

Si and Si-rich silicon-nitride waveguides for optical transmissions and nonlinear applications around 2 μ m

Manon Lamy, C. Finot, C. Lacava, G. Roelkens, B. Kuyken, A. Parriaux, G. Millot, P. Petropoulos, Kamal Hammani

▶ To cite this version:

Manon Lamy, C. Finot, C. Lacava, G. Roelkens, B. Kuyken, et al.. Si and Si-rich silicon-nitride waveguides for optical transmissions and nonlinear applications around 2 μ m. 21th International Conference on Transparent Optical Network (ICTON), Jul 2019, Angers, France. hal-02190038

HAL Id: hal-02190038

https://hal.science/hal-02190038

Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Si and Si-Rich Silicon-Nitride Waveguides for Optical Transmissions and Nonlinear Applications Around 2 μm

Mamon Lamy¹, Christophe Finot¹, Cosimo Lacava², Günther Roelkens³, Bart Kuyken³, Alexandre Parriaux¹, Guy Millot¹, Periklis Petropoulos², and Kamal Hammani¹

¹ Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne-Franche-Comté, 9 av. A. Savary, 21078 Dijon cedex, France

e-mail: kamal.hammani@u-bourgogne.fr

ABSTRACT

We show that cm-long silicon and silicon-rich silicon nitride waveguides with subwavelength transverse dimensions can efficiently sustain high-speed transmissions at 2 μ m. We report the transmission of a 10 Gbit/s signal with negligible power penalty. Parametric conversion in both continuous and pulsed pump regimes is also demonstrated, as well as the spectral broadening of picosecond pulses.

Keywords: silicon waveguide, Si-rich silicon-nitride waveguides, 2 μm optical communications, wavelength conversion, self-phase modulation.

1. INTRODUCTION

In recent years a number of experiments have explored the potential of various materials in the $2-\mu m$ spectral region, with an emphasis on components having subwavelength transverse dimensions to ensure a high density of the photonic circuitry. For instance, efficient data transmission at 10-Gbit/s has been reported using different material platforms such as silicon germanium [1] and titanium dioxide [2]. However, no high bit-rate transmission has ever been reported at wavelengths around 2 μm in either silicon on insulator or any other CMOS-compatible platform. Here, we demonstrate for the first time, penalty-free transmission of a 10-Gbit/s on-off keying signal at 1.98 μm in cm-long Si and Si-rich silicon nitride (SRN) waveguides.

In order to fulfil the need of transparent optical networks utilizing wavelength division multiplexing around 2 μ m, frequency conversion is a critical operation that should ideally be realized all-optically. Experimental demonstrations around 2 μ m have already been reported in silicon devices that exhibit a large third-order nonlinear coefficient with either picosecond pulses [3,4] or continuous wave pumping [5,6]. Stoichiometric Si₃N₄ is another candidate material for applications at 2 μ m. However, while it benefits from the absence of two-photon absorption at these wavelengths, its nonlinearity is much lower than silicon. To overcome this limitation, SRN has been explored, since it offers the possibility to precisely engineer both the linear and nonlinear properties of waveguides at the required wavelengths and provides enhanced flexibility in designing low dispersion and highly nonlinear optical structures, operating at high optical powers [7-9]. Examples of parametric conversion in the C-band [7-9] as well as spectral broadening of femtosecond pulses around 1550 nm [10, 11] have been discussed. Here, we show that the same Si or SRN waveguide structure as the one involved for transmission is also suitable for parametric wavelength conversion in the 2- μ m range. Nonlinear spectral broadening of picosecond pulses around 2 μ m in SRN is also reported for the first time to the best of our knowledge.

2. WAVEGUIDES UNDER STUDY

A schematic of the waveguide cross sections of the Si and SRN waveguides we tested is shown in Fig. 1.

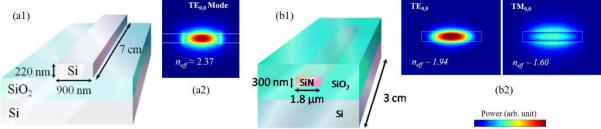


Figure 1: (a) Structure of the waveguides under investigation (panels 1) and examples of the power distribution of the fundamental quasi TE-mode and quasi-TM mode (panels 2, results from a finite difference eigenmode solver) of the Si and SRN waveguides (panels a and b, respectively).

Details of the fabrication can be found in [5] and [12] for the Si and SRN components respectively. The Si waveguides are 900 nm wide and 220 nm thick and samples of 7 and 2 cm length have been investigated. They are single-mode around 2 μ m with an effective area as small as 0.18 μ m² leading to a nonlinear parameter of 136 W⁻¹m⁻¹. An important design parameter has been the width of the waveguides, which is crucial in

² Optoelectronics Research Centre, University of Southampton, SO17 1BJ, Southampton, United Kingdom ³ Photonics Research Group, Ghent University, imec, 9052 Ghent, Belgium

determining the dispersion profile of the Si waveguide. A width of 900 nm ensures that the waveguide operates in the slightly anomalous regime of dispersion at $2 \mu m$.

The SRN waveguide is 3.5-cm long and can sustain at least the propagation of the fundamental quasi-TE and quasi-TM modes. Its dimensions are much larger in this case (1800 nm \times 300 nm), leading to a significantly lower nonlinear coefficient relative to the Si waveguides of our experiments. Owing to the rectangular shape of the waveguide, the properties of the two propagation modes differ significantly. Whereas the quasi-TE mode is highly confined within the SRN core, the quasi-TM mode is much more delocalized and a non-negligible part of the field propagates within the SiO₂ cladding. This difference in the field confinement is also reflected in the effective area that is estimated to be 0.86 μ m² and 4.75 μ m² for the quasi-TE and quasi-TM modes respectively. The design of this SRN component has not been optimized for efficient dispersion management, therefore its dispersion is mainly imposed by the strong normal dispersion of the material.

3. EXPERIMENTAL SETUP

In order to demonstrate the suitability of the devices for 2-µm optical communications, we have implemented the experimental setup depicted in Fig. 2a (more details available in [13]) and based on 2-µm commercially available devices. The transmitter (TX) was based on an intensity modulated laser diode centered at 1981 nm by means of a Niobate-Lithium modulator (IM). Then a first thulium doped fiber amplifier (TDFA) was used to boost the signal before injection into the waveguide. Light coupling to the components was achieved through butt-coupling assisted with lensed fibers. For the SRN case, due to the two-moded nature of the waveguide, the input polarization highly impacts the coupling efficiency. The receiver (RX) used a second TDFA. An optical bandpass filter (OBPF) was also inserted at the output of the system in order to limit the accumulation of amplified spontaneous emission from the TDFAs. An optical spectrum analyzer (OSA) was used to evaluate the optical signal to noise ratio (OSNR).

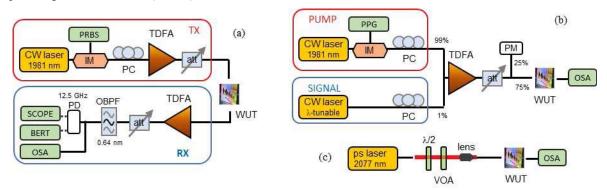


Figure 2. Experimental setups used for (a) 10-Gbit/s transmissions, (b) wavelength conversion.

A second aspect of our work is to evaluate the potential of our waveguides for wavelength conversion applications (Fig. 2b). A CW laser tunable between 1965 and 1985 nm was used to generate a signal wave, while the pump beam was kept constant. By means of an intensity modulator driven by an electrical pulse pattern generator (PPG), we were able to study the wavelength conversion process in continuous or pulsed regimes with a typical pump duration of 100 ps. The delay between two consecutive pulses can be adjusted from 200 ps to 1.6 ns. The pump and signal waves were combined using a coupler before being simultaneously amplified by a TDFA. At the output of the system, an OSA was used to evaluate the conversion efficiency (CE) defined here as the ratio between the output powers of the signal and idler waves.

In a third experiment (Fig. 2c), we also characterize the nonlinear behavior of the SRN waveguide through the broadening of 1.9 ps pulses delivered by a fiber laser with a central frequency of 2077 nm and a repetition rate of 43.2 MHz. In order to limit self-phase modulation in any fiberized components, free-space injection using a microscope objective lens is favored, whereas a $\lambda/2$ waveplate was used to launch into the TE mode and a variable optical attenuator (VOA) to control the input peak power.

4. EXPERIMENTAL RESULTS

We have summarized the results obtained for the 10-Gbit/s transmission at 2 μ m in Fig. 3 for a 7-cm long Si waveguide and the SRN waveguide operating in the TE modes of propagation. The typical average power launched to the two waveguides was at the order of mW. Eye-diagrams are provided in panels 1 and 2 and stress that widely open eyes were obtained. The quality of the 10-Gbit/s transmitted signal was quantitatively assessed through measurements of the bit-error-rate as a function of the OSNR on the receiver (panels 3). In all cases, BERs well below 10^{-9} were measured. No significant penalty was observed after transmission through the SRN waveguide whereas a 1 dB penalty, attributed to a residual Fabry-Perot effect has been recorded for the Si waveguide.

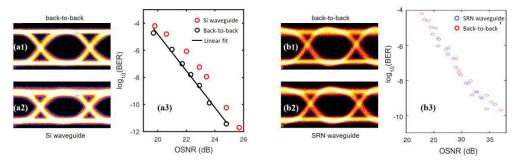


Figure 3. 10-Gbit/s eye diagram recorded in the back-to-back configuration compared to eye diagrams recorded after propagation in the WUT (panels 1 and 2 respectively). Bit-error-rate measurements (BER) as a function of OSNR (panels 3). Results for a 7-cm long Si waveguide and a 3-cm long SRN waveguide are plotted on panel (a) and (b) respectively.

Figure 4 shows the conversion efficiency as a function of the signal wavelength for the two waveguide structures with an estimated input average pump power of 12 dBm. A conversion efficiency as high as -25 dB is demonstrated with continuous-wave pumping in the 2-cm long Si waveguide. A conversion window over 70 nm is demonstrated for the dispersion engineered Si component with an efficiency up to close -10 dB recorded with a pulsed pump. Despite the relatively large effective mode area in the SRN waveguide, conversion efficiencies of \sim -24 dB are measured when using a pulsed pump.

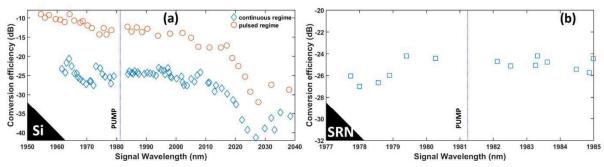


Figure 4. Evolution of the conversion efficiency as a function of the signal or idler wavelength achieved for a pump at 1981 nm. Results have been recorded (a) for the 2-cm long Si waveguide (for continuous operation and for the pulsed regime for a peak power increased by a factor 16) and (b) for the SRN waveguide (in the pulsed regime).

Figure 5 summarizes the evolution of the optical spectrum recorded at the output of the SRN device according to the input peak power. A spectral broadening of the pulse is visible, the spectral width at -30 dB being increased from 28.2 nm up to 58.6 nm. We have carefully checked that this broadening resulted from the propagation in the TE-mode. This represents the first evidence of self-phase modulation in SRN in the picosecond pulse regime at $2 \mu m$.



Figure 5. Evolution of optical spectrum at the output of the SRN waveguide as a function of the input power.

5. CONCLUSION

We have demonstrated that both silicon and silicon-rich silicon nitride waveguides can sustain error-free transmission of high-speed telecom signals around 2 μ m in cm-long devices without any significant penalty. We have also shown that such nonlinear photonic chips are suitable for frequency conversion process. Regarding the SRN technology, this first demonstration of wavelength conversion at 2 μ m, as well as the evidence of self-phase modulation induced spectral broadening are promising and significant improvements are expected with a design aiming at tailoring the waveguide dispersion.

ACKNOWLEDGEMENTS

This work is financially supported by PARI PHOTCOM Région Bourgogne, by Carnot Arts Institute (PICASSO 2.0 project), by the Institut Universitaire de France, by FEDER-FSE Bourgogne 2014/2020 and by the the french "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-0003). The research work has benefited from the PICASSO experimental platform of the University of Burgundy.

REFERENCES

- [1] M. Lamy *et al.*, "Ten gigabit per second optical transmissions at 1.98 μm in centimetre-long SiGe waveguides," (in En), *Electron. Lett.*, vol. 53, no. 17, pp. 1213-1214, 2017.
- [2] M. Lamy, C. Finot, J. Arocas, L. Markey, J. Weeber, and K. Hammani, "10 Gbps data transmission in TiO₂ waveguides at 2 um," *Appl. Sci.*, vol. 7, p. 631, 2017.
- [3] S. Zlatanovic *et al.*, "Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source," *Nat. Photon.*, vol. 4, p. 561, 05/23/online 2010.
- [4] B. Kuyken, X. Liu, G. Roelkens, R. Baets, J. R. M. Osgood, and W. M. J. Green, "50 dB parametric onchip gain in silicon photonic wires," *Opt. Lett*, vol. 36, no. 22, pp. 4401-4403, 2011/11/15 2011.
- [5] X. Liu, R. M. Osgood Jr, Y. A. Vlasov, and W. M. J. Green, "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides," *Nat. Photon.*, vol. 4, p. 557, 05/23/online 2010.
- [6] R. K. W. Lau *et al.*, "Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides," *Opt. Lett.*, vol. 36, no. 7, pp. 1263-1265, 2011/04/01 2011.
- [7] M. R. Dizaji, C. J. Krückel, A. Fülöp, P. A. Andrekson, V. Torres-Company, and L. R. Chen, "Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing," *Opt. Express*, vol. 25, no. 11, pp. 12100-12108, 2017/05/29 2017.
- [8] C. Lacava, S. May, D. J. Richardson, G. T. Reed, M. Sorel, and P. Petropoulos, "All-optical wavelength conversion of phase-encoded signals in silicon-rich silicon nitride waveguides," in *Proc. Conference on Lasers and Electro-Optics*, San Jose, California, 2018, paper JTu2A.64.
- [9] K. J. A. Ooi *et al.*, "Pushing the limits of CMOS optical parametric amplifiers with USRN:Si₇N₃ above the two-photon absorption edge," *Nat Commun*, vol. 8, p. 13878, 01/04/online 2017.
- [10] J. W. Choi, G. F. R. Chen, D. K. T. Ng, K. J. A. Ooi, and D. T. H. Tan, "Wideband nonlinear spectral broadening in ultra-short ultra silicon rich nitride waveguides," *Sci. Rep.*, vol. 6, p. 27120, 06/08/online 2016.
- [11] T. Wang *et al.*, "Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides," *Laser Photonics Rev.*, vol. 9, no. 5, pp. 498-506, 2015.
- [12] C. Lacava *et al.*, "Si-rich Silicon nitride for nonlinear signal processing applications," *Sci. Rep.*, vol. 7, no. 1, p. 22, 2017/02/02 2017.
- [13] M. Lamy *et al.*, "Silicon Waveguides for high-speed optical transmissions and parametric conversion around 2 µm," *IEEE Photon. Technol. Lett.*, vol. 31, no. 2, pp. 165-168, 2019.