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3. P-values

1. Introduction
In this preliminary work, we study the sheaf-ness properties of the p-value. In particular, p-values are
presheaves and become sheaves if we add a bottom element to the initial topology. This trick is valid
because p-values are fuzzy sets!

We also study the basic properties of the presheaf topos of p-values. Our purpose here is to exhibit the
tools provided by topos theory to "approximate" p-values of Neyman-Pearson tests by p-values of other
types of tests. In this report, we provide the basic tools but do not achieve the approximation yet!

2. Notation
Lbg

(
Rd

)
is the set of all Lebesgue-measurable subsets of Rd.

3. P-values
Definition 3.1 (Test). A family of tests, or simply test, is a function T : [0,1] → Lbg

(
Rd

)
such that

a 6 a′⇒ T(a) 6 T(a′).

Remark 3.2. If T : [0,1] → Lbg
(
Rd

)
is a test, then for a ∈ [0,1], T(a) is the rejection region of the null

hypothesis with size a.

Definition 3.3 (p-value). Let T be a test.
For x ∈ Rn, the p-value of x is defined as:

pvalT (x) = inf ({a ∈ [0,1] | x ∈ T(a)})

The p-value of x is the minimum size of the test that puts x into the rejection region.

Definition 3.4 (Presheaf). Let C be a small category.
A presheaf is a functor C

op
→ Sets.

Now consider the total order ([0,1] ,6) (in fact, it is a complete lattice). It defines a small category that
we will denote by U .

Definition 3.5 (P-value presheaf). Let T : [0,1] → Lbg
(
Rd

)
be a test.

The p-value presheaf for T is the following functor:

PT :


U

op
−→ Sets

a 7−→
{

x ∈ Rn | pvalT (x) > a
}

a ⊆ b 7−→

{
PT (b) −→ PT (a)

x 7−→ x

3.1. This is not a sheaf
Let us introduce the definition of a sheaf. We generally use topological spaces for that purpose.

Definition 3.6 (Sheaf). Let (X,Op (X)) be a topological space, we consider the category Op (X)
op
.

A sheaf S : Op (X)
op
→ Sets is a presheaf with the following condition, called sheaf condition:

(sheaf condition) For all open set U ∈ Op (X), for all covering U =
⋃
a∈A

Ua, and for all family

(xa)a∈A ∈
∏
a∈A

S(Ua) such that for all a, b ∈ A, we have xa Ua∩Ub
= xb Ua∩Ub

, there exists a unique

x ∈ S (U) such that ∀a ∈ A, x a = xa.

A family (Ua)a∈A such that U =
⋃
a∈A

Ua is called a covering of U. A family (xa)a∈A ∈
∏
a∈A

S(Ua)

such that for all a, b ∈ A, we have xa Ua∩Ub
= xb Ua∩Ub

is called a matching family of S-sections. When

IMTA-RR-2019-02-SC 2/20



3. P-values

xa Ua∩Ub
= xb Ua∩Ub

, we also say that xa and xb agree on their common domain. The unique x ∈ S (U)
such that ∀a ∈ A, x a = xa is called the gluing of (xa)a∈A.

However, our p-value presheaf is not defined on a topological space, but on a partial order. The notion
of sheaves can be extended from a topological space to a complete Heyting algebra. Besides, our partial
order is a complete Heyting algebra.
Remark 3.7 (Introducing morphisms for sheaves on Heyting algebras). The following is adapted from [1,
page 376, section 15.5.3].

Let (H,6,∧,∨) be a complete Heyting algebra, and let P : H
op
→ Sets be a presheaf over H.

Let (ha)a∈A a subset of elements of H and let h =
∨
a∈A

ha be their supremum (it always exists because

H is complete). We denote the restriction functions by rha : P(h) → P(ha). There is a unique function
rh : P(h) →

∏
a∈A P(ha) such that πP(ha ) ◦ rh = rha (definition of product). Similarly, for every a, b ∈ A,

there are functions ph
a,b

: P(ha) → P(ha ∧ hb) and qh
a,b

: P(hb) → P(ha ∧ hb). These also combine into:
ph,qh :

∏
a∈A

P(ha) →
∏

a,b∈A
P(ha ∧ hb).

We can now define sheaves on Heyting algebras.

Definition 3.8 (Sheaf on a complete Heyting algebra). Let (H,6,∧,∨,0H,1H ) be a complete Heyting
algebra. Let S : H

op
→ Sets be a presheaf over H.

The presheaf S is called a sheaf when the following condition is verified:

� for all (ha)a∈A ∈ HA, if h =
∨
a∈A

ha and rh : S(h) →
∏
a∈A

S(ha), ph :
∏
a∈A

S(ha) →
∏

a,b∈A
S(ha ∧ hb)

and qh :
∏
a∈A

S(ha) →
∏

a,b∈A
S(ha ∧ hb) are functions as defined in Remark 3.7, then the following

diagram is an equaliser:

S(h)
∏
a∈A

S(ha)
∏

a,b∈A
S(ha ∧ hb)

rh
ph

qh

For the sake of understandability, we will keep the same terminology as introduced with topological
spaces, namely:

� A family (ha)a∈A such that h =
∨
a∈A

ha is called a covering of h.

� A family (xa)a∈A ∈
∏
a∈A

S(ha) such that for all a, b ∈ A, we have xa ha∧hb
= xb ha∧hb

, is called a

matching family of S-sections. When xa ha∧hb
= xb ha∧hb

, we also say that xa and xb agree on their
common domain.

� The unique x ∈ S (h) such that ∀a ∈ A, x ha = xa is called the gluing of (xa)a∈A.

Lemma 3.9. If S : H → Sets is a sheaf, then S(0H ) � 1.

Proof. Consider the empty covering 0H =
∨

a∈∅ ha. The products
∏
a∈A

S(ha) and
∏

a,b∈A
S(ha ∧ hb) are

empty:
∏
a∈A

S(ha) �
∏

a,b∈A
S(ha ∧ hb) � 1. Thus, the arrows p0 and q0 are the same and are the identity id1.

The equaliser of:

S(0H ) 1 1r0 p0

q0

is obviously a terminal object 1; in other words, if S is a sheaf, then S(0H ) � 1.
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3. P-values

Proposition 3.10. Let T : [0,1] → Lbg
(
Rd

)
be a test and let PT be its p-value presheaf.

Then, PT is not a sheaf.

Proof. Suppose PT is a sheaf. By Lemma 3.9, PT (0) � 1. However:

PT (∅) =
{

x ∈ Rn | pvalT (x) > 0
}
= R � 1

Remark 3.11. The fact that PT is not a sheaf also means that there are coverings h =
∨
a∈A

ha that do not lead

to a unique gluing (either there is none, or there is more than one). In our case, the empty covering is the
unique covering that does not find its gluing. In fact, the p-value presheaf only fails to be a sheaf on one
covering.

Let h =
∨

a∈A ha be a cover such that A , ∅. Let (xa)a∈A be a matching family of PT -sections over
(ha)a∈A: xa ∈ PT (ha) and xa ha∧hb

= xb ha∧hb
.

By definition of PT , we have:

xa ha∧hb
= PT (ha ∧ hb 6 ha) (xa) = xa

which yields, for all a, b ∈ A, xa = xb. Let x = xa; then ∀a ∈ A, we have x ∈ PT (ha), so pvalT (x) > ha

and pvalT (x) > sup
a∈A
(ha) = h and x ∈ PT (h) = PT

( ∨
a∈A

ha

)
. Consequently, x is the unique gluing of

(xa)a∈A, and PT satisfies the sheaf condition whenever the index family A is not empty.
When A is empty, then the gluing x ∈ A doesn’t exist.
This problem was already known in [1, p401, part. 15.6.6], not for p-values, but in the context of

fuzzy logic. We consider a Heyting algebra H. A fuzzy set (over H) is a pair (S, s) such that S ∈ Sets and
s : S → H. The category of fuzzy sets over H is simply the slice Sets/H (where H is a lattice).

Let (S, s) be a fuzzy set. We define the presheaf:

P :
{

H −→ Sets
h 7−→ { x ∈ S | s(x) > h}

This presheaf is very similar to that of our p-value presheaf. However, both suffer from the same
problem: they are almost sheaves, and the part that fails is the image of the empty set or least element, which
contains the whole set instead of being the terminal object. The solution proposed by [1] is to change the
Heyting algebra for another Heyting algebra, adding a new element ⊥ that becomes the new least element,
and by forcing P(⊥) = 1.

Let U + = U ∪ {⊥}. Then, let 6U + be the smallest partial order that contains:{
(⊥,U) ∈ U + ×U +

}
∪ ⊂U

where ⊂U is the inclusion of open subsets in U .
It is easy to see that:

Proposition 3.12. U + is a complete Heyting algebra.

In fact, the pair (U +,6U +) is simply U with a new initial element. As it is still a Heyting algebra, we
can define a sheaf on it.

Definition 3.13 (P-value sheaf). Let T : [0,1] → Lbg
(
Rd

)
be a test.

The p-value sheaf for T is the following functor:
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4. First random results

PT :


U +

op
−→ Sets

a 7−→

{ {
x ∈ Rn | pvalT (x) > a

}
if a ∈ [0,1]

{∅} if a = ⊥

a ⊆ b 7−→

{
PT (b) −→ PT (a)

x 7−→ x

Proposition 3.14. The p-value sheaf is an actual sheaf.

Proof. An application of [1, Proposition 15.6.8].

3.2. Study of the presheaf
The use of sheaves is beyond our purposes. We actually only need a topos, and that topos doesn’t need to be
a sheaf topos. A presheaf topos is enough. Consider the presheaf topos based on the complete Heyting
algebra [0,1]: PSh ([0,1]). Its subobject classifier is:

Ω :


U + −→ Sets

a 7−→ {a′ | a′ 6 a} = [0,a]

a 6 b 7−→

{
Ω(b) −→ Ω(a)

c 7−→ a ∧ c = min(a, c)

Let T be a test and PT its associated p-value presheaf. A presheaf morphism p : PT → Ω makes the
following diagram commute for all a 6 b:

a PT (b) Ω (b)

{ X

b PT (a) Ω (a)

u PT (u)

pb

Ω(u)

pa

For x ∈ PT (b), we have:

pa ◦ PT (u) (x) = Ω (u) ◦ pb(x)

pa(x) = pb(x) ∧ a

The canonical example is the following natural transformation:

pa :
{

PT (a) −→ Ω(a)
x 7−→ a

4. First random results
4.1. About p-value sheaves

We have already concluded that [0,1], with the usual ∧ and ∨ operators, is a complete Heyting algebra.
Considering it as a proset category U , being a complete Heyting algebra says that:

Proposition 4.1. U has all small limits and colimits.

Proof. Let D : I → U
op be a diagram in U

op . Then:

IMTA-RR-2019-02-SC 5/20



4. First random results

Colim (D) = sup
i∈ObI

D(i) =
∧

i∈ObI

D(i)

Lim (D) = inf
i∈ObI

D(i) =
∨

i∈ObI

D(i)

Note that the sup becomes a
∧
, and the inf becomes a

∨
, because we are considering U

op and not U .
Also note that the infima and suprema always exist because we are in a complete Heyting algebra.

Proposition 4.2. For any test T , its p-value presheaf PT is continuous and cocontinuous.

Proof. Let D : I → U
op be any (small) diagram in U

op .
We only consider the case of a limit; the proof is very similar for colimits.

PT (Lim (D)) = PT

(∨
i∈I

D(i)

)
=

{
x ∈ Rd

�� pvalT (x) >
∨
i∈I

D(i)

}
=

{
x ∈ Rd

�� ∀i ∈ I , pvalT (x) > D(i)
}

=
⋂
i∈I

{
x ∈ Rd

�� pvalT (x) > D(i)
}

=
⋂
i∈I

PT (D(i))

We now have to check that
⋂
i∈I

PT (D(i)) � Lim (PT ◦ D).

For all i → j ∈ I , we have PT (D(i)) ⊂ PT (D( j)). We denote by ιi, j = PT (D( j) → D(i)) =
PT (D(i) ⊂ D( j)) : PT (D(i)) → PT (D( j)) the inclusion mapping between PT (D(i))’s. We also denote
by ιi :

⋂
i∈I

PT (D(i)) → PT (D(i)) the inclusion mapping of the intersection. For all i → j ∈ I , we have

ιi, j ◦ ιi = ιj , so that ι =
(
ιi :

⋂
i∈I

PT (D(i)) → PT (D(i))
)
i∈I

is a cone to PT ◦ D.

Let (A, α) be any cone to PT ◦ D. We denote the PT (D(i))-components of α by αi : A→ PT (D(i)).
For all i → j ∈ I , and for all x ∈ X , we have ιi, j ◦ αi(x) = αj(x) = αi(x).

PT (D(i)) A

PT (D( j))

ιi , j

αi

αj

So in fact, αi(X) = αj(X) ⊂ PT (D(i)), which yields that, for all i ∈ I , αi(X) ⊂
⋂
i∈I

PT (D(i)).

Let u be such that:

u :

{
X −→

⋂
i∈I

PT (D(i))

x 7−→ αi(x)

for any of the i ∈ I , because αj(x) = αi(x). Then for all i ∈ I , we have ιi ◦ u = αi.
It is also easy to check the unicity of that u: suppose u,u′ : X →

⋂
i∈I

PT (D(i)), then for all x ∈ X , we

have:
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4. First random results

ιi ◦ u(x) = αi(x) = ιi ◦ u′(x)

u(x) = u′(x)

which leads to u = u′.
Consequently,

⋂
i∈I

PT (D(i)) is the limit of PT ◦ D.

We know that all p-value presheaves are continuous. The question is: is every continuous presheaf a
p-value presheaf? In other words, is any continuous presheaf P : U

op
→ Sets a PT for some test T? We

have to restrict our search for now.

Definition 4.3 (Lebesgue presheaf). Let S : U
op
→ Sets be a presheaf.

The presheaf S is called a Lebesgue presheaf when for all a ∈ U
op , S(a) ∈ Lbg

(
Rd

)
.

Definition 4.4 (Inclusive presheaf). Let S : U
op
→ Sets be a presheaf.

The presheaf S is called inclusive when it sends every mapping a 6 b to the inclusion mapping
S(a) ⊂ S(b).

Definition 4.5 (Presheaf from a test). Let S : U
op
→ Sets be a presheaf and let T : [0,1] → Lbg

(
Rd

)
be a

test.
We say that S comes from T if there exists a natural isomorphism α : S → PT . We say that S comes

from a test if there exists a test T such that S comes from T .

Lemma 4.6. Every continuous inclusive Lebesgue presheaf comes from a continuous test.

Proof. Let S be a continuous inclusive Lebesgue presheaf. Define T : [0,1] → Lbg
(
Rd

)
as:

T(a) = Rd\S(a)

The continuity of S gives the continuity of T . Let A ⊂ [0,1]:

⋃
a∈A

T(a) =
⋃
a∈A

Rd\S(a)

= Rd\
⋂
a∈A

S(a)

= Rd\S (sup(A))
= T (sup(A))

(The proof is the same for intersections.)
Then, let us compare S with the p-value presheaf associated with T :

PT (a) =
{

x ∈ Rd
�� pvalT (x) > a

}
= Rd\

⋃
b<a

T(b)

= Rd\T(a)

= S(a)

As S is inclusive, we know that S (a 6 b) = PT (a 6 b). Consequently, S comes from T .

Corollary 4.7. For every p-value presheaf PT associated to T , there exists a continuous test T ′ such that
PT = ST ′.
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The following result is a small addition to the previous lemma.

Definition 4.8 (Mono-preserving functor). The functor F : C → Sets is called mono-preserving when for
all monomorphism m : A→ B, F(m) is also monic. (The image of a mono is a mono.)

In our case, the presheaf S : U
op
→ Sets will be mono-preserving when for all a, b ∈ [0,1] such that

a 6 b, we have S(a 6 b) monic. (The image of an inequality is a monomorphism.)

Lemma 4.9. Continuous mono-inducing Lebesgue sheaves come from a test.

Proof. Let S be a continuous mono-inducing Lebesgue presheaf. For a < b (a, b ∈ [0,1]), we denote by
σa,b the arrow σa,b = S (a < b).

As S is mono-inducing, σa,b is monic. In Sets, every function f : A→ B can be written as a f = m ◦ e
where e : A→ f (A) is epic, and m : f (A) → B is the canonical inclusion. But, if f is monic, then e is
monic too, and in Sets, e becomes an isomorphism.

Then, for all a ∈ [0,1], the arrow σ0,a : S (a) → S (0) decomposes to σ0,a = m ◦ ea, where
ea : S (a) → σ0,a (S (a)) is an isomorphism and m : σ0,a (S (a)) → S(0) is the canonical inclusion. Note
that for a = 0, we have σ0,0 = idS(0) = e0.

Let F be the following functor:

F :


U
op
−→ Sets

a 7−→ σ0,a (S (a))
a 6 b 7−→ F(b) ⊂ F(a)

Let us study e = (ea)a∈[0,1]:

S(b) F(b)

S(a) F(a)

S(0) F(0)

eb

σa ,b

σ0,b

6

6
ea

σ0,a

6

e0

We have to prove that the square (S(b),F(b),F(a),S(a)) commutes, while we know that the other squares
and triangles commute. For x ∈ S(b), we have:

ea ◦ σa,b(x) = F(0 6 a) ◦ ea ◦ σa,b(x)

= e0 ◦ σ0,a ◦ σa,b(x)

= e0 ◦ σ0,b(x)

= F(0 6 b) ◦ eb(x)

= eb(x)

= F(a 6 b) ◦ eb(x)

So e : S → F is a natural transformation, and each component is an isomorphism, so e is a natural
isomorphism. Then, some properties of S transfer to F: F is a continuous presheaf. It is by definition
inclusive and Lebesgue, so F comes from a test and so does S.

However, other presheaves unlikely come from a test. For example, any presheaf U
op
→ Sets such that

card (S(a)) > 2ℵ0 for some a ∈ U will have trouble being isomorphic to R.
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4. First random results

4.2. About sheaf morphisms
Let us first study the sheaf morphisms between p-value sheaves p : PR → PT .

Proposition 4.10 (Nesting property). Let R,T : [0,1] → Lbg
(
Rd

)
be two tests (of the same size or not).

Let p : Rd → Rd be a function.
The function p defines a natural transformation p̄ : PR → PT =

(
p PR (a)

)
a∈[0,1]

⇔ for all a ∈ [0,1],
p (PR(a)) ⊂ PT (a).

In other words, p defines a function between nested open sets, as in Figure 1.

𝑃𝑅 𝑎  

𝑃𝑅 𝑏  

𝑅𝑑 

𝑃𝑇 𝑎  

𝑃𝑇 𝑏  

𝑅𝑑 

𝑝  
𝑃𝑅(𝑏)

 

𝑝  
𝑃𝑅(𝑎)

 

𝑝 

Figure 1: Illustration of the nesting property of p. If p : Rd → Rd verifies this nesting property, then it
defines a natural transformation between two p-value sheaves.

Proof. Easy deduction from the following natural transformation diagram:

a PR (b) PT (b)

{ X

b PR (a) PT (a)

⊂ ⊂

p PR (b)

⊂

p PR (a)

Corollary 4.11. If p̄ = (pa)a∈[0,1] is a natural transformation PR → PT , then p =
⋃
a∈A

pa is a function that

verifies the nesting property.

Proposition 4.12. For all a ∈ [0,1], PT (a) = Rd\

( ⋃
b<a

T(b)
)
.

Proof. By computation:
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4. First random results

PT (a) =
{

x ∈ Rd
�� pvalT (x) > a

}
=

{
x ∈ Rd

���� inf
x∈T (b)

(b ∈ [0,1]) > a
}

=
{

x ∈ Rd
�� ∀b < a, x < T(b)

}
=

⋂
b<a

Rd\T(b)

= Rd\

(⋃
b<a

T(b)

)

Corollary 4.13. For all a ∈ [0,1], if
⋃
b<a

T(b) = T(a) then PT (a) = Rd\T(a).

Example 4.14. Note that we are considering very general tests T : [0,1] → Lbg
(
Rd

)
, so

( ⋃
b<a

T(b)
)
has no

reason to be equal to T(a). Let us give a counterexample.
Consider the following functions:

f :

[0,1] −→ [0,1]

x 7−→

{
x if x < 1

2
1
2 x + 1

2 if x > 1
2

g :
{
]0,1[ −→ R

x 7−→ tan
(
πx − π

2
)

T :

[0,1] −→ Lbg

(
Rd

)
a 7−→

{
]−g ◦ f (a),g ◦ f (a)[ if a < 1
Rd if a = 1

The function f is strictly increasing and establishes a bijection [0,1] →
[
0, 1

2
[
∪

[ 3
4,1

]
. Then g is

bijective and strictly increasing, so g ◦ f is striclty increasing and injective, and finally T is stricly increasing
in the Lebesgue set, so it is injective, and has a left inverse Lbg

(
Rd

)
→ [0,1] (which is a size). In other

words, T is a test. However:

⋃
a< 1

2

T(a) =
⋃
a< 1

2

]−g ◦ f (a),g ◦ f (a)[

=

]
− lim

a< 1
2

g ◦ f (a), lim
a< 1

2

g ◦ f (a)

[
=

]
−g

(
lim
a< 1

2

f (a)

)
,g

(
lim
a< 1

2

f (a)

) [
=

]
−g

(
1
2

)
,g

(
1
2

) [
( T

(
1
2

)
=

]
−g

(
3
4

)
,g

(
3
4

) [
Definition 4.15 (Continuous test). Let T be a test. We call T a continuous test when, for all A ⊂ [0,1], we
have

⋃
a∈A

T(a) = T(sup(A)) and
⋂
a∈A

T(a) = T(inf(A)).
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Note that this notion of continuity is closer to the categorical notion than the analytic notion.
In the following, we give an example of such a continuous test.

Definition 4.16 (Likelihood ratio). Let f0, f1 : Rd → R+ be two probability density functions, and let
x ∈ Rd.

The likelihood ratio of x being from X ∼ f1 instead of X ∼ f0, written Λ f0, f1(x) or simply Λ(x) when
there is no ambiguity, is the following function:

Λ :


Rd −→ R+ ∪ {∞}

x 7−→


f1(x)
f0(x)

if f0(x) , 0

∞ if f0(x) = 0 and f1(x) > 0
0 if f0(x) = 0 and f1(x) = 0

In the following, we consider X ∼ f0, and we restrict ourselves to the cases where Λ(X) is an absolutely
continuous random variable. This happens, using Jacobi’s transformation formula [2], when f0 > 0 and
when both f0 and f1 are differentiable, for example when f0 and f1 are both Gaussian distributions. In
this case, the function k → P [Λ(X) > k | X ∼ f0] (which is the false alarm probability) is continuous and
stricly decreasing, and has a continuous and strictly decreasing inverse which is described in the following
definition.

Definition 4.17 (NP-threshold function). Let f0, f1 : Rd → R+ be two probability density functions such
that, if X ∼ f0 then Λ(X) is absolutely continuous.

The NP-threshold function, written kNP or simply k in the following, is the function that assigns to each
a ∈ [0,1], the threshold k(a) such that:

a =
∫

Λ(x)>k(a)

f0(x)dx = P [Λ(X) > k(a) | X ∼ f0]

Remark 4.18. The threshold k(a) is the unique threshold whose false alarm probability is a.
As the function k → P [Λ(X) > k | X ∼ f0] is continuous and stricly decreasing, it is easy to see that:

Proposition 4.19. The NP-threshold function is continuous and strictly decreasing.

Definition 4.20 (Neyman-Pearson test). Let f0, f1 : Rd → R+ be two probability density functions such
that, if X ∼ f0 then Λ(X) is absolutely continuous.

The Neyman-Pearson test is the following test:

NP :
{
[0,1] −→ Lbg

(
Rd

)
a 7−→

{
x ∈ Rd

�� Λ(x) > k(a)
}

Proposition 4.21. The test NP is continuous.

Proof. This is due to the monotonicity of the threshold function k. Let A ⊂ [0,1]:⋃
a∈A

NP(a) =
⋃
a∈A

{
x ∈ Rd

�� Λ(x) > k(a)
}

=
{

x ∈ Rd
�� ∃a ∈ A, Λ(x) > k(a)

}
=

{
x ∈ Rd

�� Λ(x) > inf
a∈A
(k(a))

}
=

{
x ∈ Rd

�� Λ(x) > k(sup(A))
}

= NP(sup(A))

The proof for the intersection is roughly the same.
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Corollary 4.22. SNP(a) = R\NP(a).

Definition 4.23 (RDT context). An RDT-context is a tuple (d, θ0,C, τ) where:

1. d ∈ N is the dimension;

2. θ0 ∈ R
d is called the model;

3. C ∈ Matd,d (R) is a positively definite square d × d real matrix;

4. τ ∈ R∗+ is the tolerance.

Definition 4.24 (RDT problem). Let (d, θ0,C, τ) be an RDT-context.
The RDT problem with context (θ0,C, τ) consists in the following testing problem:

Observation Y = Θ + X where X ∼ N
(
0,C2) , Θ is any random vector in Rd and Θ and X are independent.

H0 ‖Θ − Y ‖C 6 τ

H1 ‖Θ − Y ‖C > τ

Definition 4.25 (RDT threshold function). Let (d, θ0,C, τ) be an RDT-context and let a ∈ ]0,1[.
The RDT threshold function with false alarm a, written λa, is the following function:

λa :

R+ −→ R+

τ 7−→
the unique solution in η to the
equation: a = 1 − Fχ2

d(τ
2)

(
η2)

Definition 4.26 (RDT test). Let (d, θ0,C, τ) be an RDT-context.
The RDT test with context (d, θ0,C, τ) is the following test:

RDT :


[0,1] −→ Lbg

(
Rd

)
a 7−→


∅ if a = 0

Rd\{θ0} if a = 1{
x ∈ Rd

�� λa(τ) < ‖x − θ0‖C
}

otherwise

Proposition 4.27. The test RDT is continuous.

Proof. Let A ⊂ [0,1]. The proof is similar to the one for NP, however we have a few details to take care
before.

⋃
a∈A

RDT(a) =
⋃
a∈A

{
x ∈ Rd

�� λa(τ) < ‖x − θ0‖C
}

=
{

x ∈ Rd
�� ∃a ∈ A, λa(τ) < ‖x − θ0‖C

}
=

{
x ∈ Rd

���� inf
a∈A
(λa(τ)) < ‖x − θ0‖C

}
Then, a 7→ λa(τ) is decreasing and continuous in a, so:

inf
a∈A
(λa(τ)) = lim

x∈A
x→sup(A)

λa(τ) =

{
λsup(A)(τ) if 1 , sup(A)
0 otherwise

If 1 , sup(A) then:
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⋃
a∈A

RDT(a) =
{

x ∈ Rd

���� inf
a∈A
(λa(τ)) < ‖x − θ0‖C

}
=

{
x ∈ Rd

�� λsup(A)(τ) < ‖x − θ0‖C
}

= RDT(sup(A))

Otherwise, if 1 = sup(A) then:

⋃
a∈A

RDT(a) =
{

x ∈ Rd

���� inf
a∈A
(λa(τ)) < ‖x − θ0‖C

}
=

{
x ∈ Rd

�� 0 < ‖x − θ0‖C
}

= Rd\{θ0}

= RDT(sup(A))

Proposition 4.28.

4.3. About predicates
Definition 4.29 (Predicate). Let S be a sheaf in PSh (U ).

A predicate is a sheaf morphism p : S → Ω.

Computing predicates

Let S : U
op
→ Sets be a sheaf, and let p1, p2 : S → Ω be predicates. The predicates p1∧p2, p1∨p2, p1 →

p2,¬p1 are all predicates S → Ω.
Let a ∈ [0,1]. For x ∈ S(a), define a1 = p1,a(x) and a2 = p2,a(x). We have the trivial results:

(p1 ∧ p2)a (x) = min(a1,a2)

(p1 ∨ p2)a (x) = max(a1,a2)

Also:

(p1 → p2)a (x) = p1,a(x) → p2,a(x)

=
∨

R∧a16a2

R

=
∨

b∈[0,a]
b∧a16a2

b

=
∨

b∈[0,a]
min(a1 ,b)6a2

b

=
∨

b∈[0,a]
min(a1 ,b)6a2

b

= Uc
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for some c ∈ [0,a]. Let us take a look at that c. We have:

c = sup
b∈[0,a]

min(a1 ,b)6a2

(b) =
{

a if a1 6 a2
a2 otherwise

The negation ¬p1 corresponds to the special case where a2 = U0 = ∅:

(¬p1)a (x) = p1,a(x) → ∅

=
∨

b∈[0,a]
min(a1 ,b)60

b

= Uc

With c being:

c = sup
b∈[0,a]

min(a1 ,b)60

(b) =
{

a if a1 = 0
0 if a1 > 0

In summary:

Formula Condition Result
p1,a(x) a1
p2,a(x) a2

(p1 ∧ p2)a (x) min(a1,a2)

(p1 ∨ p2)a (x) max(a1,a2)

(p1 → p2)a (x) if a1 6 a2 a
if a1 > a2 a2

(¬p1)a (x) if a1 = 0 a
if a1 > 0 U0 = ∅

Construction of a predicate

How to write "x ∈ B (θ0, ρ)" in a predicate? (We are considering an open ball)
We first need to find the right test. Then it will give us a sheaf, and we will design the right predicate.
The predicate should be a sheaf morphism: p : PT → Ω, such that, for all a ∈ [0,1], it takes x ∈ PT (a)

and returns the subset of a for which x ∈ B (θ0, ρ).
As a first answer, we choose ρ to be a parameter for the test. We define the following test:

T(a) = B
(
θ0,

aρ
1 − a

)
Then T is a continuous test, and PT (a) = R\B

(
θ0,

aρ
1 − a

)
. Then the predicate should be p : S → Ω

such that pa(x) = ∅ if x < B (θ0, ρ), and pa(x) = a ∧ U 1
2
where 1

2 is the solution to the equation in a:
aρ

1−a = ρ.
For a < b, we have a 6 b and we need the following diagram to commute:

S(b) Ω(b)

S(a) Ω(a)

pb

6 ”∧a”

pa
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If x ∈ S(b), then:

” ∧ a” ◦ pb(x) =
{
∅ ∧ a if x < B (θ0, ρ)

b ∧ a ∧U 1
2

if x ∈ B (θ0, ρ)

= pa(x)

5. Study of the category of p-values
Definition 5.1 (Category PVal (C )). Let C be a category representing a complete Heyting algebra.

The category of p-values on C , denoted by PVal (C ), is the full subcategory of PSh (C ) such that every
P ∈ PVal (C ) comes from a test.

In the following we will study the properties of that category.

Proposition 5.2. (Conjecture)

1. PVal (U ) doesn’t have all exponentials.

2. PVal (U ) has all finite products.

3. PVal (U ) has no terminal object.

The problem with these conjectures is that the properties of PSh ([0,1]) don’t transfer to their
subcategories. A first guess was that, if PVal (U ) had all exponentials, then the exponentials in PVal (U )
should be isomorphic to the exponentials in PSh (U ) given that PVal (U ) is a full subcategory of PSh (U ).
In summary, it is thinkable that, if [B→ C] is the exponential in PVal (U ) and CB is the exponential in
PSh (U ), then:

∀A,B,C ∈ PVal (U ) ,HomPSh(U ) (A, [B→ C]) � HomPSh(U )

(
A,CB

)
⇒ [B→ C] � CB

However, this is not the case. Consider a topological space (X,T ) as a Heyting algebra. Then take
any non-trivial topological subspace (Y,TY ) of X , also viewed as a Heyting algebra. The exponential in a
topological space is defined from the exponential in a Heyting algebra and is defined as:

U ∩ V 6 W ⇔ V 6 U → W︸   ︷︷   ︸
exponential

A more explicit version of this exponential is a follows [3, Section 1.1.4., p21]:

U → W︸   ︷︷   ︸
in T

= max ({Z ∈ T | Z ∩U 6 W})

Which is the interior of W ∪ (X\U) in X .
If U and W are open subsets of Y then, then the exponential U → W in Y is the interior of W ∪ (Y\U)

which may be different to the interior of W ∪ (X\U) (cf. Figure 2).
Finally, we can suspect there is no terminal object, because we don’t see which object, other than ∆(1),

where ∆ : U → SetsU , could be the terminal object, and ∆(1) is not in PVal (U ).
Otherwise, the product seems like an easy result.

IMTA-RR-2019-02-SC 15/20



6. Natural transformation between NP and RDT

𝑋 

𝑌 

𝑊 

𝑈 

Figure 2: Illustration of what may happen when comparing the exponentials of a topological space with
one of its subspaces. Here, Y is a topological subspace of X , U and W are open subsets of Y (and thus of
X), and the exponential U → W in Y could be the exponential (U → W)X ∩ Y where (U → W)X is the
exponential in X .

Proof. (PVal (U ) has all products) Let d1, d2 ∈ N, and let T1 : [0,1] → Lbg
(
Rd1

)
and T2 : [0,1] →

Lbg
(
Rd2

)
be two tests.

Then, for every a ∈ [0,1], T1(a) × T2(a) is also in Lbg
(
Rd1+d2

)
. Then, T1 × T2 : [0,1] → Lbg

(
Rd1+d2

)
is also a test.

Thus:

ST1(a) × ST2(a) =

(
Rd1\

⋃
b<a

T1(b)

)
×

(
Rd2\

⋃
b<a

T2(b)

)
= Rd1+d2\

⋃
b<a

(T1(b) × T2(b))

=
(
ST1 × ST2

)
(a)

Thus, the product in PVal (U ) is the same as in PSh (U ).

6. Natural transformation between NP and RDT
We will have to reformulate the problems they both answer to, in order to have two comparable tests.

Let C be a positive-definite d × d matrix. Let µ ∈ Rd.
The NP problem amounts to testing:

Observation : Y ∼ N (ε,C) = ε +N (0,C)
H0 : ε = 0
H1 : ε = µ

While the RDT problem amounts to:
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Observation : Y = ε + X where X ∼ N (0,C)
H0 :



ε − 1
2 µ




C
6



 1
2 µ




C
= τ

H1 :


ε − 1

2 µ



C
>



 1
2 µ




C
= τ

We assume here that ε can only take 0 or µ as values. The RDT problem is more general (as seen above
in Definition 4.24) in that ε could be any real random variable. The NP problem is also more general,
because it could compare any two distributions. We also note that, in this formulation, the two versions
of the null hypothesis are equivalent, and the two versions of the alternative hypothesis too. With this
formulation, both problems are exactly the same. However, this doesn’t mean that RDT and NP will give
the same answer to a caught signal.

The goal of this section is to present the computations that lead to a natural transformation between SNP
and SRDT, so that NP and RDT do give the same answer to the same caught signal.

Let a ∈ [0,1].

x ∈ SNP(a) ⇔ Λ(x) 6 k(a)

⇔

exp
(
− 1

2 ‖x − µ‖
2
C

)
exp

(
− 1

2 ‖x − 0‖2C
) 6 k(a)

⇔
1
2
‖x‖2C −

1
2
‖x − µ‖2C 6 ln(k(a))

⇔ xtC−1x − xtC−1x + 2xtC−1µ − µtC−1µ 6 2 ln(k(a))

⇔ xtC−1µ 6
1
2
µtC−1µ + ln(k(a))︸                    ︷︷                    ︸

K(a)

As for RDT:

x ∈ SRDT(a) ⇔




x −

1
2
µ






C

6 λa (τ)

The NP problem amounts to comparing a scalar product to a threshold: xtC−1µ 6 K(a), while the RDT
problem amounts to comparing a distance to a threshold:



x − 1
2 µ




C
6 λa (τ). The expression of K(a) and

λa(τ) are not important here.
We are looking for a set of functions fa : SRDT(a) → SNP(a) or ga : SNP(a) → SRDT(a) that associate a

ball to a hyperplane. Due to Proposition 4.10, fa and ga should verify the nesting property. We thus look
functions f : Rd → Rd or g : Rd → Rd that respect this nesting property, and we will deduce the natural
transformations from restrictions of these functions.

Namely, we are looking for a g such that:

xtC−1µ = K(a) ⇔




g(x) − 1

2
µ






C

= λa(τ)

Let us start with dimension d = 2.
For a given µ , 0, the set of xtC−1µ = K(a) defines a straight line that is perpendicular to µ. Let µ1 be

a vector orthogonal to µ with same length. We have x = xtC−1µ · µ + xtC−1µ1 · µ1.
Consider now the circle B

(
1
2 µ,λa(τ)

)
. We consider this circle as a trigonometric-like circle with radius

λa(τ). As such, define the vector
(

1
2 + λa(τ)

)
µ as the trigonometric origin on this circle. Consider the

vector with trigonometric coordinate α(x) = arctan
(
xtC−1µ1

)
; it is the following vector g(x):
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g(x) =
1
2
µ + λa(τ)

(
cos (α(x))
‖µ‖C

µ +
sin (α(x))
‖µ1‖C

µ1

)

𝐾(𝑎) 𝜇 

𝜇1 

𝑥𝑡𝐶−1𝜇1 

Figure 3: Illustration of the action of a 2-dimensional natural transformation between NP and RDT. NP
compares the projection of x over µ to a threshold K(a). As we are in finite dimension, there exists µ1
orthogonal to µ with the same length. The coordinates of x in the basis (µ, µ1) are

(
xtC−1µ, xtC−1µ1

)
. The

goal of the natural transformation we are building is to send xtC−1µ1 to a trigonometric coordinate (see
Figure 4)

In dimension d, it amounts to sending a d-vector to another vector in the d − 1-sphere with spherical
coordinates. In dimension d, the spherical coordinates are (r, ϕ1, . . . , ϕd−1), such that, if x has Cartesian
coordinates x1, . . . , xd:

x1 = r cos (ϕ1)

x2 = r sin (ϕ1) cos (ϕ2)

x3 = r sin (ϕ1) sin (ϕ2) cos (ϕ3)

. . .

xd−1 = r sin (ϕ1) . . . sin (ϕd−2) cos (ϕd−1)

xd = r sin (ϕ1) . . . sin (ϕd−2) sin (ϕd−1)

Then, in dimension d, given a positive-definite matrixC and a vector µ, we decide of a unique orthogonal
basis (µ, µ1, . . . , µd−1). For practical reasons, we do not assume that they have the same length 1 but ‖µ‖C
(it doesn’t change the result, only the easiness of the computations).

For a vector x = (x1, . . . , xd) such that xtC−1µ = K(a), we define a temporary vector v(x) (which will
play the role of the green one in Figure 4); v(x) has spherical coordinates (r, ϕ1, . . . , ϕd−1) where:
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𝜇 1
2
𝜇 

𝜇1 

Figure 4: Illustration of the action of a 2-dimensional natural transformation between NP and RDT. RDT
compares the distance between x and 1

2 µ to a threshold λa. So it defines a ball. In dimension 2, consider
it as a trigonometric circle, in the sense that we want to place vectors on it. The vector with coordinates
α = arctan

(
xtC−1µ1

)
on the circle is the green vector. It gives the expression of g(x) (in red) as the sum

1
2 µ + λa(τ)

(
cos(α(x))
‖µ ‖C

µ + sin(α(x))
‖µ1 ‖C

µ1

)
.

r = λa(τ)

ϕ1 = arccos
(

xtC−1µ1
‖x‖C ‖µ1‖C

)
ϕ2 = arccos

(
xtC−1µ2
‖x‖C ‖µ2‖C

)
. . .

ϕd−1 = arcsin
(

xtC−1µd−1
‖x‖C ‖µd−1‖C

)
and then:

g(x) =
1
2
µ + v(x)

Finally, the natural transformation ḡ : SNP → SRDT is the following:

ḡ : SNP → SRDT =

(
g SNP(a) :

{
SNP(a) −→ SRDT(a)

x 7−→ g(x)

)
a∈[0,1]
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