. Convolution in the RKHS

Proof of Proposition 4. Consider A : f 7−→ x 7→
∫
`(x − y)f(y)dy, A is a self-adjoint oper-

ator. We denote by (wk)k≥1 the non-negative eigenvalues of A and (ψk)k≥1 the associated
eigenvectors. We shall remark that the following equality holds:

`(x, y) = λ(x− y) =
∑
k≥1

wkψk(x)ψk(y),
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while L corresponds to the next Hilbert space

L =
{
f =

∑
k≥1

ck(f)ψk :
∑
k≥1

ck(f)2

wk
< +∞

}
and < f, g >L=

∑
k≥1

ck(f)ck(g)

wk
.

We now consider a non-negative measure ν and we remark that

Lν(x) = λ ? ν(x)

=

∫
λ(x− y)ν(y)dy

=

∫ ∑
k≥1

wkψk(x)ψk(y)ν(y)dy

=
∑
k≥1

[
wk

∫
ψk(y)ν(y)dy

]
ψk(x).

We observe that the coefficients of Lν are ck(Lν) = wk
∫
ψk(y)ν(y)dy. We shall remark that

‖Lν‖2L =
∑
k≥1

w2
k

[∫
ψk(y)ν(y)dy

]2
wk

=
∑
k≥1

wk

[∫
ψk(y)ν(y)dy

]2

.

The Jensen inequality yields

‖Lν‖2L ≤
∑
k≥1

wk

∫
ψ2
k(y)ν(y)dy =

∫ ∑
k≥1

wkψk(y)2ν(y)dy,

where the last equality comes from the Tonelli Theorem. We then observe that

‖Lν‖2L ≤
∫
`(y, y)ν(y)dy = λ(0)ν(Rd) < +∞,

giving the result.

B.2. Computation of the data-fidelity terms

Proof of Proposition 5. Recall that Φµ ∈ C0(Rd,R) ∩ L1(Rd). Now, given f ∈ C0(Rd,R) ∩
L1(Rd), one can consider the measure µ with signed density function f and we may define:

∀f ∈ C0(Rd,R) ∩ L1(Rd) , Lf := λ ? f =

∫
Rd
λ(· − t)f(t)dt .

The embedding L allows to compare f̂n with Φµ in C0(Rd,R) ∩ L1(Rd). One has:

‖Lf0 − Lf‖2L − ‖Lf0‖2L = −2〈Lf0, Lf〉L + ‖Lf‖2L

= −2〈Lf0,

∫
Rd
`(·, t)f(t)dt〉L + ‖Lf‖2L

= −2

∫
Rd
〈Lf0, `(·, t)〉Lf(t)dt+ ‖Lf‖2L

= −2

∫
Rd
Lf0(t)f(t)dt+ ‖Lf‖2L

=

∫
Rd

(
− 2

∫
Rd
λ(t− x)f0(x)dx

)
f(t)dt+

∫
Rd×Rd

λ(x− y)f(x)f(y)dxdy .
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Replacing f0, which is unknown, by the empirical measure f̂n in the previous equation leads
to the following criterion:

Cλ(f) :=

∫
Rd

[
− 2

n

n∑
i=1

λ(t−Xi)
]
f(t)dt+

∫
Rd×Rd

λ(x− y)f(x)f(y)dxdy .

In particular, for all µ ∈ M(Rd,R) note that Φµ ∈ C0(Rd,R) ∩ L1(Rd) and introduce the
criterion:

Cλ(Φµ) =

∫
Rd

[
− 2

n

n∑
i=1

λ(t−Xi)
]
(Φµ)(t)dt+

∫
Rd×Rd

λ(x− y)(Φµ)(x)(Φµ)(y)dxdy ,

which will be investigated in this paper. Note that it holds

‖Lf̂n − L ◦ Φµ‖2L − ‖Lf̂n‖2L

=

∫
Rd

[
− 2

n

n∑
i=1

λ(t−Xi)
]
(Φµ)(t)dt+

∫
Rd×Rd

λ(x− y)(Φµ)(x)(Φµ)(y)dxdy ,

as claimed.

Appendix C: Perfect recovery properties - Theorem 2 and Theorem 3

C.1. Perfect recovery

Proof of Theorem 2. Remark first that under (H0) and (H∞), the RKHS, denoted by H,
generated by the kernel h(., .) = ϕ(. − .) is dense in C0(Rd,R) with respect to the uniform
norm, see [10, Proposition 5.6] for instance. Furthermore, using [36, Proposition 2], we can
show that (H∞) implies that the embedding Φ is injective onto H. This means that we have
identifiability of µ from the knowledge of Φµ. More precisely, denote f0 := Φµ0, we deduce
that if it holds ‖f0 − Φµ‖2H = 0 then one has µ = µ0.

C.2. Perfect recovery with a dual certificate

Proof of Theorem 3. Let
µ̂ ∈ arg min

µ∈M(Rd,R) : Φµ=f0
‖µ‖1.

Step 1: Support inclusion. We observe that both µ̂ and µ0 belong toM(f0) so that Φµ̂ = Φµ0.
Hence, considering the Fourier transform on both sides and using F [Φ(µ)] = F [ϕ]F [µ], we
get that σF(µ̂) = σF(µ0) which is equivalent to F(µ̂) = F(µ0) on the support of σ. Now,
Assumption (Hη) yields:

(F(µ̂)−F(µ0))1[−η,η]d = 0 . (48)

Denote by qη := F(Pη) the Fourier transform of Pη. By assumption, the support of qη is
included in [−η, η]d and from (48) we get that:∫

Rd
qηF(µ̂) =

∫
Rd
qηF(µ0) .
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Since Pη ∈ L1(Rd), the Riemann-Lebesgue lemma shows that qη is continuous. Recall also
that qη has a compact support so we deduce that qη ∈ L1(Rd). By Fourier inversion theorem,
we have ∫

Rd
F(qη)dµ̂ =

∫
Rd
qηF(µ̂) =

∫
Rd
qηF(µ0) =

∫
Rd
F(qη)dµ

0,

namely ∫
Rd
Pηdµ̂ =

∫
Rd
Pηdµ0 .

Remark that Pη satisfies ∫
Rd
Pηdµ0 = ‖µ0‖1 ,

and the Hölder inequality leads to∫
Rd
Pηdµ̂ ≤ ‖Pη‖∞‖µ̂‖1 = ‖µ̂‖1 .

From the definition of µ̂, one also has ‖µ̂‖1 ≤ ‖µ0‖1. Putting everything together, we deduce
that

‖µ̂‖1 =

∫
Rd
Pηdµ̂ = ‖µ0‖1 .

Since Pη is continuous and strictly lower than one outside of the support of µ0, we deduce
from the above equality that the support of µ̂ is included in the support of µ0:

Supp(µ̂) ⊂ Supp(µ0) = S0 .

Step 2: Identifiability and conclusion. We prove that {ϕ(· − t1), . . . , ϕ(· − tK)} spans a vec-
tor subspace of C0(Rd,R) ∩ L1(Rd) of dimension K. This proof is standard and relies on a
Vandermonde argument. We assume first that K coefficients x1, . . . , xK ∈ R exist such that:

K∑
k=1

xkϕ(· − tk) = 0 .

Applying the Fourier transform and using ϕ = F−1[σ], we deduce that:

σ(u)
K∑
k=1

xke
ıu>tk = 0 , ∀u ∈ Rd .

Since σ is nonzero, there exists an open set Ω ⊆ Rd such that σ > 0 on Ω. We deduce that:

K∑
k=1

xke
ıu>tk = 0 , ∀u ∈ Ω .

Now, we can choose some points uj in Ω so that the Fourier matrix with entries (eıu
>
j t

0
k)kj is

invertible. It implies that xk = 0 and {ϕ(·−t1), . . . , ϕ(·−tK)} spans a subspace of dimensionK.
We now conclude the proof. We know from Step 1 that

µ̂ =
K∑
k=1

xkδtk .
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Since µ̂ and µ0 belong toM(f0), then

K∑
k=1

xkϕ(.− tk) =
K∑
k=1

a0
kϕ(.− tk),

which in turn implies that xk = a0
k for all k ∈ {1, . . . ,K}, namely µ̂ = µ0.

Appendix D: Primal-Dual problems and duality gap

Proof of Theorem 6. We consider some primal variables µ ∈ M(Rd,R) and z ∈ L and intro-
duce the dual variable c ∈ L. The Lagrangian is given in Equation (49)

L(µ, z, c) :=
1

2
‖Lf̂n − z‖2L + κ‖µ‖1 − 〈c, L ◦ Φµ− z〉L , (49)

and we consider the dual problem (P∗κ).

Proof of i). The existence of some solutions µ̂n to the primal problem (Pκ) is obtained with
the help of a standard argument: we prove that the primal objective function is a proper lower
semi-continuous (for the weak-* topology) convex function on the Banach spaceM(Rd,R).

We now consider the “invariant property” related to the solutions of (Pκ). The norm ‖ · ‖L
satisfies

∀a, b ∈ L ,
‖a‖2L + ‖b‖2L

2
−
∥∥∥a+ b

2

∥∥∥2

L
=
‖a− b‖2L

4
. (50)

Now consider two primal solutions µ1 and µ2 and define µ̃ = (µ1 + µ2)/2. Using (50) and the
triangle inequality for ‖.‖1, one has:

1

2
‖Lf̂n − L ◦ Φµ̃‖2L + κ‖µ̃‖1 ≤

1

2
‖Lf̂n − L ◦ Φµ̃‖2L + κ

‖µ1‖1 + ‖µ2‖1
2

≤
1
2‖Lf̂n − L ◦ Φµ1‖2L + κ‖µ1‖1

2

+
1
2‖Lf̂n − L ◦ Φµ2‖2L + κ‖µ2‖1

2

− 1

8
‖L ◦ Φµ1 − L ◦ Φµ2‖2L .

But, remind that:

1

2
‖Lf̂n−L◦Φµ1‖2L+κ‖µ1‖1 =

1

2
‖Lf̂n−L◦Φµ2‖2L+κ‖µ2‖1 = min

{
1

2
‖Lf̂n − L ◦ Φµ‖2L + κ‖µ‖1

}
.

We then conclude that µ̃ is also a solution to the primal problem and that L ◦Φµ1 = L ◦Φµ2.
We can repeat this argument for any pair of primal solutions so that the quantity ẑn := L◦Φµ̂n
is uniquely defined and does not depend on the choice of the primal solution point µ̂n. It also
implies that m̂n := ‖µ̂n‖1 is uniquely defined (does not depend on the choice of the primal
solution point).

Proof of ii). We shall write the dual program (P∗κ) as follows: consider dual variable c and
write:

inf
µ,z
L(µ, z, c) = inf

µ,z

{ 1

2
‖Lf̂n − z‖2L + 〈c, z〉L︸ ︷︷ ︸

1©

+κ‖µ‖1 − 〈c, L ◦ Φµ〉L︸ ︷︷ ︸
2©

}
,
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and the previous infimum appears to be splitted in terms of the influence of z and µ. Optimizing
in z the first term 1© leads to z = Lf̂n − c so that:

inf
z

1© = 〈c, Lf̂n〉L −
1

2
‖c‖2L =

1

2

(
‖Lf̂n‖2L − ‖Lf̂n − c‖2L

)
. (51)

The second term 2© is more intricate. Observe that:∫
Rd

∫
Rd

∣∣∣c(s)ϕ(s− u)dµ(u)
∣∣∣ds ≤ ∫

Rd

∫
Rd
‖c‖∞ϕ(s− u)d|µ|(u)ds ,

= ‖c‖∞‖ϕ‖1‖µ‖1 = ‖c‖∞‖µ‖1 <∞ ,

and the Fubini yields:

〈c, (L ◦ Φ)µ〉L = 〈c(·),
∫
Rd
λ(· − s)(Φµ)(s)ds〉L =

∫
Rd
〈c(·), λ(· − s)〉L(Φµ)(s)ds ,

=

∫
Rd
c(s)(Φµ)(s)ds =

∫
Rd
c(s)

(∫
Rd
ϕ(s− u)dµ(u)

)
ds ,

=

∫
Rd

(∫
Rd
c(s)ϕ(u− s)ds

)
dµ(u) ,

=

∫
Rd

Φc dµ . (52)

We deduce that:
2© = κ‖µ‖1 −

∫
Rd

Φcdµ .

We use the L1 − L∞ Hölder inequality, namely
∫
Rd

Φcdµ ≤ ‖Φc‖∞‖µ‖1, which yields:

inf
µ

2© ≥ inf
µ

[κ− ‖Φc‖∞]‖µ‖1 = [κ− ‖Φc‖∞] inf
µ
‖µ‖1 .

Hence, we conclude that:
inf
µ

2© = −I{‖Φc‖∞≤κ}(c) , (53)

where I{‖Φc‖∞≤κ}(c) is the constraint ‖Φc‖∞ ≤ κ, namely it is 0 if c such that ‖Φc‖∞ ≤ κ
and ∞ otherwise. Finally, we obtain that for a fixed dual variable c:

inf
µ,z
L(µ, z, c) =

1

2

(
‖Lf̂n‖2L − ‖Lf̂n − c‖2L

)
− I{‖Φc‖∞≤κ}(c) .

Hence, the dual problem (P∗κ) shall be written as

(P∗κ)⇐⇒ sup
c

inf
µ,z
L(µ, z, c) = sup

c

{1

2

(
‖Lf̂n‖2L − ‖Lf̂n − c‖2L

)
− I{‖Φc‖∞≤κ}(c)

}
,

=
‖Lf̂n‖2L

2
− inf
c : ‖Φc‖∞≤κ

{1

2
‖Lf̂n − c‖2L

}
.

Here again the dual objective function is lower semi-continuous and coercive on the Hilbert
space L so a minimizer ĉ exists. Again, Inequality (50) implies the uniqueness of ĉ.

To prove that there is no duality gap, we use the Slater condition: we remark that a feasible
point (c◦) exists in the interior of the constrained set {‖Φc‖∞ ≤ κ}. Now, the generalized
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Slater condition shall be used (see e.g. [32]). Indeed, given any nonzero c ∈ L ⊆ C0(Rd,R),
note that the convolution operator satisfies ‖Φc‖∞ ≤ ‖c‖∞. Hence, we set c◦ = κc/(2‖c‖∞)
and these points are in the interior of the constrained set. The generalized Slater condition
implies that strong duality holds, and there is no duality gap (i.e., strong duality holds):

(Pκ) = (P∗κ).

Furthermore, note that ẑn := L ◦ Φµ̂n and zn = Lf̂n − ĉ from (51) and strong duality, we
deduce that

ĉ = Lf̂n − L ◦ Φµ̂n .

Proof of iii). We consider the unique ĉ solution to

ĉ = arg min
c,∈L : ‖Φc‖∞≤κ

{1

2
‖Lf̂n − c‖2L

}
,

and the strong duality implies that:

0 = κ‖µ̂‖1 − 〈ĉ, L ◦ Φµ̂〉L = κ‖µ̂‖1 −
∫
Rd

Φĉdµ̂ .

Since Φĉ is continuous, we verify, using the argument of Lemma A.1 in [13], that:

Supp(µ̂) ⊆
{
x ∈ Rd :

∣∣Φĉ∣∣(x) = κ
}
,

where we recall that Φĉ ∈ L∞(Rd) is such that its supremum norm is less than κ.

Proof of iv). The last point is a consequence of the Schwartz-Paley-Wiener Theorem (see e.g.
Theorem XVI, chapter VII in [35, Page 272]). Indeed, note that Φĉ is a continuous function
whose inverse Fourier transform has a support included in the support of σ×Λ. By assumption,
this latter is bounded and one may apply the Schwartz-Paley-Wiener Theorem: we deduce
that Φĉ can be extended to complex values Cd into an analytic entire function of exponential
type. In particular, Φĉ± κ has isolated zeros one the real line, which concludes the proof.

Appendix E: Support stability

Proof of Theorem 11. We follow the ideas of [16] for the proof of Theorem 11. Consider the
convex program

inf
{
‖µ‖1 : µ ∈M(Rd;R) s.t. L ◦ Φµ = L ◦ Φµ0

}
(P0)

whose Lagrangian expression is, for all µ ∈M(Rd,R), c ∈ L,

L(µ, c) = ‖µ‖1 + 〈c, L ◦ Φ(µ0 − µ)〉L ,

= ‖µ‖1 + 〈c, L ◦ Φµ0〉L −
∫

Φcdµ ,

= ‖µ‖1 −
∫

Φcdµ+

∫
Φcdµ0 ,
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using (52) in the last equation. Now, Equation (53) yields that the dual program is:

sup
{∫

Rd
Φcdµ0 : c ∈ L s.t. ‖Φc‖∞ ≤ 1

}
.

Note also that the objective function of the dual program satisfies:∫
Rd

Φcdµ0 = 〈c, L ◦ Φµ0〉L ,

which gives the following equivalent formulation of the dual:

sup
{
〈c, L ◦ Φµ0〉L : c ∈ L s.t. ‖Φc‖∞ ≤ 1

}
. (D0)

Note that the dual certificate Pm exists, then we know that µ0 is a solution to (P0) by
Theorem 3. As in Section D, we use the Slater condition to prove that there is no duality
gap: we remark that a feasible point c exists in the interior of the set {‖Φc‖∞ ≤ 1}. Now, the
generalized Slater condition shall be used (see e.g. [32]). We get that any solution c to (D0)
satisfies that Φc is a sub-gradient of the total variation norm at point µ0. We recall the
definition of condition (NDB).

P0 exists , ∀t ∈ F(r) , |P0(t)| < 1− q , ∀t ∈ N(r) , ∇2P0(t) ≺ −ρ Idd , (NDB)

where ρ > 0. Under condition (NDB), we know that P0 := Φc0 is a solution to (D0).

Consider also the following convex program:

inf
µ∈M(Rd,R)

{
1

2
‖L ◦ Φµ0 − L ◦ Φµ‖2L + κ‖µ‖1

}
, (Pκ(Φµ0))

which is the same as the one used in Section D and Theorem 6, exchanging Lf̂n by L ◦ Φµ0.
Following the arguments used in Section D, one may prove that there is no duality gap and
the dual program is given by:

‖L ◦ Φµ0‖2L
2

− κ inf
{κ

2

∥∥∥L ◦ Φµ0

k
− c
∥∥∥2

L
: c s.t. ‖Φc‖∞ ≤ 1

}
. (Dκ(Φµ0))

We denote by cκ the solution to (Dκ(Φµ0)) (unicity can be proven by (50)) and by Pκ := Φcκ
the dual polynomial. Its gradient is denoted by ∇Pκ, and its Hessian is denoted by ∇2Pκ. We
first state the next lemma.

Lemma 14. If c0 exists, then ‖cκ − c0‖L → 0, ∇Pκ → ∇P0 uniformly, and ∇2Pκ → ∇2P0

uniformly as κ→ 0.

Proof. Since cκ is a solution to (Dκ(Φµ0)), it holds that:

κ

2

∥∥∥L ◦ Φµ0

k
− cκ

∥∥∥2

L
≤ κ

2

∥∥∥L ◦ Φµ0

k
− c0

∥∥∥2

L
,

leading to:
〈cκ, L ◦ Φµ0〉L −

κ

2
‖cκ‖2L ≥ 〈c0, L ◦ Φµ0〉L −

κ

2
‖c0‖2L , (54)
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and c0 being a solution to (D0) implies that:

〈cκ, L ◦ Φµ0〉L ≤ 〈c0, L ◦ Φµ0〉L .

We deduce that ‖cκ‖L ≤ ‖c0‖L. Closed unit balls of Hilbert spaces being weakly sequentially
compact we deduce that given κn → 0, one shall extract a subsequence such that cκn weakly
converges to some c∗ ∈ L. Taking the limit as κ→ 0 in (54), we obtain that:

〈c∗, L ◦ Φµ0〉L ≥ 〈c0, L ◦ Φµ0〉L .

Note that Φcκn converges weakly to Φc∗ so that:

‖Φc∗‖∞ ≤ lim inf
n
‖Φcκn‖∞ ≤ 1

We deduce that c∗ ∈ L is a solution to (D0) and hence:

‖Φc∗‖∞ ≤ 1 and (Φc∗)(tk) = 1 , k ∈ [K] .

Furthermore, c∗ is the solution of minimal norm since:

‖c∗‖L ≤ lim inf
n
‖cκn‖L ≤ ‖c0‖L .

The solution of minimal norm is unique by strict coercivity of the norm ‖ · ‖L, see (50). We
deduce that c∗ = c0, ‖cκn‖L → ‖c0‖L, and cκn → c0 strongly in L. Note that it implies
that limκ→0 ‖cκ − c0‖L = 0, since otherwise one can extract a subsequence cκn such that
‖cκn − c0‖L > ε, and by the above argument, one can extract a sequence such that cκn → c0.

Now, the Cauchy-Schwarz inequality yields:

∀t ∈ Rd, ‖∇2Pκ(t)−∇2P0(t)‖∞ ≤ (sup
i,j
‖∂2ϕ/(∂xi∂xj)‖L)‖cκ − c0‖L ,

which proves the uniform convergence. The same computation gives the uniform convergence
of the functions and their gradients.

We denote by cκ,n the dual solution of (Pκ) , namely:

‖Lf̂n‖2L
2

− κ inf
{κ

2

∥∥∥Lf̂n
κ
− c
∥∥∥2

L
: c s.t. ‖Φc‖∞ ≤ 1

}
(Dκ(f̂n))

and Pκ,n = Φcκ,n. The primal solution is denoted by µ̂n.

Lemma 15. Let 0 < t ≤ r and assume (NDB). If κ and ‖Γn‖L/κ are sufficiently small, any
solution µ̂n has support of size K̂ = K with one and only one spike in each near region Nk(t)
for k ∈ [K].

Proof. Note that (Dκ(f̂n)) and (Dκ(Φµ0)) are projection onto a closed convex set. We deduce
that

‖cκ,n − cκ‖L ≤
‖Γn‖L
κ

,

and that ‖∇2Pκ − ∇2Pκ,n‖∞ = O(‖Γn‖Lκ ) (the same result holds for the functions and their
gradients). Under (NDB), we know that there exists 0 < q < 1, r > 0 and ρ > 0 such that
∇2P0 ≺ −ρIdd on N(r) and |P0| < 1− q on F(r). We deduce that, for sufficiently small κ and
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‖Γn‖L/κ, Pκ,n is such that ∇2Pκ,n ≺ −(ρ/2)Idd on N(r) and |Pκ,n| < 1 − q/2 on F(r). We
deduce that at most 1 point in each Nk(r) is such that Pκ,n(t̂k) = 1.

But, since µ0 is the unique solution of (P0) (see Theorem 3), we deduce that µ̂n converges
to µ0 in the weak-*topology as κ and ‖Γn‖L/κ go to zero. Hence, it holds that µ̂n(Nk(r))→
µ0(Nk(r)) = a0

k. In particular, µ̂n has one spike in Nk(r).
Now, by Taylor’s theorem, observe that if (NDB) with neighborhood size r holds then it

holds with neighborhood size t.

It remains to bound ‖Γn‖2L, which is the purpose of the next lemma.

Lemma 16. A large enough universal constant C > 0 exists such that for any RKHS L
associated to a nonnegative measure Λ:

‖Γn‖2L ≤ C2Λ(Rd)
log(C/α)

n

with probability at least 1− α. Or equivalently

∀u > 0, P
[
‖Γn‖2L ≥ uvn

]
≤ C exp(−u) ,

where vn := C2Λ(Rd)
n = C2λ(0)

n .

Proof. Let X be a random variable with density f0, we observe that EXLδX = Lf0, and
denote by (Zi)i∈[n] the i.i.d. random variables:

∀i ∈ [n], Zi := LδXi − EXLδX ,

which are i.i.d. centered random variables with values in L. Observe that ‖LδXi‖2L = λ(0) =
Λ(Rd) by the representation property of RKHS and the definition of its spectral measure Λ.
We deduce that

‖Zi‖2L ≤ 2Λ(Rd) . (55)

Using this inequality it holds that

‖Γn‖2L = ‖Lf̂n − Lf0‖2L

= ‖ 1

n

∑
i

[LδXi − EXLδX ]‖2L

=
1

n2

∑
i

‖Zi‖2L +
1

n2

∑
i 6=j
〈Zi, Zj〉L

≤ 2

n
Λ(Rd) +

1

n2

∑
i 6=j
〈Zi, Zj〉L .

Now, consider the kernel h(Xi, Xj) = 〈Zi, Zj〉L and observe that the latter right hand side is
a U -process. First, the Cauchy–Schwarz inequality and (55) lead to ‖h‖∞ ≤ 2Λ(Rd). Second,
check that this kernel is σ-canonical, namely:

EXjh(Xi, Xj) = EXi,Xjh(Xi, Xj) = 0 .

By Proposition 2.3 of [1], it follows that there exists two universal constants C1, C2 > 0 such
that

1

n2

∑
i 6=j
〈Zi, Zj〉L ≤ 2C1Λ(Rd)

log(C2/α)

n
,

with probability at least 1− α.
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Let δκ > 0 be arbitrarily small. Set κ = κn =
√

Λ(Rd)n−
1
2

+δκ so that

‖Γn‖L ≤ C
√

Λ(Rd)× n−
1
2

+ δκ
2 = o(κn)

with probability greater than 1 − en := 1 − Ce−n
δκ . In this case, with an overwhelming

probability, the requirements of the aforementioned Lemma 2 are met: κn and ‖Γn‖Lκ−1
n are

small enough. Hence, a sequence of probability events (en)n≥1 exists such that limn→+∞ en = 0
(almost) exponentially fast and for which the desired result holds (with δκ = 1/2 − rκ). It
ends the proof of Theorem 11.

Appendix F: Construction of a dual certificate (proof of Theorem 7)

For a given set of points S0 = {t1, . . . , tK}, we recall that ∆ := mink 6=` ‖tk − t`‖2. For any
α ∈ RK and β ∈ RKd, we consider the function

pα,βm (t) =
K∑
k=1

{αkψm(t− tk) + 〈βk,∇ψm(t− tk)〉} , ∀t ∈ Rd. (56)

For the sake of convenience, we omit the dependency in α and β of the previous function and
simply denote it by pm. We are interested in the existence of a set of coefficients (α, β) such
that pm defined in (56) satisfies the two interpolation conditions:

∀k ∈ {1, . . . ,K} pm(tk) = 1 and ∇pm(tk) = 0. (57)

The following proposition establishes the control of α and β due to the conditions (57).

Proposition 17. If m is chosen such that m ≥ K1/4d3/4

C∆ for some positive constant C small
enough, then (α, β) exists such that (57) holds and:

• i) The supremum norms are upper bounded by:

‖α− 1K‖∞ .
Kd3

m4∆4
and sup

1≤k≤K
‖βk‖∞ .

1

m

Kd2

m4∆4
.

• ii) The Euclidean norm is upper bounded by:√√√√ K∑
k=1

‖βk‖22 .
√
K

m
√
d
× Kd3

m4∆4
.

Even though not directly usable in our framework, we emphasize that the stability result
and the construction given in [9] played a central role in our work to prove Proposition 17.

Proof. The proofs of i) and ii) are divided into four steps.
Step 1: Matricial formulation of (57).
The certificate pm should satisfy the following properties:

∀i ∈ [K] :

{
pm(ti) = 1
∇pm(ti) = 0

⇐⇒

{
αi +

∑
k 6=i αkψm(ti − tk) +

∑K
k=1

∑d
v=1 β

v
k∂v(ψm)(ti − tk) = 1∑K

k=1 αk∂u(ψm)(ti − tk) +
∑K

k=1

∑d
v=1 β

v
k∂

2
u,v(ψm)(ti − tk) = 0

∀u ∈ [d], ∀i ∈ [K].
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We can organize the above equations to obtain a linear system of K(d + 1) equations with
K(d + 1) parameters. In the following, we denote these parameters by α = (α1, . . . , αK)T ∈
Rd and β = (β1

1 , . . . , β
d
1 , β

1
2 , . . . , β

d
2 , . . . , β

1
K , . . . , β

d
K)T ∈ RKd. The above equations can be

rewritten as: (
IK +Am Dm

DT
m Bm − 4

3m
2IK×d

)(
α
β

)
=

(
1K
0Kd

)
, (58)

where 1K denotes the vector of size K having all its entries equal to 1 (similar definition for
0Kd). The matrix Am ∈ RK×K acts on the coefficients α as:

(Am)i,k = 1i 6=kψm(ti − tk) ∀i, k ∈ [K],

while Dm ∈ RK×Kd describes the effect of the partial derivatives of ψm on α and β as:

(Dm)i,(k,v) = ∂v(ψm)(ti − tk) ∀i, k ∈ [K] and v ∈ [d].

Finally, the squared matrix Bm ∈ RKd×Kd is given by:

(Bm)(i,u),(k,v) = 1(i,u) 6=(k,v)∂
2
u,v(ψm)(ti − tk) ∀i, k ∈ [K] u, v ∈ [d].

Step 2: Inversion of the system (58)
According to linear algebra results (see e.g. [23]), the system (58) is invertible if and only if

Gm := Bm −
4

3
m2IKd

and its Schur complement

Hm := (IK +Am)−DmG
−1
m DT

m

are both invertible. To prove this assertion, we remember that a symmetric matrix M
is invertible if ‖I − M‖∞ < 1, where ‖.‖∞ is the subordinate matrix infinity norm
(‖M‖∞ = max

i

∑
j |Mij |). In such a case ‖M−1‖∞ ≤ 1

1−‖I−M‖∞ .

Moreover, we will use in the sequel that ‖M‖1 = max
j

∑
i |Mij | = ‖MT ‖∞.

• Invertibility of Gm and computation of ‖G−1
m ‖∞:

For all i, k ∈ [K] and u, v ∈ [d],

(Gm)(i,u)(k,v) =


−4m2

3 if i = k, u = v
∂2

(u,v)(ψm)(0) if i = k, v 6= u

∂2
(u,v)(ψm)(ti − tk) if i 6= k, v 6= u

according to the definition of Bm. Setting G̃m = −3
4m2Gm, we get

‖IKd − G̃m‖∞ = max
(i,u)

∑
(k,v)

|(IKd − G̃m)(k,v)|

with∑
(k,v)

|(IKd − G̃m)(k,v)| =
3

4m2

∑
k 6=i

d∑
v=1

∣∣∣∂2
(u,v)(ψm)(ti − tk)

∣∣∣+
3

4m2

∑
v 6=u

∣∣∣∂2
(u,v)(ψm)(0)

∣∣∣
. Kd

1

m2

d2

m2∆4
=

Kd3

m4∆4
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according to Lemma 19 and iii) of Lemma 20. Thus, if there exists a positive constant C
small enough such that Kd3

m4∆4 ≤ C, then ‖IKd− G̃m‖∞ < 1/2 and the matrix Gm is invertible.
Moreover,

‖G−1
m ‖∞ =

3

4m2
‖G̃−1

m ‖∞ ≤
3

4m2

1

1− ‖IKd − G̃m‖∞
.

1

m2
. (59)

• Invertibility of Hm and computation of ‖H−1
m ‖∞:

In the same way, we want to prove that ‖IK −Hm‖∞ < 1. According to the properties of the
∞-norm,

‖IK −Hm‖∞ = ‖DmG
−1
m DT

m −Am‖∞
≤ ‖Am‖∞ + ‖DmG

−1
m DT

m‖∞
≤ ‖Am‖∞ + ‖Dm‖∞‖G−1

m ‖∞‖Dm‖1. (60)

In a first time, we provide an upper bound on ‖Am‖∞. Remark that for any i ∈ [K]

K∑
j=1

|(Am)ij | =
K∑
j=1

|ψm(ti − tj)|1i 6=j .

Applying i) of Lemma 20, we hence obtain

‖Am‖∞ .
Kd2

m4∆4
. (61)

Now, recall that

K∑
k=1

d∑
v=1

|(Dm)i,(k,v)| =
K∑
k=1

d∑
v=1

|∂v(ψm)(ti − tk)|.

Applying ii) of Lemma 20, we deduce that:

‖Dm‖∞ .
Kd3

m3∆4
. (62)

Following the same ideas, for any pair (i, u) with i ∈ [K] and u ∈ [d], we have:

K∑
j=1

|(Dm)j,(i,u)| =
K∑
j=1

|∂u(ψm)(ti − tj)|.

Again, ii) of Lemma 20 yields:

‖Dm‖1 = ‖DT
m‖∞ .

Kd2

m3∆4
. (63)

Gathering (59), (61), (62) and (63) in (60), we deduce that:

‖IK −Hm‖∞ .
Kd2

m4∆4
+

Kd2

m3∆4

Kd3

m3∆4

1

m2
.

Kd3

m4∆4
. (64)

50



provided Kd3

m4∆4 ≤ C for some constant C small enough. This implies that under such a condition,
‖IK −Hm‖∞ < 1/2. Moreover, the Schur complement Hm = (IK +Am)−DmG

−1
m DT

m is then
invertible and

‖H−1
m ‖∞ ≤

1

1− ‖IK −Hm‖∞
≤ 1 + 2‖IK −Hm‖∞ ≤ 1 + C

Kd3

m4∆4
, (65)

for some positive constant C, provided the constraint Kd3

m4∆4 ≤ C is satisfied.
To conclude this second step, the system (58) is invertible if Kd3

∆4m4 ≤ C for some constant C
small enough. In such a case (

α
β

)
=

(
IK

−G−1
m DT

m

)
H−1
m 1K . (66)

Step 3: Proof of i) In the sequel, we assume that Kd3

m4∆4 ≤ C for some positive constant C
small enough. First, according to (65) and (66), we obtain that:

‖α‖∞ = ‖H−1
m ‖∞ . 1 + C

Kd3

m4∆4
.

Moreover
α− 1K = (H−1

m − IK)1K = ((IK + H̃m)−1 − IK)1K

with H̃m = Am −DmG
−1
m DT

m. Hence, since for H̃m small enough (i.e. for a sufficiently small
norm) we have

(IK + H̃m)−1 =
∑
k≥0

(−H̃m)k = IK +
∑
k≥1

(−H̃m)k.

Hence, for H̃m small enough,

‖α− 1K‖∞ ≤

∥∥∥∥∥∥
∑
k≥1

(−H̃m)k

∥∥∥∥∥∥
∞

≤
∥∥∥H̃m

∥∥∥
∞

∑
k≥0

∥∥∥H̃m

∥∥∥k
∞
. (67)

According to (64),

‖H̃m‖∞ = ‖Hm − IK‖∞ .
Kd3

m4∆4
, (68)

and we can choose the constant C small enough in the constraint Kd3

m4∆4 ≤ C such that ‖H̃m‖∞ ≤
1/2. We conclude that

‖α− 1K‖∞ .
Kd3

m4∆4
.

In a second time, gathering (59), (63) and (65), we deduce that:

‖β‖∞ ≤ ‖G−1
m DT

mH
−1
m 1K‖∞,

≤ ‖G−1
m DT

mH
−1
m ‖∞,

≤ ‖G−1
m ‖∞‖Dm‖1‖H−1

m ‖∞,

.
1

m

Kd2

m4∆4
. (69)
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Step 4: Proof of ii) According to (66),

‖β‖2 = ‖G−1
m DT

mH
−1
m 1K‖2 ≤

√
K ‖G−1

m DT
mH

−1
m ‖2,

≤
√
K

√
‖G−1

m DT
mH

−1
m ‖1‖G−1

m DT
mH

−1
m ‖∞. (70)

Using (69), ‖G−1
m DT

mH
−1
m ‖∞ ≤ ‖G−1

m ‖∞‖Dm‖1‖H−1
m ‖∞ . C

md . For the second term, we use
the dual relationship between ‖.‖∞ and ‖.‖1 and that the matrices Gm and Hm are symmetric.
Gathering (59), (62) and (65), we obtain that:

‖G−1
m DT

mH
−1
m ‖1 ≤ ‖G−1

m ‖1‖DT
m‖1‖H−1

m ‖1
≤ ‖G−1

m ‖∞‖Dm‖∞‖H−1
m ‖∞

.
1

m2

Kd3

m3∆4
=

1

m

Kd3

m4∆4
. (71)

We then deduce that

‖β‖2 .
√
K

m
√
d

Kd3

m4∆4
.

Thanks to the previous proposition, we are now ready to prove Theorem 7. Our strategy is
inspired from the one of [9].

Proof of Theorem 7. We define an integer m that will be chosen large enough below and
consider Pm = p2

m.
Proof of i) and ii): From Proposition 17, we know that if m satisfies m ≥ CK1/4d3/4

∆ , for a
constant C large enough independent from K, ∆ and d, then Pm satisfies the interpolation
properties:

0 ≤ Pm ≤ 1 with Pm(t) = 1⇐⇒ t ∈ {t1, . . . , tK}.

Our strategy relies on a study of the variations of Pm near each support points {t1, . . . , tK},
whose union defines the near region, and far from these support points, which is then the far
region.

Near region Let ε ∈
(
0, ∆

2

)
a parameter whose value will be made precise later on. The

near-region N(ε) is the union of K sets that are defined by:

N(ε) =
K⋃
i=1

{t ∈ Rd, ‖t− ti‖2 ≤ ε} :=
K⋃
i=1

Ni(ε).

The far region is therefore given by:

F(ε) = Rd \N(ε).

Let i ∈ {1, . . . ,K} be fixed, the function pm involves a sum over k ∈ [K] and we consider two
cases:

• If k 6= i, then, for all t ∈ Ni(ε), ξt,i,k exists such that

ψm(t− tk) = ψm(ti − tk) + 〈(t− ti),∇ψm(ti − tk)〉+
1

2
(t− ti)TD2ψm(ξt,i,k − tk)(t− ti),
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with ‖ξt,i,k − ti‖2 ≤ ‖t− ti‖2. Moreover, for any u ∈ [d], a ξ̃ut,i,k exists such that:

∂u(ψm)(t− tk) = ∂u(ψm)(ti − tk) + 〈(t− ti), (∂u,v(ψm)(ti − tk))v〉

+
1

2
(t− ti)TD2{∂u(ψm)}(ξ̃ut,i,k − tk)(t− ti),

with ‖ξ̃ut,i,k − ti‖2 ≤ ‖t− ti‖2.
• If k = i, since ∇ψm(0) = 0 and D3(ψm)(0) = 0, for all t ∈ Ni(ε), a ξt,i,i exists such that:

ψm(t− ti) = ψm(0) +
1

2
(t− ti)TD2(ψm)(0)(t− ti)

+
1

24

∑
1≤u1,u2,u3,u4≤d

(tu1 − tu1i )(tu2 − tu2i )(tu3 − tu3i )(tu4 − tu4i )∂u1,u2,u3,u4(ψm)(ξt,i,i − ti)︸ ︷︷ ︸
:=(t−ti)TA(ξt,i,i−ti)(t−ti)

with ‖ξt,i,i − ti‖2 ≤ ‖t− ti‖2. We also have that for any u ∈ {1, . . . , d}, the existence of
ξ̃ut,i,i such that:

∂uψm(t−ti) = ∂uψm(0)+〈t−ti, (∂u,v(ψm)(0))v〉+
1

2
(t−ti)TD2(∂u(ψm))(ξ̃ut,i,i−ti)(t−ti),

with ‖ξ̃ut,i,i − ti‖2 ≤ ‖t− ti‖2.

Hence, for all t ∈ Ni(ε), we can use the previous Taylor formulas and obtain that:

pm(t) =

K∑
k=1

[αkψm(t− tk) + 〈βk,∇ψm(t− tk)〉] ,

= αiψm(t− ti) + 〈βi,∇ψm(t− ti)〉+
∑
k 6=i

αkψm(t− tk) +
∑
k 6=i

〈βk,∇ψm(t− tk)〉

= αi

[
ψm(0) +

1

2
(t− ti)TD2(ψm)(0)(t− ti) +

1

24
(t− ti)TA(ξt,i,i − ti)(t− ti)

]
+

〈
βi,∇ψm(0) +D2(ψm)(0)(t− ti) +

1

2

(
(t− ti)TD2∂u(ψm)(ξ̃ut,i,i − ti)(t− ti)

)
u

〉
+
∑
k 6=i

αk

[
ψm(ti − tk) + 〈t− ti,∇ψm(ti − tk)〉+

1

2
(t− ti)TD2(ψm)(ξt,i,k − tk)(t− ti)

]

+
∑
k 6=i

〈
βk,∇ψm(ti − tk) +D2(ψm)(ti − tk)(t− ti) +

1

2

(
(t− ti)TD2∂u(ψm)(ξ̃t,i,k − tk)(t− ti)

)
u

〉
.
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These terms can be re-arranged as follows:

pm(t) =

K∑
k=1

[αkψm(ti − tk) + 〈βk,∇ψm(ti − tk)〉]

+

〈
D2(ψm)(0)βi +

∑
k 6=i

αk∇ψm(ti − tk) +D2(ψm)(ti − tk)βk, (t− ti)

〉

+
(t− ti)T

2

αiD2(ψm)(0) +
∑
k 6=i

αkD
2(ψm)(ξt,i,k − tk)

+
αi
12
A(ξt,i,i − ti) +

K∑
k=1

d∑
u=1

βui D
2(∂uψm)(ξ̃ut,i,k − ti)

]
(t− ti)

= C0 + 〈C1, t− ti〉+
1

2
(t− ti)TC2(t)(t− ti).

Of course, the construction of Proposition 17 yields

C0 =

K∑
k=1

[αkψm(ti − tk) + 〈βk,∇ψm(ti − tk)〉] = pm(ti) = 1,

and

C1 =
∑
k 6=i

αk∇ψm(ti − tk) +
K∑
k=1

D2(ψm)(ti − tk)βk = ∇pm(ti) = 0,

thanks to the constraints expressed on the function pm. Hence, for all t ∈ Ni(ε) we have

pm(t) = 1 +
1

2
(t− ti)TC2(t)(t− ti).

In the following, we prove that C2 is a negative matrix and bounded from below. Thanks to
Lemma 20, we can compute the first term of C2 and we have

D2(ψm)(0) = −4m2

3
Id,

which entails
1

2
(t− ti)TD2(ψm)(0)(t− ti) = −2m2

3
‖t− ti‖22. (72)

The second term of C2 may be upper bounded with the help of the spectral radius of
D2(ψm)(ξt,i,k − tk): (denoted by ρ(M) for any squared symmetric matrix M):

1

2
(t− ti)T

∑
k 6=i

αkD
2(ψm)(ξt,i,k − tk)(t− ti) ≤ ‖α‖∞‖t− ti‖22

∑
k 6=i

ρ
(
D2(ψm)(ξt,i,k − tk)

)
.

To handle this last term, we use the fact that in the near region Ni(ε), ‖ξt,i,k − tk‖2 is far
from 0. Using the triangle inequality, since ε < ∆

2 , we have for any k ∈ [K] with k 6= i

‖ξt,i,k − tk‖2 ≥ ‖ti − tk‖2 − ‖ξt,i,k − ti‖2 ≥ ‖ti − tk‖2 − ‖t− ti‖2 ≥ ∆− ε ≥ ∆

2
.
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Using the inequality ρ(M) ≤ ‖M‖∞ for any symmetric matrix, Proposition 17 and iii) of
Lemma 20, we obtain that:

1

2
(t− ti)T

∑
k 6=i

αkD
2(ψm)(ξt,i,k − tk)(t− ti) . K‖α‖∞

(
d× d2

m2∆4

)
‖t− ti‖22

.
Kd3

m2∆4
‖t− ti‖22. (73)

The third term of C2 is described by the matrix:

αi
12

(A(ξt,i,i − ti))u,v =
αi
12

 d∑
p=1

d∑
q=1

(ξpt,i,i − t
p
i )(ξ

q
t,i,i − t

q
i )∂u,v,p,qψm(ξt,i,i − ti)


u,v

∀u, v ∈ [d].

Using that ‖sinc′‖∞ ∨ ‖sinc(2)‖∞ ∨ ‖sinc(3)‖∞ ∨ ‖sinc(4)‖∞ ≤ 1/2, we obtain that
∂u,v,p,qψm(ξt,i,i − ti) . m4. Therefore, for any (u, v) ∈ [d]2, we have:

∣∣∣αi
12
A(ξt,i,i − ti)u,v

∣∣∣ ≤ ‖α‖∞
d∑
p=1

d∑
q=1

∣∣∣ξpt,i,i − tpi ∣∣∣ ∣∣∣ξqt,i,i − tqi ∣∣∣ |∂u,v,p,qψm(ξt,i,i − ti)|

. ‖α‖∞m4
d∑
p=1

∣∣∣ξpt,i,i − tpi ∣∣∣ d∑
q=1

∣∣∣ξqt,i,i − tqi ∣∣∣
. dm4‖α‖∞ε2,

where the last line comes from the Cauchy-Schwarz inequality. Again, the inequality ρ(M) ≤
‖M‖∞ and Proposition 17 yield:∣∣∣∣12(t− ti)T

αi
12
A(ξt,i,i − ti)(t− ti)

∣∣∣∣ . d2m4‖α‖∞ε2‖t− ti‖22 . d2m4ε2‖t− ti‖22. (74)

The last term of C2 is studied into two steps. We first consider the situation when k 6= i:
the triangle inequality, iv) of Lemma 20 and the inequality ρ(M) ≤ ‖M‖∞ yield:

ρ

∑
k 6=i

d∑
u=1

βui D
2(∂uψm)(ξ̃ut,i,k − ti)

 ≤ K‖β‖∞d sup
1≤u≤d

ρ
(
D2(∂uψm)(ξ̃ut,i,k − ti)

)
,

. K‖β‖∞d×
(
d× d2

m∆4

)
,

. K‖β‖∞
d4

m∆4
.

Hence, we deduce from Proposition 17 that:

ρ

∑
k 6=i

d∑
u=1

βui D
2(∂uψm)(ξ̃ut,i,k − ti)

 . K × 1

m

Kd2

m4∆4
× d4

m∆4
. m2

(
Kd3

m4∆4

)2

. (75)
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Now, we consider the situation where k = i. For any pair (u, v) ∈ [d]2:
d∑

w=1

βwi ∂u,v,w(ψm)(ξ̃ut,i,i − ti) . d‖β‖∞m3(mε+ (mε)3),

. d× 1

m

Kd2

m4∆4
×m3(mε+ (mε)3),

. m2 × Kd3

m4∆4
× (mε+ (mε)3),

where we used iv) of Lemma 19, ∇ψm(0) = 0, D3ψm(0) = 0 and ‖m(ξ̃ut,i,i− ti)‖2 ≤ mε and i)
of Proposition 17.
Using the previous bounds, we then conclude that

ρ

(
d∑

u=1

βui D
2(∂uψm)(ξ̃ut,i,i − ti)

)
. m2

(
Kd3

m4∆4

)2

+m2 Kd3

m4∆4
((mε) + (mε)3)

. m2
{

1 + (mε) + (mε)3)
}

(76)

provided Kd3

m4∆4 ≤ C for a constant C small enough.
We now plug Equations (72), (73), (74), (75) and (76) in C2(t) and deduce that a constant

� exists such that

1

2
(t− ti)TC2(t)(t− ti) ≤ m2‖t− ti‖22

−2

3
αi +�

[
Kd3

m4∆4
+ d2m2ε2 + [1 +mε+ (mε)3]

]
︸ ︷︷ ︸

:=Aε,m

 .
Then, we choose ε and m such that Aε,m ≤ −αi

3 . A careful inspection of the above terms prove
that a sufficiently small υ and large enough C (both independent of d, K and ∆) exist such
that

ε ≤ υ

md
and m ≥ CK

1/4d3/4

∆
=⇒ 1

2
(t− ti)TC2(t)(t− ti) ≤ −

αim
2

3
‖t− ti‖22. (77)

Far region F(ε) The relationship between ε,m and d being established in (77), we are
looking for a value of η > 0 such that

t ∈ F(ε)⇒ |pm(t)| < 1− η.

The definition of pm and the Cauchy-Schwarz inequality yield

|pm(t)| ≤
K∑
k=1

|αk||ψm(t− tk)|+
K∑
k=1

‖βk‖2‖∇ψm(t− tk)‖2.

We consider the second term of the right hand side with the help of Lemma 19 and Proposi-
tion 17:

K∑
k=1

‖βk‖2‖∇ψm(t− tk)‖2 .
K∑
k=1

‖βk‖2m‖∇ψ‖∞|ψ(m(t− tk))3|,

.
√
K ×

√
K

m
√
d

Kd3

m4∆4
×m,

.
K√
d
× Kd3

m4∆4
.
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In particular, there exists a constant Č such that

|pm(t)| ≤
K∑
k=1

|αk| |ψm(t− tk)|+ Č
K√
d

Kd3

m4∆4
.

Let t ∈ F(ε) and ti? the closest point of t in the set {t1, . . . , tK}, the triangle inequality shows
that ∀k 6= i?, we have ‖t − tk‖2 > ∆

2 . Hence, since ‖α‖∞ is upper bounded by a universal
constant (see Proposition 17), we deduce from i) Lemma 20 that

∑
k 6=i?
|αk||ψm(t− tk)| .

Kd2

m4∆4
.

In the same time, the last term that involves i? is upper bounded by

|αi? ||ψm(t− ti?)| ≤ ‖α‖∞ max
‖x‖2> υ

md

|ψm(x)| ≤
(

1 + C0
Kd3

m4∆4

)
max

‖y‖2>υd−1
ψ4(y),

where C0 is a large enough universal constant. Using that

|g(x)| = | sin(x)|
|x|

≤ (1− x2/12)1|x|≤2 +
1

2
1|x|≥2,

and the fact that when ‖y‖2 ≥ υd−1, then the absolute value of one of the coordinate of y is
greater than υd−3/2, we deduce that

|αi? ||ψm(t− ti?)| ≤
(

1 + C0
Kd3

m4∆4

)[(
1− υ2

12d3

)
∨ 1

2

]4

≤
(

1 + C0
Kd3

m4∆4

)
(1− η)4,

where η � υ2d−3. This entails the desired result as soon as m is chosen such that

m ≥ K1/2d3/2

C∆
, (78)

for some positive constant C small enough. It is easy to check that in this case, a small enough
υ exists (independent of d, K, m and ∆) such that:

m &
K1/2d3/2

∆
and t ∈ F

( υ

md

)
=⇒ |pm(t)| ≤ 1− υ2

d3
. (79)

Conclusion of the interpolation To accomodate with conditions (77) and (79), we con-
sider an integerm such thatm & K1/2d3/2∆−1 and ε = υm−1d−1. We deduce that pm satisfies
in the far region F(ε):

∀t ∈ F(ε) −
(

1− υ2

2d3

)
≤ pm(t) ≤

(
1− υ2

2d3

)
,

while in the near region we have:

∀i ∈ {1, . . . ,K} ∀t ∈ Ni(ε) 0 ≤ pm(t) ≤ 1− Cm2‖t− ti‖2.
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We then set Pm = p2
m. This function satisfies both the constraints and the interpolation

conditions in the statement of Theorem 7. We then obtain i) and ii).

Proof of iii):
Remark first that pm is a linear combination of shifted sinus cardinal functions and deriva-

tives of sinus cardinal functions up to the power 4 used in ψ. Moreover, it is straightforward
to check that

F [ψ4] = F [ψ] ? F [ψ] ? F [ψ] ? F [ψ].

Therefore, the Fourier transform of ψ4 has a compact support of size [−2, 2]d since the Fourier
transform of the sinus cardinal is the rectangular indicator function of [−1/2, 1/2]. Using the
effect on the Fourier transform of scaling and shifting a function we deduce that the Fourier
transform of pm has a compact support, which size varies linearly with m:

Supp(F [pm]) ⊂ [−2m, 2m]d.

Since Pm = p2
m, we have F [Pm] = F [pm] ? F [pm] so that

Supp(F [Pm]) ⊂ [−4m, 4m]d.

We now compute an upper bound of ‖Pm‖2: the isometry property entails the several
inequalities:

‖Pm‖2 = ‖F [Pm]‖2 = ‖F [pm] ? F [pm]‖2 ≤ ‖F [pm]‖2‖F [pm]‖1,

where we used the standard inequality ‖g ? h‖2 ≤ ‖g‖2‖h‖1.
Now, the triangle inequality yields

‖F [pm]‖2 =

∥∥∥∥∥
K∑
k=1

αkF [ψm(.− tk)] + F [〈βk,∇ψm(.− tk)〉]

∥∥∥∥∥
2

,

≤
K∑
k=1

|αk| ‖F [ψm(.− tk)]‖2 + ‖F [〈βk,∇ψm(.− tk)〉]‖2,

≤ K sup
1≤k≤K

(|αk|‖F [ψm(.− tk)]‖2 + ‖βk‖2‖F [∇ψm(.− tk)]‖2) ,

≤ K

‖α‖∞‖F [ψm]‖2 + sup
1≤k≤K

‖βk‖2

∥∥∥∥∥∥
√√√√ d∑

i=1

F [∂iψm(.− tk)]2

∥∥∥∥∥∥
2

 ,

where the last line comes from the Cauchy-Schwarz inequality.
We then deduce that

‖F [pm]‖2 ≤ K

(
‖α‖∞‖F [ψm]‖2 + sup

1≤k≤K
‖βk‖2‖|F [∇ψm]|2‖2

)
,

where |F [∇ψm]|2 refers to the Euclidean norm of the d-dimensional vector F [∇ψm]. Now,
remark that a dilatation by a ratio m yields on L2 norms:

‖F [ψm]‖2 . m−d/2 and ‖|F [∇ψm]|2‖2 . dm−d/2.
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Hence

‖F [pm]‖2 . Km−d/2
(
‖α‖∞ + d sup

1≤k≤K
‖βk‖2

)
.

We use a similar argument and obtain that

‖F [pm]‖1 ≤ K

‖α‖∞‖F [ψm]‖1 + sup
1≤k≤K

‖βk‖2

∥∥∥∥∥∥
√√√√ d∑

i=1

F [∂iψm(.− tk)]2

∥∥∥∥∥∥
1


In the meantime, the effect of this dilatation on the L1 norms is managed by:

‖F [ψm]‖1 =

∫
|F [ψm](ξ)|dξ ≤ m−d‖F [ψ]‖∞|Supp(F [ψm])| . m−d‖F [ψ]‖∞md . 1,

and with a same argument we obtain that: ‖|F [∇ψm]|2‖1 . d. Hence

‖F [pm]‖1 . K

(
‖α‖∞ + d sup

1≤k≤K
‖βk‖2

)
.

We then obtain that

‖Pm‖2 . K2m−d/2

(
1 +

√
Kd

m
× Kd3

m4∆4

)
. K2m−d/2,

provided

m >
1

C

(
K1/4d3/4

∆
∨
√
Kd

)
(80)

for some constant C small enough.
Proof of iv): The last point is a simple consequence of the convolution kernel induced by Φ.
Since ϕ satisfies (H4m), then ∀ξ ∈ [−4m, 4m]d, we have σ(ξ) 6= 0. Hence, we can define c0,m

through its Fourier transform:

∀ξ ∈ Rd F [c0,m](ξ) =
F [Pm](ξ)

σ(ξ)
1ξ∈Supp(F [Pm]). (81)

Moreover, the Fourier transform of c0,m is naturally compact, which entails that c0,m ∈ L.

Conclusion: The constraints (78) and (80) together with ε ∼ 1
md and ε ≤ ∆/2 leads to the

condition

m &
K1/2d3/2

∆
∨
√
Kd ∨ 1

d∆
.

Provided ∆ is small or bounded, this condition reduces to m & K1/2d3/2

∆ and m &
√
Kd when

∆ is large.

Some useful properties of the sinus cardinal function are detailed in the following basic
lemma.

Lemma 18. If g(x) = sinc(x), then for any x ∈ R:
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i)

g′(x) =
x cosx− sinx

x2
and ‖g′‖∞ ≤

1

2
.

ii)

g′′(x) = −(x2 − 2) sinx+ 2x cosx

x3
and ‖g′′‖∞ ≤

1

2
.

iii)

g(3)(x) =
3(x2 − 2) sinx− x(x2 − 6) cosx

x4
and ‖g(3)‖∞ ≤

1

2
.

iii)

g(4)(x) =
4x(x2 − 6) cosx+ (x4 − 12x2 + 24) sinx

x5
and ‖g(4)‖∞ ≤

1

2
.

Some additional ingredients on ψm are detailed below where ψm is defined by:

ψm(.) = ψ4(m.) with ∀u = (u1, . . . , ud) ∈ Rd ψ(u) =

d∏
j=1

sinc(uj) and sinc(x) =
sin(x)

x
.

(82)
In the sequel, we will use the shortcut of notation ∂u instead of ∂|u|u ψ for any multi-index u.

Lemma 19. Let ψm be the function defined in (82). Then

• i) ψm(0) = g4(0)d = 1.
• ii) ∇ψm(0) = 0 and

∇ψm(x) = 4mψ3(mx)∇ψ(mx).

• iii) D2ψm(0) = −4
3m

2Id and

(D2ψm(x))i,j = 4m2[ψ3∂2
i,j + 3ψ2∂i∂j ](mx).

• iv) (D3ψm)(0) = 0 and

(D3ψm(x))i,j,k = 4m3[ψ3∂3
i,j,k + 6ψ∂i∂j∂k + 3ψ2[∂2

i,j∂k + ∂2
i,k∂j + ∂2

j,k∂i]](mx)

• v) Finally

(D4ψm)(x)i,j,k,l = 4m4[ψ3∂4
i,j,k,l + 3ψ2�i,j,k,l + 6ψ�̃i,j,k,l + 6�̌i,j,k,l](mx),

with

�i,j,k,l = ∂i∂
3
j,k,l + ∂j∂

3
i,k,l + ∂k∂

3
i,j,l + ∂l∂

3
i,j,k + ∂2

i,j∂
2
k,l + ∂2

i,k∂
2
j,l + ∂2

i,l∂
2
j,k,

�̃i,j,k,l = ∂2
i,j∂k∂l + ∂2

i,k∂j∂l + ∂2
i,l∂k∂j + ∂2

j,k∂i∂l + ∂2
j,l∂i∂k + ∂2

k,l∂i∂j

and
�̌i,j,k,l = ∂i∂j∂k∂l

Several bounds on the successive derivatives of ψm are given in the following lemma.

Lemma 20. For any pair (i, j) such that i 6= j:

• i) |ψm(ti − tj)| . d2

m4∆4 .
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• ii) |∂uψm(ti − tj)| . d2

m3∆4

• iii) |∂2
u,vψm(ti − tj)| . d2

m2∆4 .

• iv) |∂3
u,v,wψm(ti − tj)| . d2

m∆4 .

Proof. In what follows, we deliberately choose to omit the multiplicative constants since the
rest of the paragraph will be managed in the same way.
Point i): we use |sinc(x)| ≤ |x|−1 and remark that ‖ti − tj‖2 ≥ ∆ so that

d∑
`=1

(t`i − t`j)2 ≥ ∆2.

We then deduce that

ψm(ti − tj) =
d∏
`=1

sinc(m(t`i − t`j))4 ≤ 1

m4(∆2/d)2

because one coordinate `0 exists such that |t`0i − t
`0
j |2 ≥ ∆2d−1.

Point ii): we use Lemma 18, Lemma 19 and

∂uψ(t) = g′(tu)
∏
`6=u

g(t`),

associated with |g(x)| ∨ |g′(x)| . 1
|x| . It yields

|∂uψm(ti − tj)| . m
d1/2

m∆

(
d1/2

m∆

)3

.
d2

m3∆4
.

We then obtain ii).
Point iii): we still use Lemma 18 and Lemma 19, the fact that

∂2
u,vψ(t) = 1u6=vg

′(tu)g′(tv)
∏

` 6=u,` 6=v
g(t`) + 1u=vg

′′(tu)
∏
`6=u

g(t`)

and |g(x)| ∨ |g′(x)| ∨ |g′′(x)| . 1
|x| . It leads to

|∂2
u,vψm(ti − tj)| . m2

[
d1/2

m∆

d3/2

(m∆)3
+

d

(m∆)2

d

(m∆)2

]
.

d2

m2∆4
.

Point iv): the proof follows the same lines with the help of the previous lemmas, we check that

|∂3
u,v,wψm(ti − tj)| . m3

[
d1/2

m∆

d3/2

(m∆)3
+
d1/2

m∆

d1/2

m∆

d

(m∆)2
+

d3/2

(m∆)3

d1/2

m∆

]
.

d2

m∆4
.
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