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3. P-values

1. Introduction

This report presents a preliminary study of the sheaf-ness properties of the p-value.

2. Notation
B (R™") is the Borel set (the smallest o-algeba containing all open sets of R").

3. P-values
Definition 3.1 (Size). A size is a function a : 8 (R"") — [0, 1].

Definition 3.2 (Retract). Let @ : 8 (R") — [0, 1] be a size.
A retract is a function R : [0,1] — B (R") such that & o R = id|o,1)-

In other words, a retract is a right inverse for a size.

Definition 3.3 (Test). A family of tests, or simply test, is a retract T : [0, 1] — B (R") such that T(0) = 0,
T(l)=R"and a < a’ = T(a) < T(a’).

Remark 3.4. If T : [0,1] —» B (R") is a test, then for a € [0, 1], T(a) is the rejection region of the null
hypothesis with size a.

Definition 3.5 (p-value). Let T be a test.
For x € R, the p-value of x is defined as:

pvaly (x) = inf ({a € [0,1] | x € T(a)})
The p-value of x is the minimum size of the test that puts x into the rejection region.
Definition 3.6 (Topological space 7). For all a € [0, 1], we define U, = [0,a[ and .7 = {U, | a € [0,1]}.
It is easy to see that:
Proposition 3.7. ([0,1[,.7) is a topological space.
Remark 3.8. Note that U, N Up = Unina,p) and UA Ua = Usup(a)-
ae

Definition 3.9 (P-value sheaf). Let7 : [0,1] — B (R") be a test.
The p-value sheaf for T is the following functor:

7 — Sets
g - U, — {x e R" | pvaly (x) > a}
T .
U, C Uy — { ST(xUb) : ST(an)

Proposition 3.10. Let T : [0,1] — B (R") be a test and let St be its p-value sheaf.
Then, St is an actual sheaf.

Proof. 1t’s easy to see that Sy is a presheaf: it’s a functor .7~ — Sets. We now have to check the sheaf
condition.
Let A c [0,1] and (Uy),cp € T2 beacoverof U € . 7. Wehave U = |J U,. Let (54),c4 be a

acA
matching family of S-sections over (Uy) eca: Sa € St(Us) and sq |y, nu,, = Sb|u,nu, -

By definition of Sy, we have:

Saluanu, =St (Ua NUp C UL (54) = Sa
which yields, for all a,b € A,s, = sp. Let s = s4; then s satisfies Va € A, pval; (s) > a, so
pvaly (s) > sup(A) and s € St (Usup(a)) = St ( U Ua). Consequently, s is the unique gluing of (s4),ca>
and St satisfies the sheaf condition. ach O
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4. RDT and sheaves

Consider the sheaf topos based on .7: Shv ([0, 1[,.7). Its subobject classifier is:

T — Sets
Us +— {Ua | a’ < a}
QUp) — QUa)
Uc — Uy, NU: = min(a,c)

Q:
U,cU, +— {

Let T be a test and Sy its associated p-value sheaf. A sheaf morphism p : Sy — Q makes the following
diagram commute for all a < b:

pu
Uq St (Up) ————— Q(Up)

u ~ St (u) v Qu)
Up St (Ua) ——5— Q2(Ua)

For x € Sy(Uy), we have:

pu, © St (1) (x) = Q(u) o py,, (x)
pu.(x) = pu,(x) N Uq

The canonical example is the following natural transformation:

X — U,

puU., :{ ST(Ua) — Q(Ua)

4. RDT and sheaves

Consider the set-theoretic integer n € N, n = {0,...,n — 1}. Endow n with the discrete topology (n, P (n)).
For I c n, R! is the set of functions I — R; equivalently, it is the set of /-indexed sets of real numbers.
Let I1,, be the following functor:

Pn — Sets

o - I — R!

n
H,(J) — IL(I)
IcJ +—
{ f — f
Proposition 4.1. I1,, is a sheaf.
For I C n, ||—||g: is the Euclidean norm on R’.

Definition 4.2 (7 functor). We define the functor 7 by setting:

Pn) — T
T: 1 — (1)
IcJ — () ct(J)

where 7 is the topology defined in Definition 3.6. For I € # (n), the unique a such that (1) = [0, 4] is
denoted 7y, so that: 7(I) = [0, 7y].

The interest of this definition will tentatively be given later.

Let f,0 € R™. For all I € P (n), the proposition: ||0]; — f|;|lg: < 77 is a proposition the truth of which
can be known by simple inspection, provided that 6 is known. In practice, we don’t have access to 6 but to a
modified, noisy version Y = Y(0) of it, and the question is then, for any given I C n, whether the proposition
1017 = f|;llgr < 77 is plausible in a certain sense or not, when we observe Y|;.
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5. First results

Definition 4.3 (Optimal pair). Let f € R", we call it model. Let ® be a random vector whose distribution
we don’t know, and X ~ NV (O, C 2) is a n-dimensional Gaussian vector. We observe Y = © + X.

For all I C n, there exists a pair (aflf ’T,Tlf ’T) [1], called optimal pair restricted to I, where:

1. aflf’T : B(RT) - [0,1] is a size
2. TIf’T : [0,1] — B (R!) is a monotone retract of arlf g

3. Tlf’T is optimal for testing ||®|; — f|;|lzr < 77 against its alternative ||®[; — f|;|lzz > 77 when we
observe Y(0).

Definition 4.4 (Restricted p-value). We consider the 7 functor described above. Let I C n and let
(a{c T T{ ’T) be an optimal pair restricted to /.
The I-restricted p-value of x is the following value:

pval/™ (y) = inf ({a c[0,1] | ye TIf’T(a)})
The I-restricted p-value sheaf is the following sheaf:
0,11 — R!

U, —> {y e R" | pvalJIc’T () = a}
ST(Ub) B ST(Ua)

X [ — X

S{ T
U,cUp +— {
The p-value pvaljlr " (y) measures the plausability of proposition ||@|; — f|;|lz: < 7/ when we observe
y ~Y =0 + X. The higher pvalJ;’T (), the more plausible the proposition ||®[; — f|;|lzs < 7.

5. First results

5.1. About p-value sheaves

It is easy to see that:

Proposition 5.1. (.7, C) is a total order with a minimal and maximal element (resp. O and R?).
It is also easy, but less easy, to see that:

Proposition 5.2. .7 has all small limits and colimits.

Proof. LetD : .# — F be adiagram in .7 . For alli € .#, define Uy, = D(i). Then:

Colim (D) = sup D; = ﬂ Ua; = Unnf(.s)

ieOb ¢4 i€Ob 4
Lim (D) = inf D; = U Udi = Usup(/)
i€0b.s i€0b

Note that the sup becomes an intersection, and the inf becomes a union, because we are considering
7" and not .7. Also note that the infima and suprema always exist because these are infima and suprema
of {d; | i € Ob_~}, which is a subset of R. O

Proposition 5.3. For any test T, its p-value sheaf St is continuous and cocontinuous.
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5. First results

Proof. Let D : . — .7 be any (small) diagram in .7". For all i € .#, define U, = D(i).
We only consider the case of a limit; the proof is very similar for colimits.

Sr (Lim (D)) = Sr

U

ied

= S1 (Usup(ay))

= {x e R? | pvaly (x) > sup (di)}
ied

={xeR?|Vie s, pvaly (x) > d;}

= ﬂ {x e R4 | pvaly (x) > dl-}
ied

=) (Ua)

ied

We now have to check that (| St (Ug,) = Lim (St o D).
ied

Foralli — j € .#, we have St (Uy,) C Sr (Udj). We denote by ¢; j = St (Ud,- C Udj) : St (Ug,) —
Sr (Udj) the inclusion mapping between Sr (Uy,)’s. We also denote by ¢; : ieﬂj St (Ug;) = St (Ug,)
the inclusion mapping of the intersection. For all i — j € .#, we have (; j o; = (;, so that ¢t =
(Ll' : N St (Ug;) = St (Udl.)) is a cone to Sy o D.

Ll;ﬂ(A, @) be any cone to STIE]D. We denote the Sy (Ug, )-components of @ by ; : A — Sy (Uy, ). For
alli — j € ., and for all x € X, we have (; j o @;(x) = a;(x) = @;(x).

a;

Sr(Ug) 4— A

N

sr (U4,

So in fact, @;(X) = @;(X) C S (Ug, ), which yields that, for alli € .%, &;(X) ¢ " St (Ug,)-
ied
Let u be such that:

ied
x o @;(x)

{X — N S (Ua)
u:

for any of the i € .#, because a;(x) = @;(x). Then for all i € .#, we have (; o u = a;.
It is also easy to check the unicity of that u: suppose u,u’ : X — (| St (Ug, ). then for all x € X, we

ied
have:
tiou(x) = a;(x) = ; ou'(x)
u(x) = u'(x)
which leads to u = u’.
Consequently, () Sy (Ug,) = Lim (St o D). O

ied
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5. First results

5.2. About sheaf morphisms
Let us first study the sheaf morphisms between p-value sheaves p : Sg — Sr.
Proposition 5.4 (Nesting property). Let R,T : [0,1] — B (R") be two tests (of the same size or not). Let
p: R4 — R4 be a function.
The function p defines a natural transformation p : Sg — St = (p‘ SR(Ua))

p (SR(Ua)) c ST(Ua)-

In other words, p defines a function between nested open sets, as in Figure 1.

) 0,1],
welo.] o forall a € [0,1]

p
P Sr(Ua)
P Sr(Up)
Figure 1: Illustration of the nesting property of p. If p : R4 — R verifies this nesting property, then it

defines a natural transformation between two p-value sheaves.

Proof. Easy deduction from the following natural transformation diagram:

P
Ua Sk (Up) —2EY2) s 51 (1)
c ~ c V4 c
Ub SR (Ua) _— ST (Ua)

PlsgrWUa)

O]

Corollary 5.5. If p = (pUa)a €[0.1] is a natural transformation Sg — Sr, then p = |J puy,, is a function
’ acA

that verifies the nesting property.

Proposition 5.6. Forall a € [0,1], S7(U,) = R\ ( U T(b)).

b<a

Proof. By computation:
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5. First results

Sr(U,) = {x e R4 | pvaly (x) > a}
= {x e R4

={xeRd| Vb<a,x¢T(b)}
- ﬂRd\T(b)

b<a
U T(b))

b<a

inf (be[0,1]) >
xég(b)( €[0,1]) a}

=R%\

Corollary 5.7. Forall a € [0,1], if U T(b) = T(a) then Sy (Uy,) = RA\T(a).

b<a

Example 5.8. Note that we are considering very general tests T : [0,1] — B (R"), so ( U T(b)) has no
b<a
reason to be equal to T'(a). Let us give a counterexample.

Consider the following functions:

[0,1] — [0,1]

f: X ifx<%
T { Lyl ifx>1

o1 — R

£l x — tan (7x — %)
0,1 — B (R")

T: l=go f(x).go f(X)] ifa<l
o {Rd ifa=1

The function f is strictly increasing and establishes a bijection [0, 1] — [0, %[ U [%, 1]. Then g is

bijective and strictly increasing, so g o f is striclty increasing and injective, and finally 7 is stricly increasing
in the Borel set, so it is injective, and has a left inverse 8 (R") — [0, 1] (which is a size). In other words, T
is a test. However:

J71@= 10 fla)g0 flal

1 1
a<sy a<sy

= —lin‘llgof(a),lin'llg of(a)[

a<§ a<§

a<§ (,l<§
3 ] 1 1
- | g 2 »8 2
1 3 3
cT|=|=|-2¢(=2 z
o7 {3)= e (3)«(3)]
Definition 5.9 (Continuous test). Let T be a test. We call T a continuous test when, for all a € [0, 1], we

have |J T(b) = T(a).

b<a

= |-g (lin} f(a)) ,8 (lin} f(a))[
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5. First results

In the following, we give an example of such a continuous test.

Definition 5.10 (Likelihood ratio). Let fy, fi : R? — R* be two probability density functions, and let
x € R

The likelihood ratio of x being from X ~ fy instead of X ~ fi, written A%0+/i(x) or simply A(x) when
there is no ambiguity, is the following function:

RY — R* U {oo}
Jox) .
A o A0 if fi(x) #0 (1)
00 if fi(x) =0and fy(x) >0
0 if fi(x) =0and fop(x) =0

In the practical case where f; is always stricly positive on its domain, A has values only in R*, and A
becomes a measurable function.

Consider a random variable X ~ fp. One can compute P [A(X) < k|X ~ fy] = a. When k = 0, we have
a =1. When k — oo, we have a — 0.

Definition 5.11 (NP-threshold function). Let f, fi : R? — R* be two probability density functions so that
APl = A is continuous.

The NP-threshold function, written knp or simply k, is the function that assigns to each a € [0, 1],
threshold k(a) such that:

a= / Jo(x)dx = P[A(X) < k|X ~ fo]
A(x)<k(a)
Proposition 5.12. The threshold function is continuous and decreasing.

Proof. To be completed. 0

Definition 5.13 (Neyman-Pearson test). Let fp, fi : RY — R* be two probability density functions so that
AJ-fi = A is continuous.
The Neyman-Pearson test is the following test:

(01 — B(R")
NP.{ 0 — {xERd|A(x)<k(a)}

Proposition 5.14. For all a € 10, 1[, we have |J NP(b) = NP(a). In other words, NP is a continuous test.

b<a

Proof. This is due to the continuity of the threshold function k, which remains to be proved:

U NP(b) = U {xe R4 | A(x) < k(b)}
b<a b<a
= {x eRY| 3b < a, A(x) < k(b)}
= {x e RY| A(x) < sup (k(b))}
b<a

= {x e R?| A(x) < k(a)}
= NP(a)

Corollary 5.15. Sxp(U,) = R\NP(a).

IMTA-RR-2019-02-SC 8/10



5. First results

5.3. About predicates

Definition 5.16 (Predicate). Let S be a sheaf in Shv ([0, 1[, 7).
A predicate is a sheaf morphism p : § — Q.

Computing predicates

Let S : 7" — Sets be a sheaf, and let py,p> : § — Q be predicates. Let a € [0,1]. For x € S(U,),
define Uy, = p1,u,(x) and U, = p2,u,(x). We have the trivial results:

(P1 A P2y, (%) = Unin(ay,as)
(P1V P2y, (%) = Unax(ayaz)

Also:

(p1 = P2y, (x) = pru,(x) = pau, (%)
= U R
ROUa, CUd,

Up

be[0,a]
UpNUaycUa,

U
be[0,al]
Umin(al ,b)CUuz

J

be[0,a]

min(ay,b)<ay

=U.

for some ¢ € [0,a]. Let us take a look at that ¢c. We have:

a ifag <ap

¢c=sup (b) :{ a, otherwise

be0,al]

min(a,b)<ay

The negation —p; corresponds to the special case where U,, = Uy = 0:

(=pDy, (x) = pru,(x) = 0
- U U,

bel0,a]
min(a,b)<0
=U,
With ¢ being:
a if a) = 0
c= sup (b)= { .
bE[O,a] 0 lf ay > 0
min(aq,b)<0
In summary:
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Formula Condition Result
P1U, ()C) Ua1
P2.U, (%) Ug,
(P1 A p2)y, (x) Unin(a1.ay)
(pl \ pZ)Ua (X) Umax(al,az)
(p1 = p2y, (x) | ifar < ay U,
if ap > ap Uaz
(=py, (x) | ifa; =0 Uy
if ay > 0 U() =0
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