p-value presheaves

Erwan Beurier, Dominique Pastor

To cite this version:

Erwan Beurier, Dominique Pastor. p-value presheaves. [Research Report] RR-2019-02-SC, IMT Atlantique. 2019. hal-02190029v2

HAL Id: hal-02190029 https://hal.science/hal-02190029v2

Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IMT Atlantique

Dépt. Signal \& Communications
Technooôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
Téléphone: +33 (0)2 29001304
Télécopie: +33 (0)2 29001012
URL: www.imt-atlantique.fr

Collection des rapports de recherche d'IMT Atlantique
IMTA-RR-2019-02-SC

p-value presheaves

Erwan Beurier
IMT Atlantique
Dominique Pastor
IMT Atlantique

Date d'édition : August 28, 2019
Version: 1.0

IMT Atlantique

Bretagne-Pays de la Loire
École Mines-Télécom

Contents

1. Introduction 2
2. Notation 2
3. P-values 2
3.1. This is not a sheaf 2
3.2. Study of the presheaf 5
4. First random results 5
4.1. About p -value sheaves 5
4.2. About sheaf morphisms 9
4.3. About predicates 13
5. Study of the category of p-values 15
6. Natural transformation between NP and RDT 16
Index 19
References 19

1. Introduction

In this preliminary work, we study the sheaf-ness properties of the p-value. In particular, p-values are presheaves and become sheaves if we add a bottom element to the initial topology. This trick is valid because p-values are fuzzy sets!

We also study the basic properties of the presheaf topos of p-values. Our purpose here is to exhibit the tools provided by topos theory to "approximate" p-values of Neyman-Pearson tests by p-values of other types of tests. In this report, we provide the basic tools but do not achieve the approximation yet!

2. Notation

$\operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ is the set of all Lebesgue-measurable subsets of \mathbb{R}^{d}.

3. \mathbf{P}-values

Definition 3.1 (Test). A family of tests, or simply test, is a function $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ such that $a \leqslant a^{\prime} \Rightarrow T(a) \leqslant T\left(a^{\prime}\right)$.

Remark 3.2. If $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ is a test, then for $a \in[0,1], T(a)$ is the rejection region of the null hypothesis with size a.

Definition 3.3 (p-value). Let T be a test.
For $x \in \mathbb{R}^{n}$, the p-value of x is defined as:

$$
\operatorname{pval}_{T}(x)=\inf (\{a \in[0,1] \mid x \in T(a)\})
$$

The p -value of x is the minimum size of the test that puts x into the rejection region.
Definition 3.4 (Presheaf). Let \mathscr{C} be a small category.
A presheaf is a functor $\mathscr{C}^{\mathrm{op}} \rightarrow$ Sets.
Now consider the total order $([0,1], \leqslant)$ (in fact, it is a complete lattice). It defines a small category that we will denote by \mathscr{U}.

Definition 3.5 (P-value presheaf). Let $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ be a test.
The p-value presheaf for T is the following functor:

$$
P_{T}:\left\{\begin{array}{ccc}
\mathscr{U}^{\mathrm{op}} & \longrightarrow & \text { Sets } \\
a & \longmapsto & \left\{x \in \mathbb{R}^{n} \mid \operatorname{pval}_{T}(x) \geqslant a\right\} \\
a \subseteq b & \longmapsto & \left\{\begin{array}{ccc}
P_{T}(b) & \longrightarrow & P_{T}(a) \\
x & \longmapsto & x
\end{array}\right.
\end{array}\right.
$$

3.1. This is not a sheaf

Let us introduce the definition of a sheaf. We generally use topological spaces for that purpose.
Definition 3.6 (Sheaf). Let $(X, \mathrm{Op}(X))$ be a topological space, we consider the category $\mathrm{Op}(X)^{\mathrm{op}}$.
A sheaf $S: \mathrm{Op}(X)^{\mathrm{op}} \rightarrow$ Sets is a presheaf with the following condition, called sheaf condition:
(sheaf condition) For all open set $U \in \mathrm{Op}(X)$, for all covering $U=\bigcup_{a \in A} U_{a}$, and for all family $\left(x_{a}\right)_{a \in A} \in \prod_{a \in A} S\left(U_{a}\right)$ such that for all $a, b \in A$, we have $x_{a \mid U_{a} \cap U_{b}}=x_{b} \mid U_{a} \cap U_{b}$, there exists a unique $x \in S(U)$ such that $\forall a \in A, x_{\mid a}=x_{a}$.

A family $\left(U_{a}\right)_{a \in A}$ such that $U=\bigcup_{a \in A} U_{a}$ is called a covering of U. A family $\left(x_{a}\right)_{a \in A} \in \prod_{a \in A} S\left(U_{a}\right)$ such that for all $a, b \in A$, we have $x_{a}\left|U_{a} \cap U_{b}=x_{b}\right| U_{a} \cap U_{b}$ is called a matching family of S-sections. When
$x_{a \mid U_{a} \cap U_{b}}=x_{b} \mid U_{a} \cap U_{b}$, we also say that x_{a} and x_{b} agree on their common domain. The unique $x \in S(U)$ such that $\forall a \in A, x_{\mid a}=x_{a}$ is called the gluing of $\left(x_{a}\right)_{a \in A}$.

However, our p-value presheaf is not defined on a topological space, but on a partial order. The notion of sheaves can be extended from a topological space to a complete Heyting algebra. Besides, our partial order is a complete Heyting algebra.
Remark 3.7 (Introducing morphisms for sheaves on Heyting algebras). The following is adapted from [1, page 376, section 15.5.3].

Let $(H, \leqslant, \wedge, \vee)$ be a complete Heyting algebra, and let $P: H^{\text {op }} \rightarrow$ Sets be a presheaf over H.
Let $\left(h_{a}\right)_{a \in A}$ a subset of elements of H and let $h=\bigvee_{a \in A} h_{a}$ be their supremum (it always exists because
H is complete). We denote the restriction functions by $r_{a}^{h}: P(h) \rightarrow P\left(h_{a}\right)$. There is a unique function $r^{h}: P(h) \rightarrow \prod_{a \in A} P\left(h_{a}\right)$ such that $\pi_{P\left(h_{a}\right)} \circ r^{h}=r_{a}^{h}$ (definition of product). Similarly, for every $a, b \in A$, there are functions $p_{a, b}^{h}: P\left(h_{a}\right) \rightarrow P\left(h_{a} \wedge h_{b}\right)$ and $q_{a, b}^{h}: P\left(h_{b}\right) \rightarrow P\left(h_{a} \wedge h_{b}\right)$. These also combine into: $p^{h}, q^{h}: \prod_{a \in A} P\left(h_{a}\right) \rightarrow \prod_{a, b \in A} P\left(h_{a} \wedge h_{b}\right)$.

We can now define sheaves on Heyting algebras.
Definition 3.8 (Sheaf on a complete Heyting algebra). Let $\left(H, \leqslant, \wedge, \vee, 0_{H}, 1_{H}\right)$ be a complete Heyting algebra. Let $S: H^{\mathrm{op}} \rightarrow$ Sets be a presheaf over H.

The presheaf S is called a sheaf when the following condition is verified:

- for all $\left(h_{a}\right)_{a \in A} \in H^{A}$, if $h=\bigvee_{a \in A} h_{a}$ and $r^{h}: S(h) \rightarrow \prod_{a \in A} S\left(h_{a}\right), p^{h}: \prod_{a \in A} S\left(h_{a}\right) \rightarrow \prod_{a, b \in A} S\left(h_{a} \wedge h_{b}\right)$ and $q^{h}: \prod_{a \in A} S\left(h_{a}\right) \rightarrow \prod_{a, b \in A} S\left(h_{a} \wedge h_{b}\right)$ are functions as defined in Remark 3.7, then the following diagram is an equaliser:

$$
S(h) \xrightarrow{r^{h}} \prod_{a \in A} S\left(h_{a}\right) \xrightarrow[q^{h}]{\stackrel{p^{h}}{\longrightarrow}} \prod_{a, b \in A} S\left(h_{a} \wedge h_{b}\right)
$$

For the sake of understandability, we will keep the same terminology as introduced with topological spaces, namely:

- A family $\left(h_{a}\right)_{a \in A}$ such that $h=\bigvee_{a \in A} h_{a}$ is called a covering of h.
- A family $\left(x_{a}\right)_{a \in A} \in \prod_{a \in A} S\left(h_{a}\right)$ such that for all $a, b \in A$, we have $x_{a \mid h_{a} \wedge h_{b}}=x_{b} \mid h_{a} \wedge h_{b}$, is called a matching family of S-sections. When $x_{a}\left|h_{a} \wedge h_{b}=x_{b}\right| h_{a} \wedge h_{b}$, we also say that x_{a} and x_{b} agree on their common domain.
- The unique $x \in S(h)$ such that $\forall a \in A, x_{\mid h_{a}}=x_{a}$ is called the gluing of $\left(x_{a}\right)_{a \in A}$.

Lemma 3.9. If $S: H \rightarrow$ Sets is a sheaf, then $S\left(0_{H}\right) \cong 1$.
Proof. Consider the empty covering $0_{H}=\bigvee_{a \in \emptyset} h_{a}$. The products $\prod_{a \in A} S\left(h_{a}\right)$ and $\prod_{a, b \in A} S\left(h_{a} \wedge h_{b}\right)$ are empty: $\prod_{a \in A} S\left(h_{a}\right) \cong \prod_{a, b \in A} S\left(h_{a} \wedge h_{b}\right) \cong 1$. Thus, the arrows p^{0} and q^{0} are the same and are the identity id ${ }_{1}$. The equaliser of:

$$
S\left(0_{H}\right) \xrightarrow{r^{0}} 1 \xrightarrow[q^{0}]{\stackrel{p^{0}}{\longrightarrow}} 1
$$

is obviously a terminal object 1 ; in other words, if S is a sheaf, then $S\left(0_{H}\right) \cong 1$.

Proposition 3.10. Let $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ be a test and let P_{T} be its p-value presheaf.
Then, P_{T} is not a sheaf.
Proof. Suppose P_{T} is a sheaf. By Lemma 3.9, $P_{T}(0) \cong 1$. However:

$$
P_{T}(\emptyset)=\left\{x \in \mathbb{R}^{n} \mid \operatorname{pval}_{T}(x) \geqslant 0\right\}=\mathbb{R} \neq 1
$$

Remark 3.11. The fact that P_{T} is not a sheaf also means that there are coverings $h=\bigvee_{a \in A} h_{a}$ that do not lead to a unique gluing (either there is none, or there is more than one). In our case, the empty covering is the unique covering that does not find its gluing. In fact, the p-value presheaf only fails to be a sheaf on one covering.

Let $h=\bigvee_{a \in A} h_{a}$ be a cover such that $A \neq \emptyset$. Let $\left(x_{a}\right)_{a \in A}$ be a matching family of P_{T}-sections over $\left(h_{a}\right)_{a \in A}: x_{a} \in P_{T}\left(h_{a}\right)$ and $x_{a \mid h_{a} \wedge h_{b}}=x_{b \mid h_{a} \wedge h_{b}}$.

By definition of P_{T}, we have:

$$
x_{a \mid h_{a} \wedge h_{b}}=P_{T}\left(h_{a} \wedge h_{b} \leqslant h_{a}\right)\left(x_{a}\right)=x_{a}
$$

which yields, for all $a, b \in A, x_{a}=x_{b}$. Let $x=x_{a}$; then $\forall a \in A$, we have $x \in P_{T}\left(h_{a}\right)$, so pval ${ }_{T}(x) \geqslant h_{a}$ and $\operatorname{pval}_{T}(x) \geqslant \sup _{a \in A}\left(h_{a}\right)=h$ and $x \in P_{T}(h)=P_{T}\left(\bigvee_{a \in A} h_{a}\right)$. Consequently, x is the unique gluing of $\left(x_{a}\right)_{a \in A}$, and P_{T} satisfies the sheaf condition whenever the index family A is not empty.

When A is empty, then the gluing $x \in A$ doesn't exist.
This problem was already known in [1, p401, part. 15.6.6], not for p -values, but in the context of fuzzy logic. We consider a Heyting algebra H. A fuzzy set (over H) is a pair (S, s) such that $S \in$ Sets and $s: S \rightarrow H$. The category of fuzzy sets over H is simply the slice Sets/ H (where H is a lattice).

Let (S, s) be a fuzzy set. We define the presheaf:

$$
P:\left\{\begin{array}{ccc}
H & \longrightarrow & \text { Sets } \\
h & \longmapsto\{x \in S \mid s(x) \geqslant h\}
\end{array}\right.
$$

This presheaf is very similar to that of our p -value presheaf. However, both suffer from the same problem: they are almost sheaves, and the part that fails is the image of the empty set or least element, which contains the whole set instead of being the terminal object. The solution proposed by [1] is to change the Heyting algebra for another Heyting algebra, adding a new element \perp that becomes the new least element, and by forcing $P(\perp)=1$.

Let $\mathscr{U}^{+}=\mathscr{U} \cup\{\perp\}$. Then, let $\leqslant \mathscr{U}^{+}$be the smallest partial order that contains:

$$
\left\{(\perp, U) \in \mathscr{U}^{+} \times \mathscr{U}^{+}\right\} \cup \subset_{\mathscr{U}}
$$

where $C_{\mathscr{U}}$ is the inclusion of open subsets in \mathscr{U}.
It is easy to see that:
Proposition 3.12. \mathscr{U}^{+}is a complete Heyting algebra.
In fact, the pair $\left(\mathscr{U}^{+}, \leqslant \mathscr{U}^{+}\right)$is simply \mathscr{U} with a new initial element. As it is still a Heyting algebra, we can define a sheaf on it.

Definition 3.13 (P-value sheaf). Let $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ be a test.
The p-value sheaf for T is the following functor:

Proposition 3.14. The p-value sheaf is an actual sheaf.
Proof. An application of [1, Proposition 15.6.8].

3.2. Study of the presheaf

The use of sheaves is beyond our purposes. We actually only need a topos, and that topos doesn't need to be a sheaf topos. A presheaf topos is enough. Consider the presheaf topos based on the complete Heyting algebra $[0,1]$: $\mathbf{P S h}([0,1])$. Its subobject classifier is:

$$
\Omega:\left\{\begin{array}{rlc}
\mathscr{U}^{+} & \longrightarrow & \text { Sets } \\
a & \longmapsto & \left\{a^{\prime} \mid a^{\prime} \leqslant a\right\}=[0, a] \\
a \leqslant b & \longmapsto & \left\{\begin{array}{ccc}
\Omega(b) & \longmapsto & \Omega(a) \\
c & \longmapsto & a \wedge c=\min (a, c)
\end{array}\right.
\end{array}\right.
$$

Let T be a test and P_{T} its associated p-value presheaf. A presheaf morphism $p: P_{T} \rightarrow \Omega$ makes the following diagram commute for all $a \leqslant b$:

For $x \in P_{T}(b)$, we have:

$$
\begin{aligned}
p_{a} \circ P_{T}(u)(x) & =\Omega(u) \circ p_{b}(x) \\
p_{a}(x) & =p_{b}(x) \wedge a
\end{aligned}
$$

The canonical example is the following natural transformation:

$$
p_{a}:\left\{\begin{array}{clc}
P_{T}(a) & \longrightarrow & \Omega(a) \\
x & \longmapsto & a
\end{array}\right.
$$

4. First random results

4.1. About p-value sheaves

We have already concluded that $[0,1]$, with the usual \wedge and \vee operators, is a complete Heyting algebra. Considering it as a proset category \mathscr{U}, being a complete Heyting algebra says that:

Proposition 4.1. \mathscr{U} has all small limits and colimits.
Proof. Let $D: \mathscr{I} \rightarrow \mathscr{U}^{\mathrm{op}}$ be a diagram in $\mathscr{U}^{\mathrm{op}}$. Then:

$$
\begin{aligned}
\operatorname{Colim}(D) & =\sup _{i \in \mathrm{Ob}_{\mathscr{I}}} D(i)=\bigwedge_{i \in \mathrm{Ob}_{\mathscr{I}}} D(i) \\
\operatorname{Lim}(D) & =\inf _{i \in \mathrm{Ob}_{\mathscr{I}}} D(i)=\bigvee_{i \in \mathrm{Ob}_{\mathscr{I}}} D(i)
\end{aligned}
$$

Note that the sup becomes a Λ, and the inf becomes a \vee, because we are considering $\mathscr{U}^{\text {op }}$ and not \mathscr{U}. Also note that the infima and suprema always exist because we are in a complete Heyting algebra.

Proposition 4.2. For any test T, its p-value presheaf P_{T} is continuous and cocontinuous.
Proof. Let $D: \mathscr{I} \rightarrow \mathscr{U}^{\text {op }}$ be any (small) diagram in $\mathscr{U}^{\text {op }}$.
We only consider the case of a limit; the proof is very similar for colimits.

$$
\begin{aligned}
P_{T}(\operatorname{Lim}(D)) & =P_{T}\left(\bigvee_{i \in \mathscr{I}} D(i)\right) \\
& =\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant \bigvee_{i \in \mathscr{I}} D(i)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \forall i \in \mathscr{I}, \operatorname{pval}_{T}(x) \geqslant D(i)\right\} \\
& =\bigcap_{i \in \mathscr{I}}\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant D(i)\right\} \\
& =\bigcap_{i \in \mathscr{I}} P_{T}(D(i))
\end{aligned}
$$

We now have to check that $\bigcap_{i \in \mathscr{I}} P_{T}(D(i)) \cong \operatorname{Lim}\left(P_{T} \circ D\right)$.
For all $i \rightarrow j \in \mathscr{I}$, we have $P_{T}(D(i)) \subset P_{T}(D(j))$. We denote by $\iota_{i, j}=P_{T}(D(j) \rightarrow D(i))=$ $P_{T}(D(i) \subset D(j)): P_{T}(D(i)) \rightarrow P_{T}(D(j))$ the inclusion mapping between $P_{T}(D(i))$'s. We also denote by $\iota_{i}: \bigcap_{i \in \mathscr{I}} P_{T}(D(i)) \rightarrow P_{T}(D(i))$ the inclusion mapping of the intersection. For all $i \rightarrow j \in \mathscr{I}$, we have $\iota_{i, j} \circ \iota_{i}=\iota_{j}$, so that $\iota=\left(\iota_{i}: \bigcap_{i \in \mathscr{I}} P_{T}(D(i)) \rightarrow P_{T}(D(i))\right)_{i \in \mathscr{I}}$ is a cone to $P_{T} \circ D$.

Let (A, α) be any cone to $P_{T} \circ D$. We denote the $P_{T}(D(i))$-components of α by $\alpha_{i}: A \rightarrow P_{T}(D(i))$. For all $i \rightarrow j \in \mathscr{I}$, and for all $x \in X$, we have $\iota_{i, j} \circ \alpha_{i}(x)=\alpha_{j}(x)=\alpha_{i}(x)$.

So in fact, $\alpha_{i}(X)=\alpha_{j}(X) \subset P_{T}(D(i))$, which yields that, for all $i \in \mathscr{I}, \alpha_{i}(X) \subset \bigcap_{i \in \mathscr{I}} P_{T}(D(i))$.
Let u be such that:

$$
u:\left\{\begin{array}{rlc}
X & \longrightarrow & \bigcap_{i \in \mathscr{I}} P_{T}(D(i)) \\
x & \longmapsto & \alpha_{i}(x)
\end{array}\right.
$$

for any of the $i \in \mathscr{I}$, because $\alpha_{j}(x)=\alpha_{i}(x)$. Then for all $i \in \mathscr{I}$, we have $\iota_{i} \circ u=\alpha_{i}$.
It is also easy to check the unicity of that u : suppose $u, u^{\prime}: X \rightarrow \bigcap_{i \in \mathscr{I}} P_{T}(D(i))$, then for all $x \in X$, we have:

$$
\begin{aligned}
\iota_{i} \circ u(x) & =\alpha_{i}(x)=\iota_{i} \circ u^{\prime}(x) \\
u(x) & =u^{\prime}(x)
\end{aligned}
$$

which leads to $u=u^{\prime}$.
Consequently, $\bigcap_{i \in \mathscr{I}} P_{T}(D(i))$ is the limit of $P_{T} \circ D$.
We know that all p-value presheaves are continuous. The question is: is every continuous presheaf a p-value presheaf? In other words, is any continuous presheaf $P: \mathscr{U}^{\mathrm{op}} \rightarrow$ Sets a P_{T} for some test T ? We have to restrict our search for now.

Definition 4.3 (Lebesgue presheaf). Let $S: \mathscr{U}^{\mathrm{op}} \rightarrow$ Sets be a presheaf.
The presheaf S is called a Lebesgue presheaf when for all $a \in \mathscr{U}^{\mathrm{op}}, S(a) \in \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$.
Definition 4.4 (Inclusive presheaf). Let $S: \mathscr{U}^{\mathrm{op}} \rightarrow$ Sets be a presheaf.
The presheaf S is called inclusive when it sends every mapping $a \leqslant b$ to the inclusion mapping $S(a) \subset S(b)$.

Definition 4.5 (Presheaf from a test). Let $S: \mathscr{U}^{\mathrm{op}} \rightarrow$ Sets be a presheaf and let $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ be a test.

We say that S comes from T if there exists a natural isomorphism $\alpha: S \rightarrow P_{T}$. We say that S comes from a test if there exists a test T such that S comes from T.

Lemma 4.6. Every continuous inclusive Lebesgue presheaf comes from a continuous test.
Proof. Let S be a continuous inclusive Lebesgue presheaf. Define $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ as:

$$
T(a)=\mathbb{R}^{d} \backslash S(a)
$$

The continuity of S gives the continuity of T. Let $A \subset[0,1]$:

$$
\begin{aligned}
\bigcup_{a \in A} T(a) & =\bigcup_{a \in A} \mathbb{R}^{d} \backslash S(a) \\
& =\mathbb{R}^{d} \backslash \bigcap_{a \in A} S(a) \\
& =\mathbb{R}^{d} \backslash S(\sup (A)) \\
& =T(\sup (A))
\end{aligned}
$$

(The proof is the same for intersections.)
Then, let us compare S with the p-value presheaf associated with T :

$$
\begin{aligned}
P_{T}(a) & =\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant a\right\} \\
& =\mathbb{R}^{d} \backslash \bigcup_{b<a} T(b) \\
& =\mathbb{R}^{d} \backslash T(a) \\
& =S(a)
\end{aligned}
$$

As S is inclusive, we know that $S(a \leqslant b)=P_{T}(a \leqslant b)$. Consequently, S comes from T.
Corollary 4.7. For every p-value presheaf P_{T} associated to T, there exists a continuous test T^{\prime} such that $P_{T}=S_{T^{\prime}}$.

The following result is a small addition to the previous lemma.
Definition 4.8 (Mono-preserving functor). The functor $F: \mathscr{C} \rightarrow$ Sets is called mono-preserving when for all monomorphism $m: A \rightarrow B, F(m)$ is also monic. (The image of a mono is a mono.)

In our case, the presheaf $S: \mathscr{U}^{\text {op }} \rightarrow$ Sets will be mono-preserving when for all $a, b \in[0,1]$ such that $a \leqslant b$, we have $S(a \leqslant b)$ monic. (The image of an inequality is a monomorphism.)

Lemma 4.9. Continuous mono-inducing Lebesgue sheaves come from a test.
Proof. Let S be a continuous mono-inducing Lebesgue presheaf. For $a<b(a, b \in[0,1])$, we denote by $\sigma_{a, b}$ the arrow $\sigma_{a, b}=S(a<b)$.

As S is mono-inducing, $\sigma_{a, b}$ is monic. In Sets, every function $f: A \rightarrow B$ can be written as a $f=m \circ e$ where $e: A \rightarrow f(A)$ is epic, and $m: f(A) \rightarrow B$ is the canonical inclusion. But, if f is monic, then e is monic too, and in Sets, e becomes an isomorphism.

Then, for all $a \in[0,1]$, the arrow $\sigma_{0, a}: S(a) \rightarrow S(0)$ decomposes to $\sigma_{0, a}=m \circ e_{a}$, where $e_{a}: S(a) \rightarrow \sigma_{0, a}(S(a))$ is an isomorphism and $m: \sigma_{0, a}(S(a)) \rightarrow S(0)$ is the canonical inclusion. Note that for $a=0$, we have $\sigma_{0,0}=\mathrm{id}_{S(0)}=e_{0}$.

Let F be the following functor:

$$
F:\left\{\begin{array}{ccc}
\mathscr{U}^{\mathrm{op}} & \longrightarrow & \text { Sets } \\
a & \longmapsto & \sigma_{0, a}(S(a)) \\
a \leqslant b & \longmapsto & F(b) \subset F(a)
\end{array}\right.
$$

Let us study $e=\left(e_{a}\right)_{a \in[0,1]}$:

We have to prove that the square $(S(b), F(b), F(a), S(a))$ commutes, while we know that the other squares and triangles commute. For $x \in S(b)$, we have:

$$
\begin{aligned}
e_{a} \circ \sigma_{a, b}(x) & =F(0 \leqslant a) \circ e_{a} \circ \sigma_{a, b}(x) \\
& =e_{0} \circ \sigma_{0, a} \circ \sigma_{a, b}(x) \\
& =e_{0} \circ \sigma_{0, b}(x) \\
& =F(0 \leqslant b) \circ e_{b}(x) \\
& =e_{b}(x) \\
& =F(a \leqslant b) \circ e_{b}(x)
\end{aligned}
$$

So $e: S \rightarrow F$ is a natural transformation, and each component is an isomorphism, so e is a natural isomorphism. Then, some properties of S transfer to $F: F$ is a continuous presheaf. It is by definition inclusive and Lebesgue, so F comes from a test and so does S.

However, other presheaves unlikely come from a test. For example, any presheaf $\mathscr{U}^{\text {op }} \rightarrow$ Sets such that $\operatorname{card}(S(a))>2^{\aleph_{0}}$ for some $a \in \mathscr{U}$ will have trouble being isomorphic to \mathbb{R}.

4.2. About sheaf morphisms

Let us first study the sheaf morphisms between p -value sheaves $p: P_{R} \rightarrow P_{T}$.
Proposition 4.10 (Nesting property). Let $R, T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$ be two tests (of the same size or not). Let $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a function.

The function p defines a natural transformation $\bar{p}: P_{R} \rightarrow P_{T}=\left(p_{\mid P_{R}(a)}\right)_{a \in[0,1]} \Leftrightarrow$ for all $a \in[0,1]$, $p\left(P_{R}(a)\right) \subset P_{T}(a)$.

In other words, p defines a function between nested open sets, as in Figure 1.

Figure 1: Illustration of the nesting property of p. If $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ verifies this nesting property, then it defines a natural transformation between two p-value sheaves.

Proof. Easy deduction from the following natural transformation diagram:

Corollary 4.11. If $\bar{p}=\left(p_{a}\right)_{a \in[0,1]}$ is a natural transformation $P_{R} \rightarrow P_{T}$, then $p=\bigcup_{a \in A} p_{a}$ is a function that verifies the nesting property.

Proposition 4.12. For all $a \in[0,1], P_{T}(a)=\mathbb{R}^{d} \backslash\left(\bigcup_{b<a} T(b)\right)$.
Proof. By computation:

$$
\begin{aligned}
P_{T}(a) & =\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant a\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \inf _{x \in T(b)}(b \in[0,1]) \geqslant a\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \forall b<a, x \notin T(b)\right\} \\
& =\bigcap_{b<a} \mathbb{R}^{d} \backslash T(b) \\
& =\mathbb{R}^{d} \backslash\left(\bigcup_{b<a} T(b)\right)
\end{aligned}
$$

Corollary 4.13. For all $a \in[0,1]$, if $\bigcup_{b<a} T(b)=T(a)$ then $P_{T}(a)=\mathbb{R}^{d} \backslash T(a)$.
Example 4.14. Note that we are considering very general tests $T:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d}\right)$, so $\left(\bigcup_{b<a} T(b)\right)$ has no reason to be equal to $T(a)$. Let us give a counterexample.

Consider the following functions:

$$
\begin{aligned}
& f:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow \\
x & \longmapsto \begin{cases}x & \text { if } x<\frac{1}{2} \\
\frac{1}{2} x+\frac{1}{2} & \text { if } x \geqslant \frac{1}{2}\end{cases}
\end{array}\right. \\
& g:\left\{\begin{array}{clc}
] 0,1[& \longrightarrow & \mathbb{R} \\
x & \longmapsto & \tan \left(\pi x-\frac{\pi}{2}\right)
\end{array}\right. \\
& T:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow \\
a & \longmapsto & \begin{array}{ll}
\operatorname{Lbg}\left(\mathbb{R}^{d}\right) \\
\mathbb{R}^{d} & \\
l^{d} \circ f(a), g \circ f(a)[& \text { if } a<1
\end{array} \\
\text { if } a=1
\end{array}\right.
\end{aligned}
$$

The function f is strictly increasing and establishes a bijection $[0,1] \rightarrow\left[0, \frac{1}{2}\left[\cup\left[\frac{3}{4}, 1\right]\right.\right.$. Then g is bijective and strictly increasing, so $g \circ f$ is striclty increasing and injective, and finally T is stricly increasing in the Lebesgue set, so it is injective, and has a left inverse $\operatorname{Lbg}\left(\mathbb{R}^{d}\right) \rightarrow[0,1]$ (which is a size). In other words, T is a test. However:

$$
\begin{aligned}
\bigcup_{a<\frac{1}{2}} T(a) & \left.=\bigcup_{a<\frac{1}{2}}\right]-g \circ f(a), g \circ f(a)[\\
& =]-\lim _{a<\frac{1}{2}} g \circ f(a), \lim _{a<\frac{1}{2}} g \circ f(a)[\\
& =]-g\left(\lim _{a<\frac{1}{2}} f(a)\right), g\left(\lim _{a<\frac{1}{2}} f(a)\right)[\\
& =]-g\left(\frac{1}{2}\right), g\left(\frac{1}{2}\right)[\\
& \left.\subsetneq T\left(\frac{1}{2}\right)=\right]-g\left(\frac{3}{4}\right), g\left(\frac{3}{4}\right)[
\end{aligned}
$$

Definition 4.15 (Continuous test). Let T be a test. We call T a continuous test when, for all $A \subset[0,1]$, we have $\bigcup_{a \in A} T(a)=T(\sup (A))$ and $\bigcap_{a \in A} T(a)=T(\inf (A))$.

Note that this notion of continuity is closer to the categorical notion than the analytic notion. In the following, we give an example of such a continuous test.
Definition 4.16 (Likelihood ratio). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions, and let $x \in \mathbb{R}^{d}$.

The likelihood ratio of x being from $X \sim f_{1}$ instead of $X \sim f_{0}$, written $\Lambda^{f_{0}, f_{1}}(x)$ or simply $\Lambda(x)$ when there is no ambiguity, is the following function:

$$
\Lambda:\left\{\begin{aligned}
\mathbb{R}^{d} & \longrightarrow \\
x & \longmapsto \begin{cases}\frac{f_{1}(x)}{f_{0}(x)} & \text { if } f_{0}(x) \neq 0 \\
\infty & \text { if } f_{0}(x)=0 \text { and } f_{1}(x)>0 \\
0 & \text { if } f_{0}(x)=0 \text { and } f_{1}(x)=0\end{cases}
\end{aligned}\right.
$$

In the following, we consider $X \sim f_{0}$, and we restrict ourselves to the cases where $\Lambda(X)$ is an absolutely continuous random variable. This happens, using Jacobi's transformation formula [2], when $f_{0}>0$ and when both f_{0} and f_{1} are differentiable, for example when f_{0} and f_{1} are both Gaussian distributions. In this case, the function $k \rightarrow \mathrm{P}\left[\Lambda(X)>k \mid X \sim f_{0}\right]$ (which is the false alarm probability) is continuous and stricly decreasing, and has a continuous and strictly decreasing inverse which is described in the following definition.

Definition 4.17 (NP-threshold function). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions such that, if $X \sim f_{0}$ then $\Lambda(X)$ is absolutely continuous.

The NP-threshold function, written k_{NP} or simply k in the following, is the function that assigns to each $a \in[0,1]$, the threshold $k(a)$ such that:

$$
a=\int_{\Lambda(x)>k(a)} f_{0}(x) \mathrm{d} x=\mathrm{P}\left[\Lambda(X)>k(a) \mid X \sim f_{0}\right]
$$

Remark 4.18. The threshold $k(a)$ is the unique threshold whose false alarm probability is a.
As the function $k \rightarrow \mathrm{P}\left[\Lambda(X)>k \mid X \sim f_{0}\right]$ is continuous and stricly decreasing, it is easy to see that:
Proposition 4.19. The NP-threshold function is continuous and strictly decreasing.
Definition 4.20 (Neyman-Pearson test). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions such that, if $X \sim f_{0}$ then $\Lambda(X)$ is absolutely continuous.

The Neyman-Pearson test is the following test:

$$
\mathrm{NP}:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow & \operatorname{Lbg}\left(\mathbb{R}^{d}\right) \\
a & \longmapsto & \left\{x \in \mathbb{R}^{d} \mid \Lambda(x)>k(a)\right\}
\end{array}\right.
$$

Proposition 4.21. The test NP is continuous.
Proof. This is due to the monotonicity of the threshold function k. Let $A \subset[0,1]$:

$$
\begin{aligned}
\bigcup_{a \in A} \mathrm{NP}(a) & =\bigcup_{a \in A}\left\{x \in \mathbb{R}^{d} \mid \Lambda(x)>k(a)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \exists a \in A, \Lambda(x)>k(a)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \Lambda(x)>\inf _{a \in A}(k(a))\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \Lambda(x)>k(\sup (A))\right\} \\
& =\operatorname{NP}(\sup (A))
\end{aligned}
$$

The proof for the intersection is roughly the same.

Corollary 4.22. $S_{\mathrm{NP}}(a)=\mathbb{R} \backslash \mathrm{NP}(a)$.
Definition 4.23 (RDT context). An RDT-context is a tuple (d, θ_{0}, C, τ) where:

1. $d \in \mathbb{N}$ is the dimension;
2. $\theta_{0} \in \mathbb{R}^{d}$ is called the model;
3. $C \in \mathrm{Mat}_{d, d}(\mathbb{R})$ is a positively definite square $d \times d$ real matrix;
4. $\tau \in \mathbb{R}_{+}^{*}$ is the tolerance.

Definition 4.24 (RDT problem). Let $\left(d, \theta_{0}, C, \tau\right)$ be an RDT-context.
The RDT problem with context $\left(\theta_{0}, C, \tau\right)$ consists in the following testing problem:
Observation $Y=\Theta+X$ where $X \sim \mathcal{N}\left(0, C^{2}\right), \Theta$ is any random vector in \mathbb{R}^{d} and Θ and X are independent.
$\mathcal{H}_{0}\|\Theta-Y\|_{C} \leqslant \tau$
$\mathcal{H}_{1}\|\Theta-Y\|_{C}>\tau$
Definition 4.25 (RDT threshold function). Let $\left(d, \theta_{0}, C, \tau\right)$ be an RDT-context and let $\left.a \in\right] 0,1[$.
The RDT threshold function with false alarm a, written λ_{a}, is the following function:

$$
\lambda_{a}:\left\{\begin{array}{ccc}
\mathbb{R}^{+} & \longrightarrow & \mathbb{R}^{+} \\
\tau & \longmapsto & \text { the unique solution in } \eta \text { to the } \\
& & \text { equation: } a=1-\mathbb{F}_{\chi_{d}^{2}\left(\tau^{2}\right)}\left(\eta^{2}\right)
\end{array}\right.
$$

Definition 4.26 (RDT test). Let (d, θ_{0}, C, τ) be an RDT-context.
The RDT test with context $\left(d, \theta_{0}, C, \tau\right)$ is the following test:

$$
\operatorname{RDT}:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow \\
a & \longmapsto\left\{\begin{array}{cc}
\operatorname{Lbg}\left(\mathbb{R}^{d}\right) & \text { if } a=0 \\
\mathbb{R}^{d} \backslash\left\{\theta_{0}\right\} & \text { if } a=1 \\
\left\{x \in \mathbb{R}^{d} \mid \lambda_{a}(\tau)<\left\|x-\theta_{0}\right\|_{C}\right\} & \text { otherwise }
\end{array}\right.
\end{array}\right.
$$

Proposition 4.27. The test RDT is continuous.
Proof. Let $A \subset[0,1]$. The proof is similar to the one for NP, however we have a few details to take care before.

$$
\begin{aligned}
\bigcup_{a \in A} \operatorname{RDT}(a) & =\bigcup_{a \in A}\left\{x \in \mathbb{R}^{d} \mid \lambda_{a}(\tau)<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \exists a \in A, \lambda_{a}(\tau)<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \inf _{a \in A}\left(\lambda_{a}(\tau)\right)<\left\|x-\theta_{0}\right\|_{C}\right\}
\end{aligned}
$$

Then, $a \mapsto \lambda_{a}(\tau)$ is decreasing and continuous in a, so:

$$
\inf _{a \in A}\left(\lambda_{a}(\tau)\right)=\lim _{\substack{x \in A \\ x \rightarrow \sup (A)}} \lambda_{a}(\tau)= \begin{cases}\lambda_{\sup (A)}(\tau) & \text { if } 1 \neq \sup (A) \\ 0 & \text { otherwise }\end{cases}
$$

If $1 \neq \sup (A)$ then:

$$
\begin{aligned}
\bigcup_{a \in A} \operatorname{RDT}(a) & =\left\{x \in \mathbb{R}^{d} \mid \inf _{a \in A}\left(\lambda_{a}(\tau)\right)<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \lambda_{\sup (A)}(\tau)<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\operatorname{RDT}(\sup (A))
\end{aligned}
$$

Otherwise, if $1=\sup (A)$ then:

$$
\begin{aligned}
\bigcup_{a \in A} \operatorname{RDT}(a) & =\left\{x \in \mathbb{R}^{d} \mid \inf _{a \in A}\left(\lambda_{a}(\tau)\right)<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid 0<\left\|x-\theta_{0}\right\|_{C}\right\} \\
& =\mathbb{R}^{d} \backslash\left\{\theta_{0}\right\} \\
& =\operatorname{RDT}(\sup (A))
\end{aligned}
$$

Proposition 4.28.

4.3. About predicates

Definition 4.29 (Predicate). Let S be a sheaf in PSh (\mathscr{U}).
A predicate is a sheaf morphism $p: S \rightarrow \Omega$.

Computing predicates

Let $S: \mathscr{U}^{\text {op }} \rightarrow$ Sets be a sheaf, and let $p_{1}, p_{2}: S \rightarrow \Omega$ be predicates. The predicates $p_{1} \wedge p_{2}, p_{1} \vee p_{2}, p_{1} \rightarrow$ $p_{2}, \neg p_{1}$ are all predicates $S \rightarrow \Omega$.

Let $a \in[0,1]$. For $x \in S(a)$, define $a_{1}=p_{1, a}(x)$ and $a_{2}=p_{2, a}(x)$. We have the trivial results:

$$
\begin{aligned}
& \left(p_{1} \wedge p_{2}\right)_{a}(x)=\min \left(a_{1}, a_{2}\right) \\
& \left(p_{1} \vee p_{2}\right)_{a}(x)=\max \left(a_{1}, a_{2}\right)
\end{aligned}
$$

Also:

$$
\begin{aligned}
\left(p_{1} \rightarrow p_{2}\right)_{a}(x) & =p_{1, a}(x) \rightarrow p_{2, a}(x) \\
& =\bigvee_{R \wedge a_{1} \leqslant a_{2}} R \\
& =\bigvee_{\substack{b \in[0, a] \\
b \wedge a_{1} \leqslant a_{2}}} b \\
& =\bigvee_{\substack{b \in[0, a] \\
\min \left(a_{1}, b\right) \leqslant a_{2}}} b \\
& =\bigvee_{\substack{b \in[0, a] \\
\min \left(a_{1}, b\right) \leqslant a_{2}}} b \\
& =U_{c}
\end{aligned}
$$

for some $c \in[0, a]$. Let us take a look at that c. We have:

$$
c=\sup _{\substack{b \in[0, a] \\ \min \left(a_{1}, b\right) \leqslant a_{2}}}(b)= \begin{cases}a & \text { if } a_{1} \leqslant a_{2} \\ a_{2} & \text { otherwise }\end{cases}
$$

The negation $\neg p_{1}$ corresponds to the special case where $a_{2}=U_{0}=\emptyset$:

$$
\begin{aligned}
\left(\neg p_{1}\right)_{a}(x) & =p_{1, a}(x) \rightarrow \emptyset \\
& =\bigvee_{\substack{b \in[0, a] \\
\min \left(a_{1}, b\right) \leqslant 0}} b \\
& =U_{c}
\end{aligned}
$$

With c being:

$$
c=\sup _{\substack{\text { mi[0,a] } \\ \min \left(a_{1}, b\right) \leqslant 0}}(b)= \begin{cases}a & \text { if } a_{1}=0 \\ 0 & \text { if } a_{1}>0\end{cases}
$$

In summary:

Formula	Condition	Result
$p_{1, a}(x)$		a_{1}
$p_{2, a}(x)$		a_{2}
$\left(p_{1} \wedge p_{2}\right)_{a}(x)$		$\min \left(a_{1}, a_{2}\right)$
$\left(p_{1} \vee p_{2}\right)_{a}(x)$		$\max \left(a_{1}, a_{2}\right)$
$\left(p_{1} \rightarrow p_{2}\right)_{a}(x)$	if $a_{1} \leqslant a_{2}$	a
	if $a_{1}>a_{2}$	a_{2}
$\left(\neg p_{1}\right)_{a}(x)$	if $a_{1}=0$	a
	if $a_{1}>0$	$U_{0}=\emptyset$

Construction of a predicate

How to write " $x \in \mathrm{~B}\left(\theta_{0}, \rho\right)$ " in a predicate? (We are considering an open ball)
We first need to find the right test. Then it will give us a sheaf, and we will design the right predicate.
The predicate should be a sheaf morphism: $p: P_{T} \rightarrow \Omega$, such that, for all $a \in[0,1]$, it takes $x \in P_{T}(a)$ and returns the subset of a for which $x \in \mathrm{~B}\left(\theta_{0}, \rho\right)$.

As a first answer, we choose ρ to be a parameter for the test. We define the following test:

$$
T(a)=\mathrm{B}\left(\theta_{0}, \frac{a \rho}{1-a}\right)
$$

Then T is a continuous test, and $P_{T}(a)=\mathbb{R} \backslash \mathbf{B}\left(\theta_{0}, \frac{a \rho}{1-a}\right)$. Then the predicate should be $p: S \rightarrow \Omega$ such that $p_{a}(x)=\emptyset$ if $x \notin \mathrm{~B}\left(\theta_{0}, \rho\right)$, and $p_{a}(x)=a \wedge U_{\frac{1}{2}}$ where $\frac{1}{2}$ is the solution to the equation in a : $\frac{a \rho}{1-a}=\rho$.

For $a<b$, we have $a \leqslant b$ and we need the following diagram to commute:

If $x \in S(b)$, then:

$$
\begin{aligned}
" \wedge a " \circ p_{b}(x) & = \begin{cases}\emptyset \wedge a & \text { if } x \notin \mathrm{~B}\left(\theta_{0}, \rho\right) \\
b \wedge a \wedge U_{\frac{1}{2}} & \text { if } x \in \mathrm{~B}\left(\theta_{0}, \rho\right)\end{cases} \\
& =p_{a}(x)
\end{aligned}
$$

5. Study of the category of p-values

Definition 5.1 (Category PVal (\mathscr{C})). Let \mathscr{C} be a category representing a complete Heyting algebra.
The category of p-values on \mathscr{C}, denoted by PVal (\mathscr{C}), is the full subcategory of $\mathbf{P S h}(\mathscr{C})$ such that every $P \in \mathbf{P V a l}(\mathscr{C})$ comes from a test.

In the following we will study the properties of that category.
Proposition 5.2. (Conjecture)

1. PVal ($\mathscr{U})$ doesn't have all exponentials.
2. PVal (थ) has all finite products.
3. PVal($\mathscr{U})$ has no terminal object.

The problem with these conjectures is that the properties of $\mathbf{P S h}([0,1])$ don't transfer to their subcategories. A first guess was that, if PVal (\mathscr{U}) had all exponentials, then the exponentials in PVal (\mathscr{U}) should be isomorphic to the exponentials in PSh (\mathscr{U}) given that PVal (\mathscr{U}) is a full subcategory of PSh (\mathscr{U}). In summary, it is thinkable that, if $[B \rightarrow C]$ is the exponential in PVal (\mathscr{U}) and C^{B} is the exponential in PSh (\mathscr{U}), then:

$$
\begin{gathered}
\forall A, B, C \in \mathbf{P V a l}(\mathscr{U}), \operatorname{Hom}_{\mathbf{P S h}(\mathscr{U})}(A,[B \rightarrow C]) \cong \operatorname{Hom}_{\mathbf{P S h}(\mathscr{U})}\left(A, C^{B}\right) \\
\Rightarrow[B \rightarrow C] \cong C^{B}
\end{gathered}
$$

However, this is not the case. Consider a topological space (X, \mathscr{T}) as a Heyting algebra. Then take any non-trivial topological subspace $\left(Y, \mathscr{T}_{Y}\right)$ of X, also viewed as a Heyting algebra. The exponential in a topological space is defined from the exponential in a Heyting algebra and is defined as:

$$
U \cap V \leqslant W \Leftrightarrow V \leqslant \underbrace{U \rightarrow W}_{\text {exponential }}
$$

A more explicit version of this exponential is a follows [3, Section 1.1.4., p21]:

$$
\underbrace{U \rightarrow W}_{\text {in } \mathscr{T}}=\max (\{Z \in \mathscr{T} \mid Z \cap U \leqslant W\})
$$

Which is the interior of $W \cup(X \backslash U)$ in X.
If U and W are open subsets of Y then, then the exponential $U \rightarrow W$ in Y is the interior of $W \cup(Y \backslash U)$ which may be different to the interior of $W \cup(X \backslash U)$ (cf. Figure 2).

Finally, we can suspect there is no terminal object, because we don't see which object, other than $\Delta(1)$, where $\Delta: \mathscr{U} \rightarrow$ Sets $^{\mathscr{U}}$, could be the terminal object, and $\Delta(1)$ is not in PVal (\mathscr{U}).

Otherwise, the product seems like an easy result.

Figure 2: Illustration of what may happen when comparing the exponentials of a topological space with one of its subspaces. Here, Y is a topological subspace of X, U and W are open subsets of Y (and thus of $X)$, and the exponential $U \rightarrow W$ in Y could be the exponential $(U \rightarrow W)_{X} \cap Y$ where $(U \rightarrow W)_{X}$ is the exponential in X.

Proof. (PVal ($\mathscr{U})$ has all products) Let $d_{1}, d_{2} \in \mathbb{N}$, and let $T_{1}:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d_{1}}\right)$ and $T_{2}:[0,1] \rightarrow$ $\operatorname{Lbg}\left(\mathbb{R}^{d_{2}}\right)$ be two tests.

Then, for every $a \in[0,1], T_{1}(a) \times T_{2}(a)$ is also in $\operatorname{Lbg}\left(\mathbb{R}^{d_{1}+d_{2}}\right)$. Then, $T_{1} \times T_{2}:[0,1] \rightarrow \operatorname{Lbg}\left(\mathbb{R}^{d_{1}+d_{2}}\right)$ is also a test.

Thus:

$$
\begin{aligned}
S_{T_{1}}(a) \times S_{T_{2}}(a) & =\left(\mathbb{R}^{d_{1}} \backslash \bigcup_{b<a} T_{1}(b)\right) \times\left(\mathbb{R}^{d_{2}} \backslash \bigcup_{b<a} T_{2}(b)\right) \\
& =\mathbb{R}^{d_{1}+d_{2}} \backslash \bigcup_{b<a}\left(T_{1}(b) \times T_{2}(b)\right) \\
& =\left(S_{T_{1}} \times S_{T_{2}}\right)(a)
\end{aligned}
$$

Thus, the product in PVal (\mathscr{U}) is the same as in $\operatorname{PSh}(\mathscr{U})$.

6. Natural transformation between NP and RDT

We will have to reformulate the problems they both answer to, in order to have two comparable tests.
Let C be a positive-definite $d \times d$ matrix. Let $\mu \in \mathbb{R}^{d}$.
The NP problem amounts to testing:

$$
\begin{aligned}
\text { Observation : } & Y \sim \mathcal{N}(\varepsilon, C)=\varepsilon+\mathcal{N}(0, C) \\
\mathcal{H}_{0}: & \varepsilon=0 \\
\mathcal{H}_{1}: & \varepsilon=\mu
\end{aligned}
$$

While the RDT problem amounts to:

$$
\begin{aligned}
\text { Observation : } & Y=\varepsilon+X \text { where } X \sim \mathcal{N}(0, C) \\
\mathcal{H}_{0}: & \left\|\varepsilon-\frac{1}{2} \mu\right\|_{C} \leqslant\left\|\frac{1}{2} \mu\right\|_{C}=\tau \\
\mathcal{H}_{1}: & \left\|\varepsilon-\frac{1}{2} \mu\right\|_{C}>\left\|\frac{1}{2} \mu\right\|_{C}=\tau
\end{aligned}
$$

We assume here that ε can only take 0 or μ as values. The RDT problem is more general (as seen above in Definition 4.24) in that ε could be any real random variable. The NP problem is also more general, because it could compare any two distributions. We also note that, in this formulation, the two versions of the null hypothesis are equivalent, and the two versions of the alternative hypothesis too. With this formulation, both problems are exactly the same. However, this doesn't mean that RDT and NP will give the same answer to a caught signal.

The goal of this section is to present the computations that lead to a natural transformation between S_{NP} and $S_{\text {RDT }}$, so that NP and RDT do give the same answer to the same caught signal.

Let $a \in[0,1]$.

$$
\begin{aligned}
x \in S_{\mathrm{NP}}(a) & \Leftrightarrow \Lambda(x) \leqslant k(a) \\
& \Leftrightarrow \frac{\exp \left(-\frac{1}{2}\|x-\mu\|_{C}^{2}\right)}{\exp \left(-\frac{1}{2}\|x-0\|_{C}^{2}\right)} \leqslant k(a) \\
& \Leftrightarrow \frac{1}{2}\|x\|_{C}^{2}-\frac{1}{2}\|x-\mu\|_{C}^{2} \leqslant \ln (k(a)) \\
& \Leftrightarrow x^{t} C^{-1} x-x^{t} C^{-1} x+2 x^{t} C^{-1} \mu-\mu^{t} C^{-1} \mu \leqslant 2 \ln (k(a)) \\
& \Leftrightarrow x^{t} C^{-1} \mu \leqslant \underbrace{\frac{1}{2} \mu^{t} C^{-1} \mu+\ln (k(a))}_{K(a)}
\end{aligned}
$$

As for RDT:

$$
x \in S_{\mathrm{RDT}}(a) \Leftrightarrow\left\|x-\frac{1}{2} \mu\right\|_{C} \leqslant \lambda_{a}(\tau)
$$

The NP problem amounts to comparing a scalar product to a threshold: $x^{t} C^{-1} \mu \leqslant K(a)$, while the RDT problem amounts to comparing a distance to a threshold: $\left\|x-\frac{1}{2} \mu\right\|_{C} \leqslant \lambda_{a}(\tau)$. The expression of $K(a)$ and $\lambda_{a}(\tau)$ are not important here.

We are looking for a set of functions $f_{a}: S_{\mathrm{RDT}}(a) \rightarrow S_{\mathrm{NP}}(a)$ or $g_{a}: S_{\mathrm{NP}}(a) \rightarrow S_{\mathrm{RDT}}(a)$ that associate a ball to a hyperplane. Due to Proposition $4.10, f_{a}$ and g_{a} should verify the nesting property. We thus look functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ or $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ that respect this nesting property, and we will deduce the natural transformations from restrictions of these functions.

Namely, we are looking for a g such that:

$$
x^{t} C^{-1} \mu=K(a) \Leftrightarrow\left\|g(x)-\frac{1}{2} \mu\right\|_{C}=\lambda_{a}(\tau)
$$

Let us start with dimension $d=2$.
For a given $\mu \neq 0$, the set of $x^{t} C^{-1} \mu=K(a)$ defines a straight line that is perpendicular to μ. Let μ_{1} be a vector orthogonal to μ with same length. We have $x=x^{t} C^{-1} \mu \cdot \mu+x^{t} C^{-1} \mu_{1} \cdot \mu_{1}$.

Consider now the circle $\mathrm{B}\left(\frac{1}{2} \mu, \lambda_{a}(\tau)\right)$. We consider this circle as a trigonometric-like circle with radius $\lambda_{a}(\tau)$. As such, define the vector $\left(\frac{1}{2}+\lambda_{a}(\tau)\right) \mu$ as the trigonometric origin on this circle. Consider the vector with trigonometric coordinate $\alpha(x)=\arctan \left(x^{t} C^{-1} \mu_{1}\right)$; it is the following vector $g(x)$:

$$
g(x)=\frac{1}{2} \mu+\lambda_{a}(\tau)\left(\frac{\cos (\alpha(x))}{\|\mu\|_{C}} \mu+\frac{\sin (\alpha(x))}{\left\|\mu_{1}\right\|_{C}} \mu_{1}\right)
$$

Figure 3: Illustration of the action of a 2-dimensional natural transformation between NP and RDT. NP compares the projection of x over μ to a threshold $K(a)$. As we are in finite dimension, there exists μ_{1} orthogonal to μ with the same length. The coordinates of x in the basis $\left(\mu, \mu_{1}\right)$ are $\left(x^{t} C^{-1} \mu, x^{t} C^{-1} \mu_{1}\right)$. The goal of the natural transformation we are building is to send $x^{t} C^{-1} \mu_{1}$ to a trigonometric coordinate (see Figure 4)

In dimension d, it amounts to sending a d-vector to another vector in the $d-1$-sphere with spherical coordinates. In dimension d, the spherical coordinates are ($r, \varphi_{1}, \ldots, \varphi_{d-1}$), such that, if x has Cartesian coordinates x_{1}, \ldots, x_{d} :

$$
\begin{aligned}
x_{1} & =r \cos \left(\varphi_{1}\right) \\
x_{2} & =r \sin \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right) \\
x_{3} & =r \sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right) \cos \left(\varphi_{3}\right) \\
& \ldots \\
x_{d-1} & =r \sin \left(\varphi_{1}\right) \ldots \sin \left(\varphi_{d-2}\right) \cos \left(\varphi_{d-1}\right) \\
x_{d} & =r \sin \left(\varphi_{1}\right) \ldots \sin \left(\varphi_{d-2}\right) \sin \left(\varphi_{d-1}\right)
\end{aligned}
$$

Then, in dimension d, given a positive-definite matrix C and a vector μ, we decide of a unique orthogonal basis ($\mu, \mu_{1}, \ldots, \mu_{d-1}$). For practical reasons, we do not assume that they have the same length 1 but $\|\mu\|_{C}$ (it doesn't change the result, only the easiness of the computations).

For a vector $x=\left(x_{1}, \ldots, x_{d}\right)$ such that $x^{t} C^{-1} \mu=K(a)$, we define a temporary vector $v(x)$ (which will play the role of the green one in Figure 4); $v(x)$ has spherical coordinates $\left(r, \varphi_{1}, \ldots, \varphi_{d-1}\right)$ where:

Figure 4: Illustration of the action of a 2-dimensional natural transformation between NP and RDT. RDT compares the distance between x and $\frac{1}{2} \mu$ to a threshold λ_{a}. So it defines a ball. In dimension 2 , consider it as a trigonometric circle, in the sense that we want to place vectors on it. The vector with coordinates $\alpha=\arctan \left(x^{t} C^{-1} \mu_{1}\right)$ on the circle is the green vector. It gives the expression of $g(x)$ (in red) as the sum $\frac{1}{2} \mu+\lambda_{a}(\tau)\left(\frac{\cos (\alpha(x))}{\|\mu\|_{C}} \mu+\frac{\sin (\alpha(x))}{\left\|\mu_{1}\right\|_{C}} \mu_{1}\right)$.

$$
\begin{aligned}
r & =\lambda_{a}(\tau) \\
\varphi_{1} & =\arccos \left(\frac{x^{t} C^{-1} \mu_{1}}{\|x\|_{C}\left\|\mu_{1}\right\|_{C}}\right) \\
\varphi_{2} & =\arccos \left(\frac{x^{t} C^{-1} \mu_{2}}{\|x\|_{C}\left\|\mu_{2}\right\|_{C}}\right) \\
& \ldots \\
\varphi_{d-1} & =\arcsin \left(\frac{x^{t} C^{-1} \mu_{d-1}}{\|x\|_{C}\left\|\mu_{d-1}\right\|_{C}}\right)
\end{aligned}
$$

and then:

$$
g(x)=\frac{1}{2} \mu+v(x)
$$

Finally, the natural transformation $\bar{g}: S_{\mathrm{NP}} \rightarrow S_{\mathrm{RDT}}$ is the following:

$$
\bar{g}: S_{\mathrm{NP}} \rightarrow S_{\mathrm{RDT}}=\left(g_{\left.\right|_{S_{\mathrm{NP}}(a)}}:\left\{\begin{array}{ccc}
S_{\mathrm{NP}}(a) & \longrightarrow & S_{\mathrm{RDT}}(a) \\
x & \longmapsto & g(x)
\end{array}\right)_{a \in[0,1]}\right.
$$

References

[1] M. Barr and C. Wells, Category Theory for Computing Science. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.
[2] J. Jacod and P. Protter, Probability Essentials, 2nd ed., ser. Universitext. Springer-Verlag Berlin Heidelberg, 2004.
[3] "Chapter 1 - getting started," in Residuated Lattices: An Algebraic Glimpse at Substructural Logics, ser. Studies in Logic and the Foundations of Mathematics, N. GALATOS, P. JIPSEN, T. KOWALSKI, and H. ONO, Eds. Elsevier, 2007, vol. 151, pp. 13 - 73. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0049237X07800061

OUR WORLDWIDE PARTNERS UNIVERSITIES - DOUBLE DEGREE AGREEMENTS

3 CAMPUS, 1 SITE

IMT Atlantique Bretagne-Pays de la Loire - http://www.imt-atlantique.fr/

Campus de Nantes	Campus de Rennes
4, rue Alfred Kastler	2, rue de la Châtaigneraie
CS 20722	CS 17607
44307 Nantes Cedex 3	35576 Cesson Sévigné Cedex
France	France
$\mathrm{T}+33(0) 251858100$	$\mathrm{~T}+33(0) 299127000$
$\mathrm{~F}+33(0) 299127008$	$\mathrm{~F}+33(0) 251858199$

Campus de Rennes

2, rue de la Châtaigneraie CS 17607
35576 Cesson Sévigné Cedex
France

F +33 (0)2 51858199

Site de Toulouse

10, avenue Édouard Belin BP 44004
31028 Toulouse Cedex 04
France
T + 33 (0)5 61338365

