p-value presheaves

Erwan Beurier, Dominique Pastor

To cite this version:

Erwan Beurier, Dominique Pastor. p-value presheaves. [Research Report] IMTA-RR-2019-02-SC, IMT Atlantique. 2019. hal-02190029v1

HAL Id: hal-02190029 https://hal.science/hal-02190029v1

Submitted on 22 Jul 2019 (v1), last revised 28 Aug 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IMT Atlantique

Dépt. Signal \& Communications
Technooôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
Téléphone: +33 (0)2 29001304
Télécopie: +33 (0)2 29001012
URL: www.imt-atlantique.fr

Collection des rapports de recherche d'IMT Atlantique
IMTA-RR-2019-02-SC

p-value presheaves

Erwan Beurier
IMT Atlantique
Dominique Pastor
IMT Atlantique

Date d'édition : July 21, 2019
Version: 1.0

IMT Atlantique

Bretagne-Pays de la Loire
École Mines-Télécom

Contents

1. Introduction 2
2. Notation 2
3. P-values 2
4. RDT and sheaves 3
5. First results 4
5.1. About p-value sheaves 4
5.2. About sheaf morphisms 6
5.3. About predicates 9
Index 10
References 10

1. Introduction

This report presents a preliminary study of the sheaf-ness properties of the p -value.

2. Notation

$\mathcal{B}\left(\mathbb{R}^{n}\right)$ is the Borel set (the smallest σ-algeba containing all open sets of \mathbb{R}^{n}).

3. \mathbf{P}-values

Definition 3.1 (Size). A size is a function $\alpha: \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1]$.
Definition 3.2 (Retract). Let $\alpha: \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1]$ be a size.
A retract is a function $R:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ such that $\alpha \circ R=\mathrm{id}_{[0,1]}$.
In other words, a retract is a right inverse for a size.
Definition 3.3 (Test). A family of tests, or simply test, is a retract $T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ such that $T(0)=\emptyset$, $T(1)=\mathbb{R}^{n}$ and $a \leqslant a^{\prime} \Rightarrow T(a) \leqslant T\left(a^{\prime}\right)$.
Remark 3.4. If $T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ is a test, then for $a \in[0,1], T(a)$ is the rejection region of the null hypothesis with size a.
Definition 3.5 (p-value). Let T be a test.
For $x \in \mathbb{R}^{n}$, the p -value of x is defined as:

$$
\operatorname{pval}_{T}(x)=\inf (\{a \in[0,1] \mid x \in T(a)\})
$$

The p -value of x is the minimum size of the test that puts x into the rejection region.
Definition 3.6 (Topological space \mathscr{T}). For all $a \in[0,1]$, we define $U_{a}=\left[0, a\left[\right.\right.$ and $\mathscr{T}=\left\{U_{a} \mid a \in[0,1]\right\}$.
It is easy to see that:
Proposition 3.7. ([0, $1[, \mathscr{T})$ is a topological space.
Remark 3.8. Note that $U_{a} \cap U_{b}=U_{\min (a, b)}$ and $\bigcup_{a \in A} U_{a}=U_{\sup (A)}$.
Definition 3.9 (P-value sheaf). Let $T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ be a test.
The p-value sheaf for T is the following functor:

$$
S_{T}:\left\{\begin{array}{ccc}
\mathscr{T}^{\mathrm{op}} & \longrightarrow & \text { Sets } \\
U_{a} & \longmapsto & \left\{x \in \mathbb{R}^{n} \mid \operatorname{pval}_{T}(x) \geqslant a\right\} \\
U_{a} \subseteq U_{b} & \longmapsto & \left\{\begin{array}{ccc}
S_{T}\left(U_{b}\right) & \longrightarrow & S_{T}\left(U_{a}\right) \\
x & \longmapsto & x
\end{array}\right.
\end{array}\right.
$$

Proposition 3.10. Let $T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ be a test and let S_{T} be its p-value sheaf.
Then, S_{T} is an actual sheaf.
Proof. It's easy to see that S_{T} is a presheaf: it's a functor $\mathscr{T}^{\text {op }} \rightarrow$ Sets. We now have to check the sheaf condition.

Let $A \subset\left[0,1\left[\right.\right.$ and $\left(U_{a}\right)_{a \in A} \in \mathscr{T}^{A}$ be a cover of $U \in \mathscr{T}$. We have $U=\bigcup_{a \in A} U_{a}$. Let $\left(s_{a}\right)_{a \in A}$ be a matching family of S_{T}-sections over $\left(U_{a}\right)_{a \in A}: s_{a} \in S_{T}\left(U_{a}\right)$ and $s_{a}\left|U_{a} \cap U_{b}=s_{b}\right| U_{a} \cap U_{b}$.

By definition of S_{T}, we have:

$$
s_{a} U_{a} \cap U_{b}=S_{T}\left(U_{a} \cap U_{b} \subset U_{a}\right)\left(s_{a}\right)=s_{a}
$$

which yields, for all $a, b \in A, s_{a}=s_{b}$. Let $s=s_{a}$; then s satisfies $\forall a \in A, \operatorname{pval}_{T}(s) \geqslant a$, so $\operatorname{pval}_{T}(s) \geqslant \sup (A)$ and $s \in S_{T}\left(U_{\sup (A)}\right)=S_{T}\left(\bigcup_{a \in A} U_{a}\right)$. Consequently, s is the unique gluing of $\left(s_{a}\right)_{a \in A}$, and S_{T} satisfies the sheaf condition.

Consider the sheaf topos based on $\mathscr{T}: \mathbf{S h v}([0,1[, \mathscr{T})$. Its subobject classifier is:

$$
\Omega:\left\{\begin{array}{cll}
\mathscr{T}^{\mathrm{op}} & \longrightarrow & \text { Sets } \\
U_{a} & \longmapsto & \left\{U_{a^{\prime}} \mid a^{\prime} \leqslant a\right\} \\
U_{a} \subset U_{b} & \longmapsto & \left\{\begin{array}{cll}
\Omega\left(U_{b}\right) & \longrightarrow & \Omega\left(U_{a}\right) \\
U_{c} & \longmapsto & U_{a} \cap U_{c}=U_{\min (a, c)}
\end{array}\right.
\end{array}\right.
$$

Let T be a test and S_{T} its associated p-value sheaf. A sheaf morphism $p: S_{T} \rightarrow \Omega$ makes the following diagram commute for all $a \leqslant b$:

For $x \in S_{T}\left(U_{b}\right)$, we have:

$$
\begin{aligned}
p_{U_{a}} \circ S_{T}(u)(x) & =\Omega(u) \circ p_{U_{b}}(x) \\
p_{U_{a}}(x) & =p_{U_{b}}(x) \cap U_{a}
\end{aligned}
$$

The canonical example is the following natural transformation:

$$
p_{U_{a}}:\left\{\begin{array}{clc}
S_{T}\left(U_{a}\right) & \longrightarrow & \Omega\left(U_{a}\right) \\
x & \longmapsto & U_{a}
\end{array}\right.
$$

4. RDT and sheaves

Consider the set-theoretic integer $n \in \mathbb{N}, n=\{0, \ldots, n-1\}$. Endow n with the discrete topology $(n, \mathcal{P}(n))$. For $I \subset n, \mathbb{R}^{I}$ is the set of functions $I \rightarrow \mathbb{R}$; equivalently, it is the set of I-indexed sets of real numbers.

Let Π_{n} be the following functor:

$$
\Pi_{n}:\left\{\begin{array}{ccc}
\mathcal{P}(n) & \longrightarrow & \begin{array}{l}
\text { Sets } \\
I \\
\longmapsto
\end{array} \\
I \subset J & \longmapsto & \mathbb{R}^{I} \\
\Pi_{n}(J) & \longrightarrow & \Pi_{n}(I) \\
f & \longmapsto & \left.f\right|_{I}
\end{array}\right.
$$

Proposition 4.1. Π_{n} is a sheaf.
For $I \subset n,\|-\|_{\mathbb{R}^{I}}$ is the Euclidean norm on \mathbb{R}^{I}.
Definition 4.2 (τ functor). We define the functor τ by setting:

$$
\tau:\left\{\begin{array}{ccc}
\mathcal{P}(n) & \longrightarrow & \mathscr{T} \\
I & \longmapsto & \tau(I) \\
I \subset J & \longmapsto & \tau(I) \subset \tau(J)
\end{array}\right.
$$

where \mathscr{T} is the topology defined in Definition 3.6. For $I \in \mathcal{P}(n)$, the unique a such that $\tau(I)=[0, a[$ is denoted τ_{I}, so that: $\tau(I)=\left[0, \tau_{I}[\right.$.

The interest of this definition will tentatively be given later.
Let $f, \theta \in \mathbb{R}^{n}$. For all $I \in \mathcal{P}(n)$, the proposition: $\left\|\left.\theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \leqslant \tau_{I}$ is a proposition the truth of which can be known by simple inspection, provided that θ is known. In practice, we don't have access to θ but to a modified, noisy version $Y=Y(\theta)$ of it, and the question is then, for any given $I \subset n$, whether the proposition $\left\|\left.\theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \leqslant \tau_{I}$ is plausible in a certain sense or not, when we observe $\left.Y\right|_{I}$.

Definition 4.3 (Optimal pair). Let $f \in \mathbb{R}^{n}$, we call it model. Let Θ be a random vector whose distribution we don't know, and $X \sim \mathcal{N}\left(0, C^{2}\right)$ is a n-dimensional Gaussian vector. We observe $Y=\Theta+X$.

For all $I \subset n$, there exists a pair $\left(\alpha_{i}^{f, \tau}, T_{I}^{f, \tau}\right)$ [1], called optimal pair restricted to I, where:

1. $\alpha_{i}^{f, \tau}: \mathcal{B}\left(\mathbb{R}^{I}\right) \rightarrow[0,1]$ is a size
2. $T_{I}^{f, \tau}:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{I}\right)$ is a monotone retract of $\alpha_{i}^{f, \tau}$
3. $T_{I}^{f, \tau}$ is optimal for testing $\left\|\left.\Theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \leqslant \tau_{I}$ against its alternative $\left\|\left.\Theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \geqslant \tau_{I}$ when we observe $Y(\Theta)$.

Definition 4.4 (Restricted p-value). We consider the τ functor described above. Let $I \subset n$ and let $\left(\alpha_{i}^{f, \tau}, T_{I}^{f, \tau}\right)$ be an optimal pair restricted to I.

The I-restricted p-value of x is the following value:

$$
\operatorname{pval}_{I}^{f, \tau}(y)=\inf \left(\left\{a \in[0,1] \mid y \in T_{I}^{f, \tau}(a)\right\}\right)
$$

The I-restricted p-value sheaf is the following sheaf:

$$
S_{I}^{f, \tau}:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow & \mathbb{R}^{I} \\
U_{a} & \longmapsto & \left\{y \in \mathbb{R}^{n} \mid \operatorname{pval}_{I}^{f, \tau}(y) \geqslant a\right\} \\
U_{a} \subseteq U_{b} & \longmapsto\{ & \longmapsto \begin{array}{ccc}
S_{T}\left(U_{b}\right) & \longrightarrow & S_{T}\left(U_{a}\right) \\
x & \longmapsto & x
\end{array}
\end{array}\right.
$$

The p-value $\operatorname{pval}_{I}^{f, \tau}(y)$ measures the plausability of proposition $\left\|\left.\Theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \leqslant \tau_{I}$ when we observe $y \sim Y=\Theta+X$. The higher $\operatorname{pval}_{I}^{f, \tau}(y)$, the more plausible the proposition $\left\|\left.\Theta\right|_{I}-\left.f\right|_{I}\right\|_{\mathbb{R}^{I}} \leqslant \tau_{I}$.

5. First results

5.1. About p-value sheaves

It is easy to see that:
Proposition 5.1. (\mathscr{T}, \subset) is a total order with a minimal and maximal element (resp. \emptyset and \mathbb{R}^{d}).
It is also easy, but less easy, to see that:
Proposition 5.2. $\mathscr{T}^{o p}$ has all small limits and colimits.
Proof. Let $D: \mathscr{I} \rightarrow \mathscr{T}^{\text {op }}$ be a diagram in $\mathscr{T}^{\mathrm{op}}$. For all $i \in \mathscr{I}$, define $U_{d_{i}}=D(i)$. Then:

$$
\begin{aligned}
\operatorname{Colim}(D) & =\sup _{i \in \mathrm{Ob}_{\mathscr{I}}} D_{i}=\bigcap_{i \in \mathrm{Ob}_{\mathscr{I}}} U_{d_{i}}=U_{\inf (\mathscr{I})} \\
\operatorname{Lim}(D) & =\inf _{i \in \mathrm{Ob}_{\mathscr{I}}} D_{i}=\bigcup_{i \in \mathrm{Ob}_{\mathscr{I}}} U_{d_{i}}=U_{\sup (\mathscr{I})}
\end{aligned}
$$

Note that the sup becomes an intersection, and the inf becomes a union, because we are considering $\mathscr{T}^{\text {op }}$ and not \mathscr{T}. Also note that the infima and suprema always exist because these are infima and suprema of $\left\{d_{i} \mid i \in \mathrm{Ob}_{\mathscr{J}}\right\}$, which is a subset of \mathbb{R}.

Proposition 5.3. For any test T, its p-value sheaf S_{T} is continuous and cocontinuous.

Proof. Let $D: \mathscr{I} \rightarrow \mathscr{T}^{\text {op }}$ be any (small) diagram in $\mathscr{T}^{\text {op }}$. For all $i \in \mathscr{I}$, define $U_{d_{i}}=D(i)$.
We only consider the case of a limit; the proof is very similar for colimits.

$$
\begin{aligned}
S_{T}(\operatorname{Lim}(D)) & =S_{T}\left(\bigcup_{i \in \mathscr{I}} U_{d_{i}}\right) \\
& =S_{T}\left(U_{\text {sup }\left(d_{i}\right)}\right) \\
& =\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant \sup _{i \in \mathscr{I}}\left(d_{i}\right)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \forall i \in \mathscr{I}, \operatorname{pval}_{T}(x) \geqslant d_{i}\right\} \\
& =\bigcap_{i \in \mathscr{I}}\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant d_{i}\right\} \\
& =\bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right)
\end{aligned}
$$

We now have to check that $\bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right) \cong \operatorname{Lim}\left(S_{T} \circ D\right)$.
For all $i \rightarrow j \in \mathscr{I}$, we have $S_{T}\left(U_{d_{i}}\right) \subset S_{T}\left(U_{d_{j}}\right)$. We denote by $\iota_{i, j}=S_{T}\left(U_{d_{i}} \subset U_{d_{j}}\right): S_{T}\left(U_{d_{i}}\right) \rightarrow$ $S_{T}\left(U_{d_{j}}\right)$ the inclusion mapping between $S_{T}\left(U_{d_{i}}\right)$'s. We also denote by $\iota_{i}: \bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right) \rightarrow S_{T}\left(U_{d_{i}}\right)$ the inclusion mapping of the intersection. For all $i \rightarrow j \in \mathscr{I}$, we have $\iota_{i, j} \circ \iota_{i}=\iota_{j}$, so that $\iota=$ $\left(\iota_{i}: \bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right) \rightarrow S_{T}\left(U_{d_{i}}\right)\right)_{i \in \mathscr{I}}$ is a cone to $S_{T} \circ D$.

Let (A, α) be any cone to $S_{T} \circ D$. We denote the $S_{T}\left(U_{d_{i}}\right)$-components of α by $\alpha_{i}: A \rightarrow S_{T}\left(U_{d_{i}}\right)$. For all $i \rightarrow j \in \mathscr{I}$, and for all $x \in X$, we have $\iota_{i, j} \circ \alpha_{i}(x)=\alpha_{j}(x)=\alpha_{i}(x)$.

So in fact, $\alpha_{i}(X)=\alpha_{j}(X) \subset S_{T}\left(U_{d_{i}}\right)$, which yields that, for all $i \in \mathscr{I}, \alpha_{i}(X) \subset \bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right)$.
Let u be such that:

$$
u:\left\{\begin{array}{ccc}
X & \longrightarrow & \bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right) \\
x & \longmapsto & \alpha_{i}(x)
\end{array}\right.
$$

for any of the $i \in \mathscr{I}$, because $\alpha_{j}(x)=\alpha_{i}(x)$. Then for all $i \in \mathscr{I}$, we have $\iota_{i} \circ u=\alpha_{i}$.
It is also easy to check the unicity of that u : suppose $u, u^{\prime}: X \rightarrow \bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right)$, then for all $x \in X$, we have:

$$
\begin{aligned}
\iota_{i} \circ u(x) & =\alpha_{i}(x)=\iota_{i} \circ u^{\prime}(x) \\
u(x) & =u^{\prime}(x)
\end{aligned}
$$

which leads to $u=u^{\prime}$.
Consequently, $\bigcap_{i \in \mathscr{I}} S_{T}\left(U_{d_{i}}\right) \cong \operatorname{Lim}\left(S_{T} \circ D\right)$.

5.2. About sheaf morphisms

Let us first study the sheaf morphisms between p-value sheaves $p: S_{R} \rightarrow S_{T}$.
Proposition 5.4 (Nesting property). Let $R, T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$ be two tests (of the same size or not). Let $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a function.

The function p defines a natural transformation $\bar{p}: S_{R} \rightarrow S_{T}=\left(p_{\mid S_{R}\left(U_{a}\right)}\right)_{a \in[0,1]} \Leftrightarrow$ for all $a \in[0,1]$, $p\left(S_{R}\left(U_{a}\right)\right) \subset S_{T}\left(U_{a}\right)$.

In other words, p defines a function between nested open sets, as in Figure 1.

Figure 1: Illustration of the nesting property of p. If $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ verifies this nesting property, then it defines a natural transformation between two p-value sheaves.

Proof. Easy deduction from the following natural transformation diagram:

Corollary 5.5. If $\bar{p}=\left(p_{U_{a}}\right)_{a \in[0,1]}$ is a natural transformation $S_{R} \rightarrow S_{T}$, then $p=\bigcup_{a \in A} p_{U_{a}}$ is a function that verifies the nesting property.
Proposition 5.6. For all $a \in[0,1], S_{T}\left(U_{a}\right)=\mathbb{R}^{d} \backslash\left(\bigcup_{b<a} T(b)\right)$.
Proof. By computation:

$$
\begin{aligned}
S_{T}\left(U_{a}\right) & =\left\{x \in \mathbb{R}^{d} \mid \operatorname{pval}_{T}(x) \geqslant a\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \inf _{x \in T(b)}(b \in[0,1]) \geqslant a\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \forall b<a, x \notin T(b)\right\} \\
& =\bigcap_{b<a} \mathbb{R}^{d} \backslash T(b) \\
& =\mathbb{R}^{d} \backslash\left(\bigcup_{b<a} T(b)\right)
\end{aligned}
$$

Corollary 5.7. For all $a \in[0,1]$, if $\bigcup_{b<a} T(b)=T(a)$ then $S_{T}\left(U_{a}\right)=\mathbb{R}^{d} \backslash T(a)$.
Example 5.8. Note that we are considering very general tests $T:[0,1] \rightarrow \mathcal{B}\left(\mathbb{R}^{n}\right)$, so $\left(\bigcup_{b<a} T(b)\right)$ has no reason to be equal to $T(a)$. Let us give a counterexample.

Consider the following functions:

$$
\begin{aligned}
& f:\left\{\begin{array}{ccc}
{[0,1]} & \longrightarrow 0,1] \\
x & \longmapsto \begin{cases}x & \text { if } x<\frac{1}{2} \\
\frac{1}{2} x+\frac{1}{2} & \text { if } x \geqslant \frac{1}{2}\end{cases}
\end{array}\right. \\
& g:\left\{\begin{array}{ccc}
] 0,1[& \longrightarrow & \mathbb{R} \\
x & \longmapsto & \tan \left(\pi x-\frac{\pi}{2}\right)
\end{array}\right. \\
& T:\left\{\right.
\end{aligned}
$$

The function f is strictly increasing and establishes a bijection $[0,1] \rightarrow\left[0, \frac{1}{2}\left[\cup\left[\frac{3}{4}, 1\right]\right.\right.$. Then g is bijective and strictly increasing, so $g \circ f$ is striclty increasing and injective, and finally T is stricly increasing in the Borel set, so it is injective, and has a left inverse $\mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1]$ (which is a size). In other words, T is a test. However:

$$
\begin{aligned}
\bigcup_{a<\frac{1}{2}} T(a) & \left.=\bigcup_{a<\frac{1}{2}}\right]-g \circ f(a), g \circ f(a)[\\
& =]-\lim _{a<\frac{1}{2}} g \circ f(a), \lim _{a<\frac{1}{2}} g \circ f(a)[\\
& =]-g\left(\lim _{a<\frac{1}{2}} f(a)\right), g\left(\lim _{a<\frac{1}{2}} f(a)\right)[\\
& =]-g\left(\frac{1}{2}\right), g\left(\frac{1}{2}\right)[\\
& \left.\subsetneq T\left(\frac{1}{2}\right)=\right]-g\left(\frac{3}{4}\right), g\left(\frac{3}{4}\right)[
\end{aligned}
$$

Definition 5.9 (Continuous test). Let T be a test. We call T a continuous test when, for all $a \in[0,1]$, we have $\bigcup_{b<a} T(b)=T(a)$.

In the following, we give an example of such a continuous test.
Definition 5.10 (Likelihood ratio). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions, and let $x \in \mathbb{R}^{d}$.

The likelihood ratio of x being from $X \sim f_{0}$ instead of $X \sim f_{1}$, written $\Lambda^{f_{0}, f_{1}}(x)$ or simply $\Lambda(x)$ when there is no ambiguity, is the following function:

$$
\Lambda:\left\{\begin{align*}
\mathbb{R}^{d} & \longrightarrow \tag{1}\\
x & \longmapsto \begin{cases}\frac{f_{0}(x)}{f_{1}(x)} & \text { if } f_{1}(x) \neq 0 \\
\infty & \text { if } f_{1}(x)=0 \text { and } f_{0}(x)>0 \\
0 & \text { if } f_{1}(x)=0 \text { and } f_{0}(x)=0\end{cases}
\end{align*}\right.
$$

In the practical case where f_{1} is always stricly positive on its domain, Λ has values only in \mathbb{R}^{+}, and Λ becomes a measurable function.

Consider a random variable $X \sim f_{0}$. One can compute $\mathrm{P}\left[\Lambda(X) \leqslant k \mid X \sim f_{0}\right]=a$. When $k=0$, we have $a=1$. When $k \rightarrow \infty$, we have $a \rightarrow 0$.

Definition 5.11 (NP-threshold function). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions so that $\Lambda^{f_{0}, f_{1}}=\Lambda$ is continuous.

The NP-threshold function, written k_{NP} or simply k, is the function that assigns to each $a \in[0,1]$, threshold $k(a)$ such that:

$$
a=\int_{\Lambda(x) \leqslant k(a)} f_{0}(x) \mathrm{d} x=\mathrm{P}\left[\Lambda(X) \leqslant k \mid X \sim f_{0}\right]
$$

Proposition 5.12. The threshold function is continuous and decreasing.
Proof. To be completed.
Definition 5.13 (Neyman-Pearson test). Let $f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$be two probability density functions so that $\Lambda^{f_{0}, f_{1}}=\Lambda$ is continuous.

The Neyman-Pearson test is the following test:

$$
\mathrm{NP}:\left\{\right.
$$

Proposition 5.14. For all $a \in] 0,1[$, we have $\underset{b<a}{\bigcup} \mathrm{NP}(b)=\mathrm{NP}(a)$. In other words, NP is a continuous test.
Proof. This is due to the continuity of the threshold function k, which remains to be proved:

$$
\begin{aligned}
\bigcup_{b<a} \mathrm{NP}(b) & =\bigcup_{b<a}\left\{x \in \mathbb{R}^{d} \mid \Lambda(x) \leqslant k(b)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \exists b<a, \Lambda(x) \leqslant k(b)\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \Lambda(x) \leqslant \sup _{b<a}(k(b))\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \Lambda(x) \leqslant k(a)\right\} \\
& =\operatorname{NP}(a)
\end{aligned}
$$

Corollary 5.15. $S_{\mathrm{NP}}\left(U_{a}\right)=\mathbb{R} \backslash \mathrm{NP}(a)$.

5.3. About predicates

Definition 5.16 (Predicate). Let S be a sheaf in $\operatorname{Shv}([0,1[, \mathscr{T})$.
A predicate is a sheaf morphism $p: S \rightarrow \Omega$.

Computing predicates

Let $S: \mathscr{T}^{\text {op }} \rightarrow$ Sets be a sheaf, and let $p_{1}, p_{2}: S \rightarrow \Omega$ be predicates. Let $a \in[0,1]$. For $x \in S\left(U_{a}\right)$, define $U_{a_{1}}=p_{1, U_{a}}(x)$ and $U_{a_{2}}=p_{2, U_{a}}(x)$. We have the trivial results:

$$
\begin{aligned}
& \left(p_{1} \wedge p_{2}\right)_{U_{a}}(x)=U_{\min \left(a_{1}, a_{2}\right)} \\
& \left(p_{1} \vee p_{2}\right)_{U_{a}}(x)=U_{\max \left(a_{1}, a_{2}\right)}
\end{aligned}
$$

Also:

$$
\begin{aligned}
\left(p_{1} \rightarrow p_{2}\right)_{U_{a}}(x) & =p_{1, U_{a}}(x) \rightarrow p_{2, U_{a}}(x) \\
& =\bigcup_{R \cap U_{a_{1}} \subset U_{a_{2}}} R \\
& =\bigcup_{\substack{b \in[0, a] \\
U_{b} \cap U_{a_{1}} \subset U_{a_{2}}}} U_{b} \\
& =\bigcup_{\substack{b \in[0, a] \\
U_{\min \left(a_{1}, b\right) \subset U_{a}}}} U_{b} \\
& =\bigcup_{\substack{b \in[0, a] \\
\min \left(a_{1}, b\right) \leqslant a_{2}}} U_{b} \\
& =U_{c}
\end{aligned}
$$

for some $c \in[0, a]$. Let us take a look at that c. We have:

$$
c=\sup _{\substack{b \in[0, a] \\ \min \left(a_{1}, b\right) \leqslant a_{2}}}(b)= \begin{cases}a & \text { if } a_{1} \leqslant a_{2} \\ a_{2} & \text { otherwise }\end{cases}
$$

The negation $\neg p_{1}$ corresponds to the special case where $U_{a_{2}}=U_{0}=\emptyset$:

$$
\begin{aligned}
\left(\neg p_{1}\right)_{U_{a}}(x) & =p_{1, U_{a}}(x) \rightarrow \emptyset \\
& =\bigcup_{\substack{b \in 0, a] \\
\min \left(a_{1}, b\right) \leqslant 0}} U_{b} \\
& =U_{c}
\end{aligned}
$$

With c being:

$$
c=\sup _{\substack{\operatorname{bi[0,a,a} \\ \min \left(a_{1}, b\right) \leqslant 0}}(b)= \begin{cases}a & \text { if } a_{1}=0 \\ 0 & \text { if } a_{1}>0\end{cases}
$$

In summary:

Formula	Condition	Result
$p_{1, U_{a}}(x)$		$U_{a_{1}}$
$p_{2, U_{a}}(x)$		$U_{a_{2}}$
$\left(p_{1} \wedge p_{2}\right)_{U_{a}}(x)$		$U_{\min \left(a_{1}, a_{2}\right)}$
$\left(p_{1} \vee p_{2}\right)_{U_{a}}(x)$		$U_{\max \left(a_{1}, a_{2}\right)}$
$\left(p_{1} \rightarrow p_{2}\right)_{U_{a}}(x)$	if $a_{1} \leqslant a_{2}$ if $a_{1}>a_{2}$	U_{a}
	$U_{a_{2}}$	
$\left(\neg p_{1}\right)_{U_{a}}(x)$	if $a_{1}=0$ if $a_{1}>0$	U_{a}
	$U_{0}=\emptyset$	

References

[1] D. Pastor and Q.-T. Nguyen, "Random distortion testing and optimality of thresholding tests," IEEE Transactions on Signal processing, vol. 61, no. 16, pp. 4161-4171, 2013.

OUR WORLDWIDE PARTNERS UNIVERSITIES - DOUBLE DEGREE AGREEMENTS

3 CAMPUS, 1 SITE

IMT Atlantique Bretagne-Pays de la Loire - http://www.imt-atlantique.fr/

Campus de Nantes	Campus de Rennes
4, rue Alfred Kastler	2, rue de la Châtaigneraie
CS 20722	CS 17607
44307 Nantes Cedex 3	35576 Cesson Sévigné Cedex
France	France
$\mathrm{T}+33(0) 251858100$	$\mathrm{~T}+33(0) 299127000$
$\mathrm{~F}+33(0) 299127008$	$\mathrm{~F}+33(0) 251858199$

Campus de Rennes

2, rue de la Châtaigneraie CS 17607
35576 Cesson Sévigné Cedex
France

F +33 (0)2 51858199

Site de Toulouse

10, avenue Édouard Belin BP 44004
31028 Toulouse Cedex 04
France
T + 33 (0)5 61338365

