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Introduction
This course will introduce category theory from an adjunction-driven point of view, which is somewhat
unusual.

The goal is to introduce topoi.
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1. Basic notions

1. Basic notions
This section will introduce some basic notions about category theory: categories, functors, opposite
categories, natural transformations.

Definition 1.1 (Category [1]). A category C consists of the following data:

� A collection of objects, denoted ObC

� A collection of morphisms, or arrows, denoted MorC

� A map dom : MorC → ObC ; for each morphism f , dom( f ) is called the domain of f

� A map cod : MorC → ObC ; for each morphism f , cod( f ) is the called codomain of f

� For each morphism f ∈ MorC , we write f : A→ B if A = dom( f ) and B = cod( f )

� A composition law ◦ such that, for all f : A → B and g : B → C, there is a chosen morphism
g ◦ f : A→ C

� For each object A ∈ ObC , there is a chosen morphism 1A : A→ A called identity morphism of A

The composition law is required to be associative: ∀A,B,C,D ∈ ObC , ∀ f : A→ B and g : B→ C and
h : C → D, (h ◦ g) ◦ f = h ◦ (g ◦ f ). Identity morphisms are required to act like identities: ∀A,B ∈ ObC ,
∀ f : A→ B, f ◦ 1A = 1B ◦ f = f .

In the rest of the course, a category C will be described according to the following presentation:

Objects: An object in C is...

Morphisms: A morphism in C is...

Identities: An identity morphism is...

Composition: The composition law for morphisms is...

Usually, the description of morphisms suffices to implicitly define dom and cod, as in the following
examples.
Example 1.2. One of the easiest categories is the category in of sets. We define the category Sets as the
following:

Objects: An object in Sets is any set

Morphisms: A morphism in Sets is any function f : A→ B

Identities: An identity morphism is an identity function idA : A→ A

Composition: The composition law for morphisms is the usual composition of functions

Example 1.3. Another different but useful example of category is the category based on a poset. If (P,6) is
a partially-ordered set, then we can define the following category:

Objects: The objects are the elements of the set P

Morphisms: There is an arrow p→ q if and only if p 6 q

Identities: An identity morphism is an arrow p→ p representing the trivial equality p = p
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1. Basic notions

Composition: The composition law for morphisms is the transitivity of the partial order 6: if p0 → p1
and p1 → p2 then the transitivity of 6 implies that p0 → p2

Note that here, the arrows have a very different meaning to the one in Sets. Arrows are not at all similar
to functions, but rather the representation of the partial order. Note that there is at most one arrow between
two objects in the poset.

This example will be useful not to base our intuition only on the category of Sets; Sets is a very nice
category with lots of properties and examples, however, it does not represent the "generic" category. There
are categories that behave differently and we need examples of them.

Definition 1.4 (Hom-set). Let C be a category, and let A and B be two objects of C . We denote by
HomC (A,B) the collection of arrows A→ B in the category C .

Example 1.5. In the category Sets, A and B are two sets, and HomSets (A,B) is the set of functions
f : A→ B.
Example 1.6. In a poset (P,6), we have HomP (p,q) = {(p,q)} ⇔ p 6 q; otherwise, HomP (p,q) = ∅.

Note that nothing in definition 1.1 implies that ObC or MorC should be sets (nor should be HomC (A,B)).
In fact, ObSets is not a set. In that sense, categories can be as big as possible. However, in the scope of this
course, we will only use somewhat small categories, in the following sense.

Definition 1.7 (Small, locally small and large categories [2]). A category C is small if both ObC and MorC
are sets; otherwise, it is large.

A category C is locally small if, for all objects A,B ∈ C , the Hom-set HomC (A,B) is a set.

Note that small implies locally small. However, a large category may or may not be locally small.
Example 1.8. Sets is large but locally small.
Example 1.9. If (P,6) is a poset, then it is a small (thus locally small) category.
Example 1.10. The following example is inspired from set-theory. If Vα is the α-th set of the von Neumann
hierarchy [3, Definition 2.1, p. 95], and if λ is a limit ordinal, then we define the category Vλ by:

Objects: An object in Vλ is any set A ∈ Vλ

Morphisms: A morphism in Vλ is any function f : A→ B for A,B ∈ Vλ

Identities: An identity morphism is an identity function idA : A→ A

Composition: The composition law for morphisms is the usual composition of functions

We can see Vλ as a truncated Sets category. The category Vλ is a small category.
Example 1.11. For an example of a large, non-locally small, see [4].
Remark 1.12. Small categories are locally small (because "sets contain sets").

We also define mappings somewhat similar to functions, or homomorphisms, between categories.

Definition 1.13 (Functor [1]). Let C and D be categories.
A functor F : C → D is a mapping from C to D such that:

� ∀C ∈ ObC , F(C) ∈ ObD

� ∀ f : A→ B ∈ MorC , F( f ) : F(A) → F(B) ∈ MorD

� ∀A ∈ ObC , F (1A) = 1F(A)

� ∀ f : A→ B,g : B→ C ∈ MorC , F(g ◦ f ) = F(g) ◦ F( f )
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1. Basic notions

In other words, a functor F : C → D sends the objects (resp. morphisms) in C to objects (resp.
morphisms) in D , preserving domains and codomains of morphisms, as well as identities and composition.

Example 1.14. If (P1,61) and (P2,62) are posets, then a functor between those two categories is a monotone
function such that p 61 q⇒ F(p) 62 F(q).

One can interpret a functor C → D as a way to have the picture of the category C into the category D
([1]). It is the idea behind diagrams as we will see in Section 6.

Sometimes, we come across some functors that behave strangely. Namely, sometimes a functor
F : C → D may send c : C → C ′ to F(c) : F(C ′) → F(C) (note the inversion). We will give an example
of such a functor. What is happening, is that F is actually not a functor C → D but somehow defined on a
similar, but "reversed" category of C .

Definition 1.15 (Opposite category [1]). Let C be any category. We call opposite, or dual category of C ,
denoted by C

op , the following category:

Objects: An object in C
op is an object in C

Morphisms: An arrow f : B→ A in C
op is an arrow f : A→ B in C

Identities: An identity in C
op is an identity in C

Composition: The composition law in C
op is the same as in C

Basically, the opposite category C
op is the same category as C , with inverted arrows.

If a functor F : C → D sends c : C → C ′ to F(c) : F(C ′) → F(C), then F is not actually defined on
C but rather on C

op : F : C
op
→ D . However, it is often simpler to consider only functors on C , hence the

following notions:

Definition 1.16 (Covariant and contravariant functor). A functor F : C → D is called covariant if it sends
f : A→ B to F( f ) : F(A) → F(B).

A functor G : C → D is called contravariant if it sends f : A → B to G( f ) : G(B) → G(A), or
equivalently, if G : C

op
→ D is a covariant functor.

Two examples of such functors are the following:

Definition 1.17 (Covariant Hom-set functor [5]). Let C be a (locally small) category, and let A ∈ C be an
object.

The mapping HomC (A) − :
{

C −→ Sets
B 7−→ HomC (A,B)

defines the covariant Hom-set functor. It sends

an object B ∈ C to the set HomC (A,B) of arrows from A to B, and an arrow b : B → B′ to the arrow
HomC (A, b) : HomC (A,B) → HomC (A,B′) in Sets.

Definition 1.18 (Contravariant Hom-set functor [5]). Let C be a (locally small) category, and let B ∈ C be
an object.

The mapping HomC (−,B) :
{

C
op
−→ Sets

A 7−→ HomC (A,B)
defines the contravariant Hom-set functor.

It sends an object A ∈ C
op to the set HomC (A,B) of arrows from A to B, and an arrow a : A→ A′ to the

arrow HomC (a,B) : HomC (A′,B) → HomC (A,B) in Sets.

Remark 1.19. Their names are not stolen: B→ HomC (A) B is a covariant functor and A→ HomC (A) B
is a contravariant functor.

Note that both Hom-set functors imply C to be locally small.
As stated a few paragraphs before, all the categories we will encounter in this course are locally small,

unless stated otherwise.
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Lemma 1.20 (The simplest representation lemma). Let X ,C be categories, and let U : X → C be a
functor.

1. ∀C ∈ ObC ,∀x : X → X ′ ∈ MorX ,∀c ∈ HomC (C,U (X)) ,HomC (C,U (x)) (c) = U(x) ◦ c

2. ∀X ∈ ObX ,∀x : X ′→ X ′′ ∈ MorX ,∀y ∈ HomX (X,X ′) , x ◦ y = HomX (X, x) (y)

3. ∀X ∈ ObX ,∀x : X → X ′ ∈ MorX , x = HomX (X, x) (idX)

Proof. 1. By direct application of the definitions of a functor (Definition 1.13) and of the covariant Hom-set
functor (Definition 1.17):

HomC (C,U (x)) :
{
HomC (C,U (X)) −→ HomC (C,U (X ′))

a 7−→ HomC (C,U (x)) (a)

where HomC (C,U (x)) (a) is the morphism such that:

C

X

U (X) U (X ′)

a HomC ,C (U(x))(a)

U(x)

which gives HomC (C,U (x)) (a) = U(x) ◦ a, hence the result.
2. Consequence of first part of the lemma with C =X , U = IdC , c = x and X = C.
3. Consequence of second part of the lemma with X = X ′ and y = idX .

We also define mappings between functors.

Definition 1.21 (Natural transformation [1]). Let C and D be two categories, and let F,G : C →
D be functors. A natural transformation θ : F → G consists of a collection of morphisms in D
(θC : F(C) → G(C))C∈ObC

such that, for all C,D ∈ C , and for all h : C → D, the following square
commutes:

C F(C) G(C)

{ X

D F(D) G(D)

h F(h)

θC

G(h)

θD

(1)

For each object C ∈ C , the morphism θC is called the C-component of θ.
The natural transformation θ : F → G can be written in the following diagram:

C D

F

G

θ

We denote by Nat (F,G) the collection of all natural transformations between F and G.

Depending on the context, and for the sake of readability, the C-component of a natural transformation
θ can be written θC as above (C as an index) or θ(C) (C as a parameter).

Natural transformations can be seen as a way to extract the parameters C, D and h from F(C), F(D)
and F(h) and input them into G, while preserving arrows. It’s a variable substitution.
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1. Basic notions

Definition 1.22 (Isomorphism [1]). Let C be a category. A morphism f : A → B ∈ MorC is an
isomorphism when there exists g : B → A ∈ MorC such that g ◦ f = idA and f ◦ g = idB. Such a g is
denoted f −1.

Remark 1.23. A few remarks can be made:

� If f : A→ B is an isomorphism in C and F : C → D is a functor, then F( f ) : F(A) → F(B) is still
an isomorphism.

� An isomorphism in Sets is a function that is invertible. Thus, an isomorphism in Sets is a bijection.

� Similarly, in most "structured sets" categories (the category of vector spaces over a field K LinK, the
category of groups Group...), a bijective morphism is an isomorphism, just like in Sets. However,
there exist bijective morphisms that are not isomorphisms (in Top, the category of topological spaces),
and in more complicated categories, there exist isomorphisms that are not bijective (see the homotopy
category of CW complexes). This is because bijectivity is not a property of morphisms that makes
sense in terms of categories.

Before introducing the notion of natural isomorphism, we need to make something clear on the nature
of natural transformations.

Definition 1.24 (Composition of natural transformations). Let C , D be categories, and let F, G and H be
functors C → D .

If θ : F → G is the natural transformation θ =
(
F(A)

θA
−→ G(A)

)
A∈C

and η : G → H is the natural

transformation η =
(
G(A)

ηA
−→ H(A)

)
A∈C

then the composition of θ by η is η ◦ θ : F → H, defined by

η ◦ θ =

(
F(A)

ηA◦θA
−→ H(A)

)
A∈C

.

Definition 1.25 (Functor category [1]). Let C and D be two categories. The functor category, denoted by
Func (C ,D), or by DC , is the following category:

Objects: The objects are the functors F : C → D

Morphisms: A morphism between two functors F and G is a natural transformation θ : F → G =(
F(A)

θA
−→ G(A)

)
A∈C

Identities: An identity on a functor F is the identity natural transformation idF =
(
F(A)

idF (A)

−→ F(A)
)
A∈C

Composition: The composition law in Func (C ,D) is defined in Definition 1.24.

Natural transformations are morphisms between functors. Besides, if F,G : C → D are two functors,
then the notation Nat (F,G) actually stands for HomFunc(C ,D) (F,G); however Nat (F,G) is usually more
convenient.

Using Definition 1.25 (functor category), and Definition 1.22 (isomorphism), we deduce the definition
of a natural isomorphism:

Definition 1.26 (Natural isomorphism [1]). Let F,G : C → D be functors. A natural isomorphism
θ : F → G is a natural transformation that is an isomorphism in the functor category Func (C ,D).

It is easy to see that:

Lemma 1.27. A natural transformation θ : F → G is a natural isomorphism whenever the C-components
θC : F(C) → G(C) are isomorphisms.

This lemma gives a useful description of what a natural isomorphism is. It makes it easier to look for
an inverse. We will use this lemma in the following section.
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2. Yoneda lemma

2. Yoneda lemma
Given a functor F : C → Sets, can we transform it into a Hom-set functor? The answer is provided by the
Yoneda lemma. The Yoneda lemma is based on a natural transformation, as illustrated by the following
series of figures.

Diagrame incomplet !!!!

(C ) X

Y Z

(Sets)

y f ◦ y

F(X)

F(Y ) F(Z)

y f ◦y

F

f

F

HomC (X ,−) HomC (X ,−)

F HomC (X , f )

F(y) F( f )◦F(y)

F( f )

Diagrame incomplet !!!!

Lemma 2.1. Let X ,C be two categories and let H : X → Sets be a functor.
Given any X ∈ ObX and any natural transformation ϕ =

(
HomX (X,Y )

ϕY
−→ H(Y )

)
Y ∈ObX

such that:

X Sets

HomX (X ,Y)

H

ϕ

then ϕX (idX) is the unique element e ∈ H(X) such that:

∀Y ∈ ObX ,∀y ∈ HomX (X,Y ) , ϕY (y) = H(y)(e)

Proof. Let Y ∈ ObX , and let y ∈ HomX (X,Y ).
By simplest representation lemma (Lemma 1.20, item 3), we have:

y = HomX (X, y) (idX)

Thus:

ϕY (y) = ϕY (HomX (X, y) (idX))

= (ϕY ◦ HomX (X, y)) (idX)

Besides, ϕ : HomX (X,−) → H is a natural transformation; thus using Definition 1.21, diagram 1 with
F = HomX (X,−) and G = H, we have:

ϕY ◦ HomX (X, y) = H(y) ◦ ϕX
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2. Yoneda lemma

which yields:

ϕY (y) = (H(y) ◦ ϕX) (idX)

= H(y) (ϕX (idX))

Hence the result. Now we have to prove that e = ϕX (idX) is unique with that property. Let e′ ∈ H(X)
such that ∀Y ∈ ObX ,∀y ∈ HomX (X,Y ) , ϕY (y) = H(y)(e′) = H(y)(e). Using X = Y and y = idX yields:

H (idX) (e′) = H (idX) (e)

idH(X)(e′) = idH(X)(e)

e′ = e

Lemma 2.2. Let X ,C be two categories and let H : X → Sets be a functor. Let X ∈ ObX and e ∈ H(X).
The mapping ϕ =

(
HomX (X,Y )

ϕY
−→ H(Y )

)
Y ∈ObX

defined by:

ϕY :
{
HomX (X,Y ) −→ H(Y )

y 7−→ H(y)(e)

is a natural transformation such that ϕX (idX) = e.

Proof. We need to prove that, for any y : Y → Y ′ ∈ MorX , the following square commutes:

Y HomX (X,Y ) H(Y )

{ X

Y ′ HomX (X,Y ′) H(Y ′)

y HomX (X ,y)

ϕY

H(y)

ϕY′

that is, we want:

∀y : Y → Y ′, ϕY′ ◦ HomX (X, y) = H(y) ◦ ϕY

Let y : Y → Y ′ be an arrow in X . For all x ∈ HomX (X,Y ) = dom (HomX (X, y)):

ϕY′ ◦ HomX (X, y) (x) = ϕY′ (y ◦ x) (2)
= H (y ◦ x) (e) (3)
= H (y) ◦ H (x) (e) (4)
= H (y) ◦ ϕY (x) (5)

Equation 2 is due to the simplest representation lemma (Lemma 1.20-2); Equations 3 and 5 are due to
the definition of ϕ and Equation 4 comes from the definition of a functor (Definition 1.13).

Besides:

ϕX (idX) = H (idX) (e)

= idH(X) (e)

= e
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2. Yoneda lemma

Definition 2.3 (The ξ natural isomorphism). Let X be a category, let H : X → Sets be a functor and let
X be an object in ObX .

We define:

ξH ,X :
{
Nat (HomX (X,−) ,H) −→ H(X)

ϕ 7−→ ϕX (idX)

The ξ natural isomorphism is the mapping ξ : H,X → ξH ,X .

Definition 2.4 (The θ natural isomorphism). Let X be a category, let H : X → Sets be a functor and let
X be an object in ObX .

We define:

θH ,X :


H(X) −→ Nat (HomX (X,−) ,H)

e 7−→ ϕH ,X
e =

(
ϕH ,X
e,Y :

{
HomX (X,Y ) −→ H(Y )

y 7−→ H(y)(e)

)
Y ∈ObX

The θ natural isomorphism is the mapping θ : H,X → θH ,X .

Please note that those two natural isomorphisms are standard in the demonstrations of the Yoneda
lemma; however their notation isn’t. We highlight those two ismorphisms because they will have several
occurrences in the current course.

Proposition 2.5. The mappings ξ and θ are both actual natural isomorphisms, covariant in H and
contravariant in X , and they are inverse of each other.

Corollary 2.6 (Yoneda lemma [2]). Let X be a category, let H : X → Sets be a functor and let X be an
object in ObX .

Then, Nat (HomX (X,−) ,H) � H(X).

Proof. Let H : X → Sets and let X ∈ ObX .
[Inverse]
We first prove that θ is the inverse of ξ. Then, we will prove that both are natural transformations.
Let e ∈ H(X).

ξH ,X ◦ θH ,X(e) = ξH ,X
(
ϕH ,X
e

)
= ϕH ,X

e,X (idX) (6)

= e (7)

The transition 6⇒ 7 comes from Lemma 2.2.
Similarly, let ϕ ∈ Nat (HomX (X,−) ,H). Note that, according to Lemma 2.1, ϕ is:

ϕ =

(
ϕY :

{
HomX (X,Y ) −→ H(Y )

y 7−→ H(y) (ϕX (idX))

)
Y ∈ObX

Thus:

θH ,X ◦ ξH ,X (ϕ) = θH ,X (ϕX (idX))

=

(
ϕH ,X
ϕX (idX ),Y

:
{
HomX (X,Y ) −→ H(Y )

y 7−→ H(y) (ϕX (idX))

)
Y ∈ObX

= ϕ
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2. Yoneda lemma

Consequently, θ and ξ are mutually inverses.
We only have to check their naturalities.

[ξ is a natural transformation in H]
Let α : H → H ′ be a natural transformation. We want to check if the following diagram commutes:

H Nat (HomX (X,−) ,H) H(X)

{

H ′ Nat (HomX (X,−) ,H ′) H ′(X)

α Nat(HomX (X ,−),α)

ξH ,X

αX

ξH′ ,X

Let ϕ ∈ Nat (HomX (X,−) ,H).

ξH ,X ◦ Nat (HomX (X,−) , α) (ϕ) = ξH ,X (α ◦ ϕ)

= (αX ◦ ϕX) (idX)

= αX (ϕX (idX))

= αX ◦ ξH ,X (ϕ)

which gives the expected result.

[ξ is a natural transformation in X]
Recall that ξ is contravariant in X . Let x : X ′ → X ∈ MorX . We want to check if the following

diagram commutes:

X ′ Nat (HomX (X,−) ,H) H(X)

{

X Nat (HomX (X ′,−) ,H) H (X ′)

x Nat(HomX (x,−),H)

ξH ,X

H(x)

ξH ,X′

The arrows Nat (HomX (x,−) ,H) and H(x) are inverted because ξ is supposed to be contravariant in X .
Let ϕ ∈ Nat (HomX (x,−) ,H).
On the one hand:

ξH ,X′ ◦ Nat (HomX (x,−) ,H) (ϕ) = ξH ,X′ (ϕ ◦ HomX (x,−))

= (ϕ ◦ HomX (x,−))X′ (idX′)

= ϕX′ ◦ HomX (x,X ′) (idX′)

= ϕX′ (idX′ ◦ x)

= ϕX′ (x)

On the other hand, note that ϕ is also a natural transformation. Thus, for x : X ′→ X in X
op (note that

we are in the opposite category), the following diagram does commute:
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2. Yoneda lemma

X ′ HomX (X,X) H (X)

{ X

X HomX (X,X ′) H (X ′)

x HomX (X ,x)

ϕX

H(x)

ϕX′

In particular: H(x) ◦ ϕX = ϕX′ ◦ HomX (X, x), which gives:

H(x) ◦ ξH ,X (ϕ) = H(x) (ϕX (idX))

= ϕX′ ◦ HomX (X, x) (idX)

= ϕX′ (idX ◦ x)

= ϕX′ (x)

= ξH ,X′ ◦ Nat (HomX (x,−) ,H) (ϕ)

Consequently, ξ is natural in both its parameters X and H.

[θ is a natural transformation in H]
The idea is similar to ξ. Let α : H → H ′ be a natural transformation. We want to prove that

Nat (HomX (X,−) , α) ◦ θH ,X = θH ,X ◦ αX .
Let e ∈ H(X).

θH ,X ◦ αX(e) = ϕ
H′,X
αX (e)

and:

Nat (HomX (X,−) , α) ◦ θH ,X(e) = Nat (HomX (X,−) , α)
(
ϕH ,X
e

)
= α ◦ ϕH ,X

e

where α ◦ ϕH
e is the natural transformation:

α ◦ ϕH
e =

(
αY ◦ ϕ

H ,X
e,Y :

{
HomX (X,Y ) −→ H ′(Y )

y 7−→ αY (H(y) (e))

)
Y ∈ObX

(8)

=

(
αY ◦ ϕ

H ,X
e,Y :

{
HomX (X,Y ) −→ H ′(Y )

y 7−→ H ′(y) ◦ αX (e)

)
Y ∈ObX

(9)

= ϕH′,X
αX (e)

= θH ,X ◦ αX(e)

The transition 8⇒ 9 is due to the naturality of α.

[θ is a natural transformation in X]
Let x : X ′ → X be a morphism in X . We want Nat (HomX (x,−) ,H) ◦ θH ,X = θH ,X′ ◦ H(x). Let

e ∈ H(X):

Nat (HomX (x,−) ,H) ◦ θH ,X(e) = Nat (HomX (x,−) ,H)
(
ϕH ,X
e

)
= ϕH ,X

e ◦ HomX (x,−)
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where ϕH ,X
e ◦ HomX (x,−) is the following natural transformation:

ϕH ,X
e ◦ HomX (x,−) =

(
ϕH ,X
e,Y ◦ HomX (x,Y ) :

{
HomX (X ′,Y ) −→ H(Y )

y 7−→ ϕH ,X
e,Y (y ◦ x)

)
Y ∈ObX

However:

ϕH ,X
e,Y (y ◦ x) = H(y ◦ x)(e)

= H(y) (H(x)(e))

which yields:

ϕH ,X
e ◦ HomX (x,−) = ϕ

H ,X′

H(x)(e)

= θH ,X′ ◦ H(x)(e)

Consequently, θ is natural in both its parameters X and H.

[Conclusion]
Both ξ and θ are natural transformations in H and X , and they are mutually inverses. As a consequence,

ξ and θ are natural isomorphisms between Nat (HomX (X,−) ,H) and H(X).

Remark 2.7. As stated inDefinition 1.25, Nat (HomX (X,−) ,H) corresponds to theHom-set: HomFunc(X ,Sets)
(
HomX

op (X,−) ,H
)
.

Note that it’s X
op and not X , because the natural isomorphism is contravariant in X .

Remark 2.8. The Yoneda lemma has a central role due to its various meanings and consequences.

1. First, depending on the "size" of X , we have different interpretations. If X is small, then
Nat (HomX (X,−) ,H) is a set because SetsX becomes locally small. If X is locally small, then it
says nothing on SetsX . However, the Yoneda lemma states that Nat (HomX (X,−) ,H) is always a
set. If X is non-locally small, then the functor HomX (X,−) doesn’t exist and the Yoneda lemma
doesn’t hold there.

2. Secondly, from a set-theoretic point of view, the Yoneda lemma states that there are not that many
natural transformations: there are exactly card (H(X)) natural transformations HomX (X,−) → H,
as each of these natural transformations is entirely determined by one element in H(X).

3. Thirdly, according to the Yoneda lemma, if H = HomX (Y,−):

Nat (HomC (X,−) ,HomC (Y,−)) � HomC (Y,X)

(Note the inversion)As stated in the previous paragraph, each element inHomC (Y,X) characterises one
natural transformation in Nat (HomC (X,−) ,HomC (Y,−)). Consequently, any natural transformation
HomC (X,−) → HomC (Y,−) is determined by an arrow Y → X using the application θ seen in the
proof of the Yoneda lemma. Consequently, the only arrows HomC (X, A) → HomC (Y, A) are of the
form HomC ( f , A) for some f : Y → X .

The dual version of the Yoneda lemma is as follows:

Lemma 2.9 (Contravariant Yoneda lemma). Let X be a category, let G : X
op
→ Sets be a contravariant

functor and let X be an object in ObX .
Then, Nat (HomX (−,X) ,G) � G(X).
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2. Yoneda lemma

The functor X → HomX (X,−) has good properties. Let’s spend some time studying them.

Definition 2.10 (Yoneda embedding [1]). Let C be a category.
The Yoneda embedding is the functor:

y :


C
op

−→ Func (C ,Sets)
C 7−→ HomC (C,−)

f : D→ C 7−→ HomC ( f ,−) : HomC (D,−) → HomC (C,−)

Remark 2.11. Note that the Yoneda embedding is defined C
op . Thus, f : C → D in C becomes f : D→ C

in C
op , and y( f ) has the direction of f ∈ C

op .

Definition 2.12 (Injective, surjective, full, faithful, embedding [1]). Let F : C → D be a functor.

1. 1.1. The functor F is said injective (resp. surjective) on objects if ObF : ObC → ObD is injective
(resp. surjective).

1.2. The functor F is said injective (resp. surjective) on arrows if MorF : MorC → MorD is
injective (resp. surjective).

2. For all A,B ∈ ObC , define the mapping:

FA,B :
{
HomC (A,B) −→ HomD (F(A),F(B))

f 7−→ F( f )

2.1. The functor F is said faithful if ∀A,B ∈ ObC , FA,B is injective.
2.2. The functor F is said full if ∀A,B ∈ ObC , FA,B is surjective.

3. The functor F is called an embedding if it is injective on objects, full and faithful.

Difference between injective on arrows and faithful?

Proposition 2.13. The Yoneda embedding is an actual embedding.

Proof. The injectivity on objects is easy. Suppose y(C) = y(D); then:

y(C) = y(D)

HomC (C,−) = HomC (D,−)

⇒ HomC (C,C) = HomC (D,C)

Those two sets are equal. Thus, idC ∈ HomC (C,C) ⇒ idC ∈ HomC (D,C) ⇒ C = D. Thus, y is
injective on objects.

As noted in Remark 2.8-3, the Yoneda lemma implies that:

Nat (HomC (C,−) ,HomC (D,−)) � HomC (D,C)

Hom
SetsC

op (y(C), y(D)) � HomC (D,C)

Proposition 2.5 also states that the following natural transformation is an isomorphism:

θy(C),D :

{
HomC (C,D) −→ Hom

SetsC
op (y(D), y(C))

f 7−→ ϕ
y(C),D
f

where ϕ f is:
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ϕ
y(C),D
f

=

(
ϕ
y(C),D
f ,X

:
{
HomC (D,X) −→ y(C)(X)

g 7−→ y(C)(g)( f )

)
X∈ObC

=

(
ϕ
y(C),D
f ,X

:
{
HomC (D,X) −→ HomC (C,X)

g 7−→ HomC (C,g) ( f )

)
X∈ObC

=

(
ϕ
y(C),D
f ,X

:
{
HomC (D,X) −→ HomC (C,X)

g 7−→ g ◦ f

)
X∈ObC

We compare with what y( f ) is:

y( f ) =
(
yX( f ) :

{
y(D)(X) −→ y(C)(X)

g 7−→ yX( f )(g)

)
X∈ObC

=

(
yX( f ) :

{
HomC (D,X) −→ HomC (C,X)

g 7−→ HomC ( f ,X) (g)

)
X∈ObC

=

(
yX( f ) :

{
HomC (D,X) −→ HomC (C,X)

g 7−→ g ◦ f

)
X∈ObC

= ϕ
y(C),D
f

Consequently:

θy(C),D =

{
HomC (C,D) −→ Hom

SetsC
op (y(D), y(C))

f 7−→ y( f )

which yields that y is full and faithful.

Using the Yoneda lemma (both covariant and contravariant) and the fact that the Yoneda embedding is
an embedding, one can show the following corollaries:

Corollary 2.14. Let C be a locally small category. Then, ∀C,D ∈ ObC , f : C → D is an isomorphism⇔
HomC (−, f ) : HomC (−,C) → HomC (−,D) is an isomorphism.

Corollary 2.15. Let C be a locally small category. Then, ∀C,D ∈ ObC , f : C → D is an isomorphism
⇔ HomC ( f ,−) : HomC (D,−) → HomC (C,−) is an isomorphism.

Corollary 2.16. Let C be a locally small category. Then, ∀C,D ∈ ObC , HomC (C,−) � HomC (D,−) ⇒
C � D.

Corollary 2.17. Let C be a locally small category. Then, ∀C,D ∈ ObC , HomC (−,C) � HomC (−,D) ⇒
C � D.
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3. Universal elements, universal arrows, representations
Introduction lol.

Definition 3.1 (Universal element [2]). Let C be a category, and F : C → Sets a functor.
The pair (X∗, e∗) ∈ ObC ×F (X∗) is a universal element for F if the natural transformation θF ,X∗ (e∗) :

HomC (X∗,−) → F is an isomorphism.

Remark 3.2. When one sees Definition 3.1, the two natural questions should be:

� Is this universal element unique?

� Does the Yoneda embedding have a universal element?

The answer to the second question is easy: no, the Yoneda embedding doesn’t have a universal element,
because it is a functor C → Func

(
C

op
,Sets

)
. However, for C ∈ C , its C-component y(C) : C

op
→ Sets

could have one.
We are looking for a pair (X∗, e∗) such that:

θy(C),X∗ (e∗) =
(
ϕX :

{
HomC (X∗,X) −→ y(C)(X)

x 7−→ y(C)(x) (e∗)

)
X∈ObC

=

(
ϕX :

{
HomC (X∗,X) −→ HomC (C,X)

x 7−→ HomC (C, x) (e∗)

)
X∈ObC

=

(
ϕX :

{
HomC (X∗,X) −→ HomC (C,X)

x 7−→ x ◦ e∗

)
X∈ObC

What could the pair (X∗, e∗) be for θy(C),X∗ (e∗) to be an isomorphism? There is one obvious answer:
take (C, idC).

But is this answer unique? Probably not. But is it unique up to isomorphism? The answer to this
question lies in Proposition 3.5. Before, we have to show an intermediate proposition.
Remark 3.3. If the functor F : C → Sets is contravariant, then the universal element is a pair (X∗, e∗) such
that θopF ,X∗ (e

∗) : HomC (−,X∗) → F, where θopF ,X : F(X) → Nat (HomC (−,X) ,F) is the dual of θF ,X .

Proposition 3.4 (Universal mapping property [5]). Let C be a category and F : C → Sets a functor.
The pair (C∗, e∗) is a universal element forF if and only if∀X ∈ ObC ,∀e ∈ F(X),∃!x ∈ HomC (C∗,X) e =

F(x) (e∗).

Proof. Using Definition 3.1:

(C∗, e∗) is a universal element for F

⇔θF ,X∗ (e∗) =
(
ϕF ,X

∗

e∗,X :
{
HomX (X∗,X) −→ F(X)

x 7−→ F(x) (e∗)

)
X∈ObX

is an isomorphism

⇔∀X ∈ ObC , ϕ
F ,X∗

e∗,X :
{
HomX (X∗,X) −→ F(X)

x 7−→ F(x) (e∗)
is an isomorphism

⇔∀X ∈ ObC ,∀e ∈ F(X),∃!x ∈ HomC (C∗,X) e = F(x) (e∗)

Proposition 3.5. Let C be a category, and F : C → Sets a functor.
If (X0, e0) and (X1, e1) are universal elements for F, then there exists a unique isomorphism ϕ : X0 → X1

such that F(ϕ)(e0) = e1.
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Proof. If (X0, e0) and (X1, e1) are universal elements for F, then by Universal Mapping Property (Proposi-
tion 3.4):

1. there is a unique ϕ0 ∈ HomC (X0,X1) such that F (ϕ0) (e0) = e1.

2. there is a unique ϕ1 ∈ HomC (X1,X0) such that F (ϕ1) (e1) = e0.

3. there exists a unique ψ0 ∈ HomC (X0,X0) such that F (ψ0) (e0) = e0. However, idX0 also has this
property, so ψ0 = idX0 .

4. there exists a unique ψ1 ∈ HomC (X1,X1) such that F (ψ1) (e1) = e1. However, idX1 also has this
property, so ψ1 = idX1 .

Now let us study ϕ0 ◦ ϕ1 and ϕ1 ◦ ϕ0. Combining items 1 and 2, we have:

F (ϕ0) (F (ϕ1) (e1)) = F (ϕ0) (e0)

F (ϕ0) ◦ F (ϕ1) (e1) = e1

F (ϕ0 ◦ ϕ1) (e1) = e1 (10)

F (ϕ1) (F (ϕ0) (e0)) = F (ϕ1) (e1)

F (ϕ1) ◦ F (ϕ0) (e0) = e0

F (ϕ1 ◦ ϕ0) (e0) = e0 (11)

As idX0 (resp. idX1) is the unique arrow such that F
(
idX0

)
(e0) = e0 (resp. F

(
idX1

)
(e1) = e1), we

deduce from Equation 10 (resp. from Equation 11) that ϕ1 ◦ ϕ0 = idX0 (resp. ϕ0 ◦ ϕ1 = idX1). Consequently,
ϕ0 is the isomorphism described in the proposition.

Definition 3.6 (Representable functor). Let C be a category, and F : C → Sets a functor.
A representation of F is a pair (X∗,ψ) where:

� X∗ ∈ ObC is called the representing object of F

� ψ : HomC (X∗,−) → F is a natural isomorphism.

The functor F is said representable if such a representation exists.

Remark 3.7. As in Remark 3.3, a representation of a contravariant functor F is a pair (X∗,ψ) such that
ψ : HomC (−,X∗) → F is a natural isomorphism.

Lemma 3.8. Let C be a category, and F : C → Sets a functor.
If (X∗, e∗) is a universal element for F then

(
X∗, θF ,X∗ (e∗)

)
is a representation of F.

Lemma 3.9. Let C be a category, and F : C → Sets a functor.
If (X∗,ψ) is a representation of F, then (X∗,ψX∗ (idX∗)) is a universal element for F.

Theorem 3.10. Let C be a category, and F : C → Sets a functor.
There exists a universal element for F ⇔ F is representable.

Theorem 3.10 is an immediate consequence of the two previous lemmas. Besides, the two lemmas give
a way to convert a universal element into a representation.

Proof of Lemma 3.8. Let (X∗, e∗) be a universal element for F; it follows fromDefinition 3.1 that θF ,X∗ (e∗) :
HomC (X∗,−) → F is a natural isomorphism. Thence,

(
X∗, θF ,X∗ (e∗)

)
is a representation of F.
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Proof of Lemma 3.9. Let (X∗,ψ) be a representation ofF. ByProposition 2.5, we haveψ = θF ,X∗ (ψX∗ (idX∗)).
Besides, by definition of a representation, ψ = θF ,X∗ (ψX∗ (X∗)) is an isomorphism, which gives that
(X∗,ψX∗ (idX∗)) is a universal element for F.

Corollary 3.11. Representations of a functor F are unique up to isomorphism.

Definition 3.12 (Universal arrows [2]). Let X ,C be two categories. Let U : X → C be a functor and let
C ∈ ObC .

A universal arrow from C to U is a pair
(
U#
C, ηC

)
, where U#

C ∈ ObX and ηC ∈ HomC
(
C,U

(
U#
C

) )
,

such that, for all X ∈ ObX , for all c ∈ HomC (C,U (X)), there exists a unique x ∈ HomX
(
U#
C,X

)
such

that c = U(x) ◦ ηC .

In the following, this unique x will be denoted U#
c , such that: c = U

(
U#
c

)
◦ ηC .

Here is a diagram that sums up the idea behind universal arrows:

(X ) U#
C X

(C ) C

X

U
(
U#
C

)
U(X)

U#
c

U U

ηC c

U(U#
c)

Lemma 3.13. Let X ,C be two categories. Let U : X → C be a functor and let C ∈ ObC .
If

(
U#
C, ηC

)
is a universal arrow from C to U, then U#

ηC
= idU#

C
.

Proof. The arrowU#
ηC

is the unique arrow that verifies: ηC = U
(
U#
ηC

)
◦ηC . Of course, ηC = U

(
idU#

C

)
◦ηC ,

so idU#
C
= U#

ηC
.

Proposition 3.14. Let X ,C be two categories. Let U : X → C be a functor and let C ∈ ObC .

1.
(
U#
C, ηC

)
is a universal arrow from C to U⇔ θHomC (C ,U(−)),U

#
C
(ηC) is a natural isomorphism.

2. If for all C ∈ ObC , there exists XC ∈ ObC and a natural isomorphism ϕ : HomX (XC,−) →

HomC (C,U(−)), then
(
XC, ϕXC

(
idXC

) )
is a universal arrow from C to U.

Proof. [Item 1]
By definition of a universal arrow

(
U#
C, ηC

)
, for all X ∈ ObX , for all c ∈ HomC (C,U (X)), there exists

a unique x ∈ HomX
(
U#
C,X

)
such that c = U(x) ◦ ηC ; equivalently, for all X ∈ ObX , the function:

ϕX :
{
HomX

(
U#
C,X

)
−→ HomC (C,U (X))

x 7−→ U(x) ◦ ηC
is an isomorphism; that is, those ϕX are the components of θHomC (C ,U(−)),U

#
C
(ηC), which is a natural

isomorphism.
[Item 2]
Let C ∈ C and X ∈ X .
We have XC ∈ ObC and a natural isomorphism ϕ : HomX (XC,−) → HomC (C,U(−)). We have

ϕ = θHomC (C ,U(−)),XC

(
ϕXC

(
idXC

) )
, which by Item 1 yields that

(
XC, ϕXC

(
idXC

) )
is a universal arrow

from C to U.

IMTA-RR-2019-01-SC 18/106



3. Universal elements, universal arrows, representations

When seeing the definitions of universal elements and arrows, we wonder what could be the link
between both. In fact, universal arrows and universal elements are two very close notions.

Proposition 3.15. Let X ,C be two categories. Let U : X → C be a functor and let C ∈ ObC .
If

(
U#
C, ηC

)
is a universal arrow from C to U, then

(
U#
C, ηC

)
is also a universal element for

HomC (C,U(−)).

Proof. This proposition directly follows from Definitions 3.1 (universal element) and 3.12 (universal arrow).
In fact, by definition of a universal element for HomC (C,U(−)), the following natural transformation should
be an isomorphism:

θHomC (C ,U(−)),U
#
C
(ηC) =

(
ϕY :

{
HomC

(
U#
C,Y

)
−→ HomC (C,U(Y ))

x 7−→ HomC (C,U(x)) (ηC)

)
Y ∈ObC

By simplest representation lemma (Lemma 1.20), we have:

HomC (C,U(x)) (ηC) = U(x) ◦ ηC

By definition of a universal arrow, ∀Y ∈ ObX ,∀c ∈ HomC (C,U(Y )) ,∃!c = U(x) ◦ ηC = FηC (Y )(x).
Thus, ϕY ∈ MorSets is a bijection, thus an isomorphism; consequently, the natural transformation
θHomC (C ,U(−)),XC

(ηC) is also an isomorphism.

Remember that universal elements are defined for a functor C → Sets, and not just for a functor
between any two categories. The converse proposition is a bit less general.

Proposition 3.16. We denote by 1 the set P (∅) = {∅} = 1 where ∅ is the empty set. For any set E , for any
e ∈ E , we define:

δEe :
{

1 −→ E
x 7−→ e

Let X be a category, let U : X → Sets be a functor.
If (X∗, e∗) is a universal element for U, then

(
X∗, δU(X

∗)

e∗

)
is a universal arrow from 1 to U.

Proof. By Proposition 3.4, if (X∗, e∗) is a universal element for U, then ∀X ∈ X ,∀e ∈ U(X),∃!x ∈
HomX (X∗,X) such that:

e = U(x) (e∗)

⇔ δ
U(X)
e (0) = U(x)

(
δ
U(X∗)
e∗ (0)

)
⇔ δ

U(X)
e = U(x) ◦ δU(X

∗)

e∗

Consequently, we have: ∀X ∈ X ,∀δ
U(X)
e ∈ HomSets (1,U(X)) ,∃!x ∈ HomX (X∗,X), δU(X)e =

U(x) ◦ δU(X
∗)

e∗ , which yields that
(
X∗, δU(X

∗)

e∗

)
is a universal arrow from 1 to U.

We sum up the results into this theorem:

Theorem 3.17. Let X be a category, and let U : X → Sets be a functor.

1. (X∗, e∗) is a universal element for U⇔
(
X∗, θU ,X∗ (e∗)

)
is a representation of U.

2. (X∗, e∗) is a universal element for U⇔
(
X∗, δU(X

∗)

e∗

)
is a universal arrow from 1 of U.

3. (X∗,ψ) is a representation of U⇔ (X∗,ψX (idX)) is a universal element for U.

4.
(
U#
C, ηC

)
is a universal arrow from C to U⇔

(
U#
C, ηC

)
is a universal element for HomSets (C,U(−)).
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4. Towards adjunctions
Definition 4.1 (Left adjoint - from universal arrows). Let X ,C be two categories. Let U : X → C be a
functor. We suppose that for all C ∈ ObC , there exists a universal arrow

(
U#
C, ηC

)
from C to U.

The left adjoint of U, denoted by U∗, is the mapping:

U∗ :


C −→ X
C 7−→ U#

C

c : C → C ′ 7−→ U#
ηC◦c

Let’s study some properties of the left adjoint.

Lemma 4.2. Let X ,C be two categories. Let U : X → C be a functor, and let U∗ be the left adjoint of U.
For any c ∈ HomC (C,C ′), U∗(c) is the unique solution in x ∈ HomX

(
U#
C,U

#
C′

)
to the equation:

ηC′ ◦ c = U(x) ◦ ηC .

Proof. We have ηC′ ◦ c ∈ HomC
(
C,U

(
U#
C′

) )
. By definition of a universal arrow

(
U#
C, ηC

)
from C to U,

there exists a unique U#
ηC′◦c

∈ HomC (C ′) such that: ηC′ ◦ c = U
(
U#
ηC′◦c

)
◦ ηC = U (U∗(c)) ◦ ηC .

Proposition 4.3. Let X ,C be two categories. Let U : X → C be a functor, and let U∗ be the left adjoint
of U.

The left adjoint U∗ : C →X is a functor.

Proof. The mapping U∗ sends objects (resp. arrows) in C to objects (resp. arrows) in X .
Using Lemma 3.13, we check the behaviour of U∗ on identity arrows:

U∗ (idC) = U#
ηC◦idC = U#

ηC
= idU#

C

As for the composition, let c : C → C ′ and c′ : C ′→ C ′′. By definition of U∗, we have:

ηC′ ◦ c = U (U∗(c)) ◦ ηC
ηC′′ ◦ c′ = U (U∗ (c′)) ◦ ηC′

ηC′′ ◦ c′ ◦ c = U (U∗ (c′ ◦ c)) ◦ ηC (12)

But also:

ηC′′ ◦ c′ ◦ c = (U (U∗ (c′)) ◦ ηC′) ◦ c

= U (U∗ (c′)) ◦ (ηC′ ◦ c)

= U (U∗ (c′)) ◦U (U∗ (c))

= U (U∗ (c′) ◦U∗ (c)) (13)

Equations 12 and 13, together with Lemma 4.2, yield:

U∗ (c′ ◦ c) = U∗ (c′) ◦U∗ (c)

Proposition 4.4. Let X ,C be two categories. Let U : X → C be a functor, and let U∗ be the left adjoint
of U.

The mapping η = (ηC : C → U ◦U∗(C)) is a natural transformation η : IdC → U ◦U∗.
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Proof. We need to check if, for each c : C → C ′, the following diagram commutes:

C U (U∗(C))

X

C ′ U (U∗ (C ′))

c

ηC

U(U∗(c))

ηC′

That is, we need to check whether U (U∗(c)) ◦ ηC = ηC′ ◦ c, which is the result of Lemma 4.2.

Proposition 4.5. Let X ,C be two categories. Let U : X → C be a functor, and let U∗ be the left adjoint
of U.

For all X ∈ X , for all C ∈ C , we define:

βC ,X :
{
HomX (U∗(C),X) −→ HomC (C,U(X))

x 7−→ U(x) ◦ ηC

The mapping β : C,X 7→ βC ,X is a natural isomorphism HomX (U∗(−),−) → HomC (−,U(−)),
contravariant in C and covariant in X .

Proof. For C ∈ C , βC ,− : HomX (U∗(C),−) → HomC (C,U(−)) is the same function as βC ,− =

θHomC (C ,U(−)),U∗(C) (ηC) which we know is a natural isomorphism (cf. Proposition 3.14, item 1).
For X ∈ X , we study β−,X : HomX (U∗ (−) ,X) → HomC (−,U(X)). Let c : C → C ′, we want the

following diagram to commute:

C HomX (U∗ (C ′) ,X) HomC (C ′,U(X))

{ ?

C ′ HomX (U∗ (C) ,X) HomC (C,U(X))

c HomX (U
∗(c),X)

βC′ ,X

HomC (c,U(X))

βC ,X

(Note that β−,X is supposed to be contravariant in C).
Let f ∈ HomX (U∗ (C ′) ,X). On the one hand:

βC ,X ◦ HomX (U∗ (c) ,X) ( f ) = βC ,X ( f ◦U∗ (c))

= U ( f ◦U∗ (c)) ◦ ηC

while on the other hand:

HomC (c,U(X)) ◦ βC′,X( f ) = HomC (c,U(X)) (U ( f ) ◦ ηC′)

= U ( f ) ◦ ηC′ ◦ c

= U ( f ) ◦U (U∗ (c)) ◦ ηC
= U ( f ◦U∗ (c)) ◦ ηC
= βC ,X ◦ HomX (U∗ (c) ,X) ( f )

Thus, β−,X is a natural transformation. Note that each component in C of β−,X =
(
βC ,X

)
C∈ObC

is an
isomorphism (because θHomC (C ,U(−)),U∗(C) (ηC), for any C ∈ ObC , is a natural isomorphism), thus so is
β−,X .
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Proposition 4.6. Let X ,C be two categories. Let U : X → C be a functor, and let U∗ be the left adjoint
of U.

If F : C → X is a functor for which there exists a natural isomorphism γ : HomX (F(−),−) →
HomC (−,U(−)), then there exists a unique natural isomorphism α : F → U∗; in other words, the left
adjoint is unique up to a unique isomorphism.

Proof. Let F : C →X such that γ : HomX (F(−),−) → HomC (−,U(−)) is a natural isomorphism.
For allC ∈ C , we have γC ,− = θHomC (C ,U(−)),F(C) (eC) for some eC : C → U (F(C)) = γC ,F(C)

(
idF(C)

)
.

We deduce from Proposition 3.14-2 that F is a left adjoint for U. As U∗ and F are left adjoints for U, then
(F(C), eC) and (U∗(C), ηC) are universal arrows from C toU (Definition 4.1), so (F(C), eC) and (U∗(C), ηC)
are also universal elements for HomC (C,U(−)) (Proposition 3.15). According to Proposition 3.5, there
exists a unique isomorphism aC : U∗(C) → F(C) such that U (aC) (eC) = ηC .

We now have to show that α = (αC)C∈ObC
is natural in C.

We have the following diagram:

C

U (F(C)) U (U∗(C))

C ′

U (F(C ′)) U (U∗(C ′))

eCηC

c

U(F(c))

U(αC )

U(U∗(c))

eC′ηC′

U(αC′ )

where the following subdiagrams commute:

C

X

U (F(C)) U (U∗(C))

eCηC

U(αC )

C ′

X

U (F(C ′)) U (U∗(C ′))

eC′ηC′

U(αC′ )

due to the construction of αC and:

U (F(C)) C U (U∗(C))

X X

U (F(C ′)) C ′ U (U∗(C ′))

U(F(c))

eCηC

c U(U∗(c))

eC′ηC′

due to the naturality of e : IdC → U ◦ F and η : IdC → U ◦U∗.
By diagram chasing, we have:

U (αC′) ◦U (F (c)) ◦ ηC = U (U∗ (c)) ◦U (αC) ◦ ηC
U (αC′ ◦ F (c)) ◦ ηC = U (U∗ (c) ◦ αC) ◦ ηC

αC′ ◦ F (c) = U∗ (c) ◦ αC

The last equation is due to βC ,X being an isomorphism. This equation makes the following diagram
commute:
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U (F(C)) U∗(C)

X

F(C ′) U∗(C ′)

F(c)

αC

U∗(c)

αC′

which makes α = (αC)C∈ObC
natural in C.

Definition 4.7 (Adjunction - official). Let X ,C be two categories. Let U : X → C and F : C →X be
two functors.

The 3-tuple (F,U, β) is called an adjunctionwhenever β is a natural isomorphism β : HomX (F(−),−) →
HomX (−,U(−)).

We also say that F is left adjoint to U and U is right adjoint to F. We will refer to β as the adjunctor1of
F and B.

If (F,U, β) is an adjunction, we may write F a U or
F(C) → X
C → U(X)

(β).

The following lemma proves that if (F,U, β) is an adjunction, then F is actually left adjoint to U as
defined in Definition 4.1. In fact, both definitions are equivalent.

Lemma 4.8. Let X ,C be two categories. Let U : X → C and F : C →X be two functors.
F a U⇔ there exists a natural transformation η : IdC → U ◦ F such that ∀C ∈ ObC , (F(C), ηC) is a

universal arrow from C to U.

Proof. [Proof of⇐]
Suppose that we have a η : IdC → U ◦ F such that ∀C ∈ ObC , (F(C), ηC) is a universal arrow from

C to U. According to the definition of a left adjoint, F corresponds to a left adjoint on objects. We have
to check if, for all X ∈ X , for all c : C → C ′, F(c) is the unique solution in x ∈ HomX (F(C),X) to the
equation:

η′C ◦ c = U(x) ◦ ηC (14)

The natural transformation η : IdC → U ◦ F makes the following diagram commute:

C U (F(C))

X

C ′ U (F(C ′))

ηC

c U(F(c))

ηC′

which proves that F(c) is indeed a solution to Equation 14. The uniqueness of the solution comes from
the definition of a universal arrow (Definition 3.12).

Consequently, F is a left adjoint to U. By Proposition 4.5, we can define a β from η that is a natural
isomorphism HomX (F(C),X) → HomC (C,U(X)). Finally, (F,U, β) is an adjunction.

[Proof of⇒]
Suppose F a U, and suppose (F,U, β) is an adjunction. Define η to be the natural transformation with

components:

ηC = βC ,F(C)
(
idF(C)

)
∈ HomC (C,U (F (C)))

1The β natural isomorphism appears to be unamed in most references. However, in the rest of this course, it may be convenient
to give it a name. Please note that nobody but the authors give this name to that isomorphism.
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The naturality of η comes from the naturality of β =
(
βC ,X

)
C∈C ,X∈X in both its variables.

The naturality in X gives, when c : C → C ′, for F(c) : F(C) → F (C ′) ∈ X :

HomX (F(C),F(C)) HomX (C,U ◦ F(C))

X

HomX (F(C),F (C ′)) HomX (C,U ◦ F (C ′))

βC ,F (C)

HomX (F(C),F(c)) HomX (C ,U◦F(c))

βC ,F (C′)

while the naturality in C gives, for c : C → C ′:

HomX (F (C ′) ,F (C ′)) HomX (C ′,U ◦ F (C ′))

X

HomX (F(C),F (C ′)) HomX (C,U ◦ F (C ′))

βC′ ,F (C′)

HomX (F(c),F(C
′)) HomX (c,U◦F(C

′))

βC ,F (C′)

From the first diagram, we obtain:

βC ,F(C′) ◦ HomX (F(C),F(c))
(
idF(C)

)
= HomX (C, (U ◦ F) (c)) ◦ βC ,F(C)

(
idF(C)

)
βC ,F(C′) ◦ F(c) = (U ◦ F) (c) ◦ βC ,F(C)

(
idF(C)

)
(15)

and from the second diagram:

βC ,F(C′) ◦ HomX (F(c),F (C ′))
(
idF(C′)

)
= HomX (c,U ◦ F (C ′)) ◦ βC′,F(C′)

(
idF(C′)

)
βC ,F(C′) ◦ F(c) = βC′,F(C′)

(
idF(C′)

)
◦ c (16)

Combining Equations 15 and 16, we obtain:

(U ◦ F) (c) ◦ βC ,F(C)
(
idF(C)

)
= βC′,F(C′)

(
idF(C′)

)
◦ c

(U ◦ F) (c) ◦ ηC = ηC′ ◦ c

which proves that η is a natural transformation.
We have to show that each (F(C), ηC) is a universal arrow from C to U. We have a natural isomorphism

βC ,− : HomX (F(C),−) → HomC (C,U(−)); so according to Proposition 3.14,
(
F(C), βC ,F(C)

(
idF(C)

) )
=

(F(C), ηC) is a universal arrow. Besides, F is a left adjoint to U.

Definition 4.9 (Unit of an adjunction). Let (F,U, β) be an adjunction.
The unit of the adjunction (F,U, β) is the natural transformation η : IdC → U ◦ F such that

∀C ∈ ObC , ηC = βC ,F(C)
(
idF(C)

)
.

We will define the dual notion of a counit. However, we will not construct it explictly as we did the unit
(that is, using universal arrows, then left adjoints), because it is not that interesting. We will first compute
the inverse of the adjunctor β.

Note that Lemma 4.8 proves that Definitions 4.1 and 4.7 are not only equivalent, but also that we can
construct the unit η from the adjunctor β and conversely. The same goes from the counit ε that we will
define right after the following lemma.
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Lemma 4.10. Let (F,U, β) be an adjunction.
For all C ∈ ObC , define ηC = βC ,F(C)

(
idF(C)

)
. Then, βC ,X is:

βC ,X :
{
HomX (F(C),X) −→ HomC (C,U(X))

x 7−→ U(x) ◦ ηC

For all X ∈ ObX , define εX = β−1
U(X),X

(
idU(X)

)
. Then, β−1

C ,X is:

β−1
C ,X :

{
HomC (C,U(X)) −→ HomX (F(C),X)

c 7−→ εX ◦ F(c)

Proof. By naturality of β and β−1, and for c : C → U(X) and x : F(C) → X , the following two diagrams
commute:

HomX (F (C) ,F (C)) HomC (C,U ◦ F (C))

X

HomX (F(C),X) HomC (C,U(X))

βC ,F (C)

HomX (F(C),x) HomX (C ,U(x))

βC ,X

HomC (U (X) ,U (X)) HomX (F ◦U (X) ,X)

X

HomC (C,U(X)) HomX (F(C),X)

β−1
U (X ),X

HomC (c,U(X)) HomX (F(c),X)

β−1
C ,X

Suppose we have βC ,X(x) = c (or equivalently β−1
C ,X(c) = x). Those two diagrams combine into this

one:

HomX (F (C) ,F (C)) HomC (U (X) ,U (X))

HomC (C,U ◦ F (C)) HomX (F ◦U (X) ,X)

HomC (C,U(X)) X HomX (F(C),X)

βC ,F (C)

HomX (F(C),x)

β−1
U (X ),X

HomC (c,U(X))
HomX (C ,U(x)) HomX (F(c),X)

β−1
C ,X

βC ,X

Firstly, with idF(C) ∈ HomX (F(C),F(C)), we have:
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β−1
C ,X ◦ HomC (C,U(x)) ◦ βC ,F(C)

(
idF(C)

)
= HomX (F(C), x)

(
idF(C)

)
β−1
C ,X

(
U(x) ◦ βC ,F(C)

(
idF(C)

) )
= x ◦ idF(C)

β−1
C ,X (U(x) ◦ ηC) = x

Secondly, with idU(X) ∈ HomC (U(X),U(X)), we have:

βC ,X ◦ HomX (F(c),X) ◦ β−1
U(X),X

(
idU(X)

)
= HomC (c,U(X))

(
idU(X)

)
βC ,X ◦ β

−1
U(X),X

(
idU(X)

)
◦ F(c) = idU(X) ◦ c

βC ,X (εX ◦ F(c)) = c

The first calculation shows that βC ,X(x) = U(x)◦ηC and the second shows that β−1
C ,X(c) = εX ◦F(c).

Lemma 4.11. Let X ,C be two categories. Let U : X → C and F : C →X be two functors.
F a U⇔ there exists a natural transformation ε : F ◦U → IdX such that ∀X ∈ ObX , ∀C ∈ ObC and

∀x : F(C) → X , there exists a unique arrow c : C → U(X) such that: εX ◦ F(c) = x.

Proof. [Proof of⇒]
If F a U, then let (F,U, β) be the adjunction. We have β−1

C ,X : HomX (−,U(−)) → HomX (F(−),−).
Define ε = (εX)X∈ObX

to be:

εX = β
−1
U(X),X

(
idU(X)

)
A diagram chasing very similar to the one in the proof of Lemma 4.8 shows that ε is a natural

transformation.
Let X ∈ ObX , let C ∈ ObC and let x : F(C) → X . The existence and unicity of the c : C → U(X)

such that εX ◦ F(c) = x comes from the bijectivity of β−1
C ,X as the equation is also: β−1

C ,X(c) = x. Of course,
that c is c = βC ,X(x) = U(x) ◦ ηC .

[Proof of⇐]
Define:

γC ,X :
{
HomC (C,U(X)) −→ HomX (F(C),X)

c 7−→ εX ◦ F(x)

The definition of ε states that each γC ,X is an isomorphism. Now we have to prove that γ =(
γC ,X

)
C∈ObC ,X∈ObX

is natural (but contravariant) in C and (covariant) in X .

C HomX (C ′,U(X)) HomX (F (C ′) ,X)

{ ?

C ′ HomX (C,U(X)) HomX (F (C) ,X)

c

γC′ ,X

HomX (c,U(X)) HomX (F(c),X)

γC ,X

For f ∈ HomX (C ′,U(X)), we have:

HomX (F (c) ,X) ◦ γC′,X( f ) = εX ◦ F( f ) ◦ F(c)

γC ,X ◦ HomX (c,U(X)) ( f ) = εX ◦ F( f ◦ c)

So γ is natural in C. As for the naturality in X:
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X HomX (C,U(X)) HomX (F (C) ,X)

{ ?

X ′ HomX (C,U (X ′)) HomX (F (C) ,X ′)

x

γC ,X

HomX (C ,U(x)) HomX (F(C),x)

γC ,X′

Let f ∈ HomX (C,U(X)):

γC ,X ◦ HomX (F (C) , x) ( f ) = x ◦ εX ◦ F( f )

HomX (C,U(x)) ◦ γC ,X′( f ) = εX′ ◦ F (U(x)) ◦ F ( f )

Don’t forget that ε is a natural transformation F◦U → IdX . Thence, we have the following commutative
diagram:

F ◦U(X) X

X

F ◦U (X ′) X

εX

F◦U(x) x

εX′

which gives:

x ◦ εX = εX′ ◦ F (U(x))

and finally:

x ◦ εX ◦ F( f ) = εX′ ◦ F (U(x)) ◦ F ( f )

γC ,X ◦ HomX (F (C) , x) ( f ) = HomX (C,U(x)) ◦ γC ,X′( f )

Thus, γ is a natural transformation in both X and C; each component is an isomorphism, so
γ is a natural isomorphism HomC (−,U(−)) → HomX (F(−),−); so γ−1 is a natural isomorphism
HomX (F(−),−) → HomC (−,U(−)).

For all C ∈ ObC , define ηC = γ−1
C ,F(C)

(
idF(C)

)
. By Proposition 3.14, item 2, we know that (F(C), ηC)

is a universal arrow from C to U, which makes F the left adjoint of U by Lemma 4.8.

Definition 4.12 (Counit of an adjunction). Let (F,U, β) be an adjunction.
The counit of the adjunction (F,U, β) is the natural transformation ε : F ◦ U → IdX such that

∀X ∈ ObX , εX = β
−1
U(X),X

(
idU(X)

)
.

The notion of adjunction appears everywhere in mathematics. As this notion is very important, we need
to give many examples.
Example 4.13 (Identity). Let C be a category. Then the identity functor IdC : C → C is both left and right
adjoint of itself; and Id−,− : HomC (IdC (−),−) → HomC (−, IdC (−)) is the adjunctor. The unit and counit
are: η, ε : IdC → IdC .
Example 4.14 (Isomorphisms). Let C ,X be categories, and let F : C →X be an isomorphism between
those categories. Then F a F−1 a F. In fact, x : F(C) → X ∈ X ⇔ F−1(x) : C → F−1(X) and
c : F−1(X) → C ⇔ F(c) : X → F(C).

For the adjunction
(
F,F−1, β

)
, the adjunctor β has components:
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βC ,X :
{
HomX (F(C),X) −→ HomC

(
C,F−1(X)

)
x 7−→ F−1(x)

while for the second adjunction
(
F−1,F, γ

)
, the adjunctor γ has components:

γC ,X :
{
HomX

(
F−1(X),C

)
−→ HomC (X,F(C))

c 7−→ F(c)
= β−1

C ,X

The units and counits are the identity natural transformations.
Example 4.15 (Increasing linear function). Let R = (R,6) be the category of the totally ordered set R,
equipped with the usual order on real numbers.

Objects: An object in R is a real number x ∈ R

Morphisms: There is an arrow x0 → x1 if and only if x0 6 x1

Identities: An identity morphism is an arrow x → x

Composition: If x0 → x1 and x1 → x2 are two arrows, then there is one arrow x0 → x2

Note that there is only one arrow between two objects (real numbers) x0, x1; if x0 < x1 then HomR (x0, x1)

contains only one arrow, while HomR (x1, x0) is empty. Similarly, there is only one arrow x → x, and it is
the identity. Finally, the composition law on arrows comes from the transitivity of the order relation 6.

Let F : R → R be the functor: F : x → ax + b with a > 0. Let’s check if F is actually a functor.
If x0 → x1, then x0 6 x1, which gives ax0 + b 6 ax1 + b, thus F(x0) → F(x1). If x → x

then F(x) → F(x). Finally, if x0 → x1 and x1 → x2 then F(x0) → F(x1) and F(x1) → F(x2) and
F(x0) → F(x2) (by transitivity of 6).

Now suppose you have x0, x1 ∈ R such that:

F(x0) 6 x1 ⇔ ax0 + b 6 x1

⇔ x0 6
1
a

x1 −
b
a

Define U :

{
R −→ R

x 7−→
1
a

x1 −
b
a

. Then F is left adjoint to U. The adjunctor β transforms arrows

F(x0) → x1 to arrows x0 → U(x1). The unit η and counit ε are the identity natural transformations
IdR → IdR .
Example 4.16 (Decreasing linear function). We can build a similar example of adjunctor using R = (R,6)
and its opposite category R

op
= (R,>).

Let R
op
= (R,>) be the category of the totally ordered set R, equipped with the usual order on real

numbers.

Objects: An object in R
op is a real number x ∈ R

Morphisms: There is an arrow x0 → x1 if and only if x0 > x1

Identities: An identity morphism is an arrow x → x

Composition: If x0 → x1 and x1 → x2 are two arrows, then there is one arrow x0 → x2
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Note that (R,>) is actually the opposite category of (R,6).
Let F : R

op
→ R be the functor: F : x → ax + b with a < 0. Let x0, x1 ∈ R such that:

F(x0) > x1 ⇔ ax0 + b > x1

⇔ x0 6
1
a

x1 −
b
a

⇔ x0 6 U(x1)

We can define the same U as in the previous example; and F is again left adjoint to U. The adjunctor β
transforms arrows F(x0) → x1 in R

op to arrows x0 → U(x1) in R. The unit and counit are the identity
natural transformations as U = F−1.
Example 4.17 (Image and inverse image of a function). Let f : X → Y be a function between two sets X
and Y . The two categories will be the partially ordered sets X = (P (X) ,⊆) and Y = (P (Y ) ,⊆) equipped
with the usual inclusion of sets.

Define the three functors:

F :
{

X −→ Y
A 7−→ f (A) = { f (a) | a ∈ A}

G :
{

Y −→ X
B 7−→ f −1(B) = {b ∈ X | f (b) ∈ B}

F∗ :
{

X −→ Y
A 7−→

{
y ∈ Y | f −1 ({y}) ⊆ A

}
The functor F gives the image of a subset of X , G gives the inverse image of a subset of Y and F∗

gives the subset of inverse images of singletons of elements of Y . We let the reader check that those three
functions are actually functors.

Suppose we have F(A) → B. For all a ∈ A, f (a) ∈ F(A) ⊆ B, so for all a ∈ A, a ∈ f −1(B) = G(B),
which gives A ⊆ G(B). Conversely, suppose we have A → G(B). For all a ∈ A, a ∈ G(B) =
{b ∈ X | f (b) ∈ B}, so for all a ∈ A, f (a) ∈ B, which gives F(A) ⊆ B.

We have F a G:

F(A) ⊆ B⇔ A ⊆ G(B)

The adjunctor β transforms arrows F(A) → B to arrows A→ G(B). Note that A ⊂ G ◦ F(A) but there
is in general no reason why A should be equal to G ◦ F(A) (except if f is injective). Consequently, the unit
of the adjunction is:

η =

(
ηA :

{
A −→ G ◦ F(A)
a 7−→ a

)
A⊆X

Similarly, note that F ◦ G(B) ⊂ B but there is in general no reason why F ◦ G(B) should be equal to B
(except if f is surjective), so the counit is:

ε =

(
εB :

{
F ◦ G(B) −→ B

b 7−→ b

)
B⊆Y

Besides, we also have G a F∗. In fact, suppose we have G(A) ⊆ B. Then, ∀x ∈ A, f −1 ({x}) ⊂ G(A) ⊂
B, so ∀x ∈ A, x ∈ F∗(B), hence A ⊆ F∗(B). Conversely, if A ⊆ F∗(B) then ∀x ∈ G(A), we have:
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x ∈ G(A) ⇒ f (x) ∈ A ⊂ F∗(B)

⇒ f (x) ∈
{
y ∈ Y | f −1 ({y}) ⊆ B

}
⇒ f −1 ({ f (x)}) ⊆ B

⇒ x ∈ B

So we have G(A) ⊆ B.
The adjunctor β∗ transforms arrows G(A) → B to arrows A→ F∗(B).
Before computing the unit and counit, note that, for B ⊂ Y :

F∗(G(B)) = F∗
(

f −1(B)
)

=
{
y ∈ Y | f −1 ({y}) ⊆ f −1(B)

}
=

{
y ∈ Y | ∀x ∈ f −1 ({y}) , f (x) ∈ B

}
= {y ∈ Y | y ∈ B ∧ ∃x ∈ X, y = f (x)}

= B ∩ f (X) ⊆ B

The interpretation is the following: F∗(G(B)) is the biggest subset of B that contains only images by f .
Again, F∗(G(B)) has no reason to be equal to B, except if f is surjective.

Also, for A ⊂ X:

G (F∗(A)) = f −1 (F∗(A))

= {x ∈ X | f (x) ∈ F∗(A)}

=
{

x ∈ X | f (x) ∈
{
y ∈ Y | f −1 ({y}) ⊆ A

}}
=

{
x ∈ X | f −1 ({ f (x)}) ⊆ A

}
=

⋃
{C ⊆ X | f (C) ⊆ f (A)}

⊇ A

The interpretation of G (F∗(A)) is as follows: G (F∗(A)) is the biggest subset of X that gives f (A).
Again, G (F∗(A)) has no reason to be equal to A, except if f is injective.

In this case, the unit and counit are not easy to write. In fact, we will need to create an equivalence
relation over X , for example x = y mod f ⇔ f (x) = f (y). Then we will need a section function that
sends an equivalence class to its representative. Such a choice of section function should be chosen to be
compatible with what we want from the unit and counit.
Example 4.18 (Galois connections). The previous three examples are special cases of monotone Galois
connections. Every Galois connection between two posets is an adjunction.

Further examples of adjunctions will appear in the rest of the text. Our goal is to introduce topoi whose
definition is easier with adjunctions.

Definition 4.19 (Whiskering). Let F,F ′ : C → C ′ and G,G : C ′ → D be functors, and let α : F → F ′

and β : G→ G′ be natural transformations.

1. The whiskering of G and α, denoted by G ◦ α, is the natural transformation: G ◦ α : G ◦ F → G ◦ F ′

with components (G (αC) : G ◦ F(C) → G ◦ F ′(C))C∈C .

2. The whiskering of β and F, denoted by β ◦ F, is the natural transformation: β ◦ F : G ◦ F → G′ ◦ F
with components

(
αG(C) : G ◦ F(C) → G′ ◦ F(C)

)
C∈C .
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It is easy to check that:

Proposition 4.20. Let F,F ′ : C → C ′ and G,G : C ′ → D be functors, and let α : F → F ′ and
β : G→ G′ be natural transformations.

(H ◦ G) ◦ β = H ◦ (G ◦ β) IdC ′ ◦ β = β

α ◦ (F ◦ H) = (α ◦ F) ◦ H α ◦ IdC = α

Remark 4.21. Proposition 4.20 simply states that whiskering (on the left or on the right) can be seen as
a (left or right) monoid action of the monoid of functors (with composition) over the class of natural
transformations.

Proposition 4.22. Let F,F ′ : C → C ′ and G,G : C ′ → D be functors, and let α : F → F ′ and
β : G→ G′ be natural transformations.

Then the following diagram commutes:

G ◦ F G′ ◦ F

X

G ◦ F ′ G′ ◦ F ′

G◦α

β◦F

G′◦α

β◦F′

Proof. For C ∈ C , consider the following "implemented" diagram:

G (F(C)) G′ (F(C))

G (F ′(C)) G′ (F ′(C))

G(αC )

βF (C)

G′(αC )

βF′(C)

This diagram commutes because β is a natural transformation G → G′ and αC is an arrow F(C) →
F ′(C).

Proposition 4.23 (Triangle identities). Let X ,C be two categories. Let U : X → C and F : C →X be
two functors. Let η : IdC → U ◦ F and ε : F ◦U → IdX be natural transformations.

The tuple (F,U, η, ε) is an adjunction iff the following triangles commute:

L L ◦ R ◦ L

L

L◦η

idL

ε◦L

R R ◦ L ◦ R

R

η◦R

idR

R◦ε

Proof. [Proof of⇒] Suppose (F,U, η, ε) is an adjunction. According to Lemma 4.10, we can compute the
adjunctor from the unit and counit:

βC ,X :
{
HomX (F(C),X) −→ HomC (C,U(X))

x 7−→ U(x) ◦ ηC

β−1
C ,X :

{
HomC (C,U(X)) −→ HomX (F(C),X)

c 7−→ εX ◦ F(c)

Also, from Definition 4.9 and 4.12, we deduce the triangle identities:
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ηC = βC ,F(C)
(
idF(C)

)
⇔ β−1

C ,F(C) (ηC) = idF(C)
⇔ εF(C) ◦ F (ηC) = idF(C)
⇔ (ε ◦ F)C ◦ (F ◦ η)C = idF(C)

εX = β
−1
U(X),X

(
idU(X)

)
⇔ βU(X),X (εX) = idU(X)
⇔ U (εX) ◦ ηU(X) = idU(X)
⇔ (U ◦ ε)X ◦ (η ◦U)X = idU(X)

[Proof of⇐] If we have the triangle identities, we can define the adjunctor β from η and its inverse γ
(in place of β−1) from ε, and we prove that γ is the inverse of β:

βC ,X :
{
HomX (F(C),X) −→ HomC (C,U(X))

x 7−→ U(x) ◦ ηC

γC ,X :
{
HomC (C,U(X)) −→ HomX (F(C),X)

c 7−→ εX ◦ F(c)

And then, for x : F(C) → X , we have:

γC ,X ◦ βC ,X(x) = εX ◦ F (U(x) ◦ ηC)

This is equal to x due to the following diagram:

F(C) F ◦U ◦ F(C) F ◦U(X)

F(C) X

F(ηC )

idF (C)

F◦U(x)

εF (C) εX

x

The left-hand triangle commutes because of the triangle identities; the right-hand square commutes
because it represents the naturality of ε : F ◦U → IdX .

The converse equality is similarly proven:

βC ,X ◦ γC ,X(c) = U (εX ◦ F(c)) ◦ ηC

which is equal to c according to the following diagram:

C U(X)

U ◦ F(C) U ◦ F ◦U(X) U(X)

c

ηC ηU (X )
idU (X )

U◦F(c) U(εX )

The left-hand square commutes because η is a natural transformation, and the right-square commutes
because of the triangle identities.

Thus, β and γ are both natural isomorphisms (the proof of naturality is not interesting and is left to the
reader) and are inverses of each other.
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We finally give a third definition of adjunction:

Definition 4.24 (Adjoint - triangle identities). Let X ,C be two categories. Let U : X → C and
F : C →X be two functors. Let η : IdC → U ◦ F and ε : F ◦U → IdX be natural transformations.

The tuple (F,U, η, ε) is called an adjunction if the following triangles commute:

L L ◦ R ◦ L

L

L◦η

idL

ε◦L

R R ◦ L ◦ R

R

η◦R

idR

R◦ε
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5. Objects with some universality in them
A word about the UMP.

Definition 5.1 (Product [1]). Let C be a category and let A and B be objects in C .
The product of A and B is 3-tuple (A × B, πA, πB) where A × B is an object in C , and πA : A × B→ A

and πB : A × B → B are two arrows, such that, for all object P with two arrows pA : P → A and
pB : P → B, there exists a unique arrow u : P → A × B such that πA ◦ u = pA and πB ◦ u = pB, that is,
such that the following diagram commutes:

P

A A × B B

pA pB
u

πA πB

We call πA, πB projections, and we denote u by u = (pA, pB).

The definition of the product can be interpreted as follows. Given three objects A,B,C, the "shorter"
path from C to A and B at the same time, always passes through A × B. In a sense, A × B is an "optimised"
link to A and B.
Example 5.2. In Sets, the product is the usual cartesian product of sets, and the projections are the usual
projections (a, b) 7→ a and (a, b) 7→ b.
Example 5.3. In a poset category (P,6), the product p × q of two elements p and q verifies p × q 6 p and
p × q 6 q, and for all r 6 p r 6 q, we have r 6 p × q. In fact, p × q = inf (p,q).

Proposition 5.4. Let C be a category and let A and B be objects in C .
The product A × B is unique up to isomorphism.

Proof. Let (A × B, πA, πB) and
(
A? B, π?

A
, π?B

)
be two products of A and B.

By definition of both products, there exists unique u,u? such that the following diagram commutes:

A? B

A B

A × B

π?
A π?B

u?

πA πB

u

We then have: π?
A
◦ u ◦ u? = π?

A
= π?

A
◦ idA?B and π?B ◦ u ◦ u? = π?B = π

?
B ◦ idA?B. The following

diagram commutes:

A? B

A A? B B

A? B

π?
A π?Bu◦u?

π?
A

π?B

π?
A

π?B
idA?B

By uniqueness condition, we have u ◦ u? = idA?B. A similar reasonning yields u? ◦ u = idA×B; then u
and u? are isomorphisms.
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Consequently, it is natural to mention "the" product of two objects, instead of "a" product.
The definition of a product can be generalized from n = 2 to any n ∈ N. When n = 1, the product of C1

is just C1 and the projection π1 : C1 → C1 is the identity. When n = 0, the empty product is an object ∗
such that for all objects P, there exists a unique arrow u : P→ ∗ (we will see later that this is the terminal
object). Note that depending on the category C , not all pairs (C1,C2) may have a product.

Definition 5.5 (Category with finite products). The category C is said to have finite products if ∀n ∈
N,∀ (Ci)i∈n, the product

∏
i∈n Ci exists.

The product of categories can also be defined. However, it is not always a product in the category of
categories (if such a thing exists). It is still useful for further definitions.

Definition 5.6 (Product of categories). Let C and D be two categories. We define the category of pairs, or
the product category C ×D by:

Objects: An object in C ×D is a pair (C,D) where C ∈ ObC and D ∈ ObD

Morphisms: A morphism in C ×D is a pair (c, d) : (C,D) → (C ′,D′) where c : C → C ′ ∈ MorC and
d : D→ D′ ∈ MorD

Identities: An identity morphism is a pair (idC, idD)

Composition: The composition law for morphisms is pairwise: (c, d) ◦ (c′, d ′) = (c ◦ c′, d ◦ d ′) (using
the composition laws of C and D)

Remark 5.7. We can define the category Cat of small categories, where the morphisms are the functors
between small categories. In that case, if C and D are small categories, then the product C ×D is an actual
product in this category.

Besides, any two categories give birth to a product category, however this product is not necessarily an
actual product in the categorical sense.

Before checking on the dual notion of the product, let us have a look at the behaviour of the covariant
and contravariant Hom-set functors in relation to the product.

Proposition 5.8. Let C be a category with finite products. Then there is a natural isomorphism:

HomC (A,B × C) � HomC (A,B) × HomC (A,C)

in A, B and C.

Proof. As a product, there is a unique u : HomC (A,B × C) → HomC (A,B) × HomC (A,C) such that the
following diagram commutes:

HomC (A,B × C)

HomC (A,B) HomC (A,B) × HomC (A,C) HomC (A,C)

HomC (A,πB )
u

HomC (A,πC )

πHomC (A,B) πHomC (A,C)

Conversely, given ( fB, fC) ∈ HomC (A,B) ×HomC (A,C), by definition of the product B ×C, there is a
unique v : A→ B × C such that the following diagram commutes:

A

B B × C C

πB◦ f
u

πC◦ f

πB πC
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Besides, v = 〈 fB, fC〉 : A→ B × C, so we define:

αA,B,C :
{
HomC (A,B) × HomC (A,C) −→ HomC (A,B × C)

( fB, fC) 7−→ 〈 fB, fC〉

By a reasonning similar to the one in the proof of Proposition 5.4, we have αA,B,C = u−1, so αA,B,C is
a bijection.

The naturality is easy to check; let a : A→ A′:

A HomC (A′,B) × HomC (A′,C) HomC (A′,B × C)

{

A′ HomC (A,B) × HomC (A,C) HomC (A,B × C)

a HomC (a,B)×HomC (a,C)

αA′ ,B ,C

HomC (a,B×C)

αA,B ,C

We check that the diagram commutes:

αA,B,C ◦ HomC (a,B) × HomC (a,C) ( fB, fC) = αA,B,C ( fB ◦ a, fC ◦ a)

= 〈 fB ◦ a, fC ◦ a〉

HomC (a,B × C) ◦ αA′,B,C ( fB, fC) = HomC (a,B × C) 〈 fB, fC〉

= 〈 fB, fC〉 ◦ a

= 〈 fB ◦ a, fC ◦ a〉

The other naturalities are as easy to check.

This property is not specific to the Hom-set functor.

Definition 5.9 (Preserving products). The functor F : C → D is said to preserve products when, for all
A,B ∈ ObC , if A × B exists, then F(A × B) � F(A) × F(B).

Proposition 5.10. The covariant Hom-set functor HomC (A,−) preserves products.

Asimilar question could be asked about the contravariant Hom-set functor: is there a natural isomorphism
HomC (A × B,C) → HomC (A,C) ×HomC (B,C)? In fact, the answer is no. The right isomorphism is this
one:

Proposition 5.11. Let C be a category with finite products. Then there is a natural isomorphism:

HomC×C ((A, A), (B,C)) � HomC (A,B) × HomC (A,C)

in A, B and C.

The proof is very similar to that of the covariant Hom-set functor.
Combining Proposition 5.8 and Proposition 5.11, we have:

Proposition 5.12. Let C be a category with finite products. Then there is a natural isomorphism:

HomC ((A, A), (B,C)) � HomC (A,B × C)

in A, B and C.
In other words, the diagonal functor:
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∆2 :


C −→ C × C
C 7−→ (C,C)
c 7−→ (c, c)

is right adjoint to the product functor − × − : C × C → C .

Remark 5.13. The unit of the adjunction ∆2 a × is:

ηC : C → C × C

and the counit is:

εA,B : (A × B, A × B) → (A,B)

The dual notion of that of a product is the coproduct:

Definition 5.14 (Coproduct). Let C be a category and let A and B be objects in C .
The coproduct of A and B is 3-tuple (A + B, iA, iB) where A + B is an object in C , and iA : A→ A + B

and iB : B→ A+B are two arrows, such that, for all object X with two arrows xA : A→ X and xB : B→ X ,
there exists a unique arrow u : A + B→ X such that the following diagram commutes:

X

A A + B B
iA

xA u

iB

xB

We call iA, iB injections, although they do not need to be injective.

Example 5.15. In Sets, the coproduct A + B corresponds to the disjoint union of A and B, for example
defined as

A + B = {(a,0) | a ∈ A} ∪ {(b,1) | b ∈ B}

with injections being:

iA : a→ (a,0)
iB : b→ (b,1)

Example 5.16. In a poset category (P,6), the coproduct p + q is p + q = sup (p,q).
It is easy to see that:

Proposition 5.17. Let C be a category and let A and B be objects in C .
(A + B, iA, iB) is a coproduct in C if and only if (A + B, iA, iB) is a product in C

op .

Corollary 5.18. The coproduct is unique up to isomorphism.

The proof of the following is very similar to the proof of Proposition 5.8. We will just give the natural
isomorphism to consider.

Proposition 5.19. Let C be a category such that for all A,B, the coproduct A + B exists. Then, there is a
natural isomorphism:

HomC (A + B,C) � HomC×C ((A,B), (C,C))

In other words, the diagonal functor ∆2 : C 7→ (C,C) is left adjoint to the coproduct functor
− + − : C × C → C .
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Proof. If f : A + B → C then by definition of the coproduct, there are two arrows iA : A→ A + B and
iB : B→ A + B such that f = f ◦ pA + f ◦ pB ( f ◦ pA can be seen as the restriction of f to A). Consider
the mapping:

αA,B,C :
{
HomC (A + B,C) −→ HomC×C ((A,B), (C,C))

f 7−→ ( f ◦ pA, f ◦ pB)

Then it is not hard (but quite long) to prove thatαA,B,C defines a natural transformationHomC (− + −,−) →

HomC×C ((−,−),∆(−)).
The unit is:

ηA,B : (A,B) → (A + B, A + B)

and the counit is:

εC : C + C → C

In summary:

Theorem 5.20. + a ∆2 a ×.

Definition 5.21 (Exponential [1]). Let C be a category with finite products, and let B,C be objects of C .
An exponential of B and C is a pair

(
CB, ε

)
where CB is an object in C and ε : CB × B→ C, such that,

for any arrow f : A × B→ C, there exists a unique arrow f c : A→ CB such that the following diagram
commutes:

A A × B

CB CB × B C

f c ff c×idB

ε

The arrow ε is called evaluation; the arrow f c is the (exponential) transpose of f .

Remark 5.22. Let’s consider the category of sets C = Sets.
Let B,C be two sets; their exponential is CB = HomSets (B,C) (note that this is specific to Sets). Let

f : A × B → C be a function. As a function in two variables, f : a, b 7→ f (a, b) can also be seen as a
function f c : a 7→ f (a,−) : b 7→ f (a, b). The operation f c : a 7→ f (a,−) is a function A → CB, it is
called curryfication; however, the operation g, b 7→ g(b) is a function CB,B→ C called evaluation. The
exponential of two sets B and C is the pair

(
CB, ε

)
where CB = HomSets (B,C) and ε is the function:

ε :
{

CB × B −→ C
g, b 7−→ g(b)

Thus, for all f : A × B → C, we have ε ◦ ( f c × idB) (a, b) = ε ( f (a,−), b) = f (a, b). The goal of the
exponential is to generalise these notions of curryfication and evaluation to other categories.

Proposition 5.23. Let C be a category with finite products. We also suppose that XY exists for all objects
X,Y ∈ C .

Let A be an object of C . Let PA and EA be the functors:

PA :


C −→ C
X 7−→ X × A

x : X → X ′ 7−→ x × idA : X × A→ X ′ × A
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EA :


C −→ C
X 7−→ XA

x : X → X ′ 7−→ xA : XA→ X ′A

Then PA a EA.

Proof. We let the reader check that PA and EA actually are functors.
We want to prove that there is a natural isomorphism γ with components:

γX ,Y : HomC

(
X,Y A

)
→ HomC (X × A,Y )

For fixed Y and A, we consider the exponential
(
Y A, εY

)
.

Let f : X × A→ Y ; then by definition of the exponential Y A, there exists a unique f c : X → Y A such
that f = εY ◦ f c × idA. Consequently, there is a bijection:

γX ,Y :
{
HomC

(
X,Y A

)
−→ HomC (X × A,Y )

g 7−→ εY ◦ g × idA

As for the naturality of γ, let x : X → X ′:

HomC
(
X ′,Y A

)
HomC (X ′ × A,Y )

?

HomC
(
X,Y A

)
HomC (X × A,Y )

HomC (x,Y A)

γX′ ,Y

HomC (x×A,Y)

γX ,Y

For f ∈ HomC
(
X ′,Y A

)
, we have:

HomC (x × A,Y ) ◦ γX′,Y ( f ) = HomC (x × A,Y ) ◦ εY ◦ ( f × idA)

= εY ◦ ( f × idA) ◦ (x × idA)

= εY ◦ ( f ◦ x × idA)

γX ,Y ◦ HomC

(
x,Y A

)
( f ) = γX ,Y ( f ◦ x)

= εY ◦ ( f ◦ x × idA)

= HomC (x × A,Y ) ◦ γX′,Y ( f )

Thus the diagram commutes.
As for the naturality in Y , let y : Y → Y ′:

HomC
(
X,Y A

)
HomC (X × A,Y )

?

HomC
(
X,Y ′A

)
HomC (X × A,Y ′)

HomC (X ,yA)

γX ,Y

HomC (X×A,y)

γX ,Y′

Let εY′ be the evaluation that comes with Y ′A. For f ∈ HomC
(
X,Y A

)
, we have:
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HomC (X × A, y) ◦ γX ,Y ( f ) = y ◦ εY ◦ ( f × idA)

γX ,Y′ ◦ HomC

(
X, yA

)
( f ) = γX ,Y′

(
yA ◦ f

)
= εY′ ◦

(
yA ◦ f × idA

)
Consider the following diagram:

X × A

Y A × A Y

?

Y ′A × A Y ′

f c×idA f
yA◦ f c×idA

y◦ f

εY

yA×idA
y

εY′

The following subdiagrams commute:

X × A

Y A × A Y Y ′

f c×idA
f

y◦ f

εY y

X × A

Y A × A Y ′A × A Y ′

f c×idA
yA◦ f c×idA

y◦ f

yA×idA
εY′

We deduce that the following diagram commutes too:

X × A

Y A × A Y A × A

X X

Y Y ′A × A

Y ′

f c×idA f c×idA

y◦ fεY yA×idA

y εY′

which proves the equality:

εY′ ◦
(
yA ◦ f × idA

)
= y ◦ εY ◦ ( f × idA)

⇔ γX ,Y′ ◦ HomC

(
X, yA

)
( f ) = HomC (X × A, y) ◦ γX ,Y ( f )

and thus the naturality of γ in Y .
The inverse natural isomorphism γ−1 is the adjunctor between PA and EA.

Corollary 5.24. The exponential is unique up to isomorphism.

Proof. Consequence of the unicity of the right adjoint up to isomorphism.
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Remark 5.25. In Sets, the two functors PA and EA would be:

PA :


C −→ C
X 7−→ X × A

x : X → X ′ 7−→ x × idA :
{

X × A −→ X ′ × A
e,a 7−→ (x(e),a)

EA :


C −→ C
X 7−→ XA

x : X → X ′ 7−→ xA :
{

XA −→ X ′A

f 7−→ x ◦ f

Remark 5.26. If the category C has all exponentials
(
Y A, εY

)
for all A,Y ∈ ObC , then ε : (εY )Y ∈ObC

is
the counit of the adjunction PA a EA. In fact, using the γ seen in the proof of Proposition 5.23, we have
γEA(Y),Y

(
idEA(Y)

)
= εY ◦

(
idEA(Y), idA

)
= εY .

Definition 5.27 (Initial and terminal object [2]). Let C be a category, and let I,T be objects of C .
The object I is called initial when, for every C ∈ ObC , there is only one arrow I → C. The initial

object is often denoted by 0.
The object T is called terminal when, for every C ∈ ObC , there is only one arrow C → T . The terminal

object is often denoted by 1.

Example 5.28. In Sets, any singleton {a} is a terminal object, because there is only one function A→ {a}
for every set A (the constant function x 7→ a). Besides, the empty set ∅ is the unique initial object; for
set-theoretic reasons, there is only one function ∅ → A (the empty function).
Example 5.29. If (P,6) is a poset, then the initial object is the minimal object min (P) (if it exists) and the
terminal object is the maximum max (P) (if it exists).

Proposition 5.30. 1. Let C be a category with initial object I. The initial object is unique up to unique
isomorphism.

2. Let C be a category with terminal object T . The terminal object is unique up to unique isomorphism.

Proof. [Proof of 1]
Let I and I ′ be two initial objects. Then there is only one arrow I → I, i : I → I ′, i′ : I ′ → I and

I ′ → I ′. We have i′ ◦ i : I → I, but the only arrow I → I is idI so i′ ◦ i = idI . Similarly, we have
i ◦ i′ = idI ′, so i and i′ are isomorphisms between I and I ′.

[Proof of 2]
Same as with the initial objects.

Lemma 5.31. If C has finite products, then C has a terminal object.

Proof. For any finite sequence of objects (Ai)i∈n there is a product
∏

i∈n Ai together with projections
πAi :

∏
i∈n Ai → Ai.

If n = 0, we have an object 1 with no projections, such that for all C ∈ C , there is a unique arrow
!C : C → 1 such that no diagram commutes2.

2In fact I don’t really understand this proof. It comes from [1, p. 47], and is supported by
https://math.stackexchange.com/questions/1991522/terminal-objects-as-nullary-products. I don’t find the proof convincing
because I feel like we can define the product of n objects, for n > 2, or even n = 1. However, n = 0 seems like using the definition
for a borderline case. As everyone seems to agree to this lemma (probably because it can be proven from elsewhere, using other
tools), I mention it.
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Proposition 5.32. Let C be a category.
If C has a terminal object 1, then C � C1 � C × 1.
Dually, if C has an initial object 0, then C + 0 � C.

Proof. For the equivalence C � C × 1, it suffices to show that C is also a product of C and 1. For any
p : P → C, there is a unique arrow !P : P → 1. So, there is a unique arrow u such that the following
diagram commutes:

P

C C 1
p

!Pu

idC

!C

and that u is u = p. So C and C × 1 are both products of C and 1, so they are equivalent.
The same proof, with reverse arrows, yields that C + 0 � C.
As for the exponential, consider the adjunction HomC

(
X,C1) � HomC (X × 1,C) � HomC (X,C). By

Corollary 2.16, we have C � C1.
(Proof without Yoneda? Only by diagam chase? Exponentials are not unique up to iso, apparently.)

Proposition 5.33. Let C be a category and let F : C → Sets. Then there is a natural isomorphism
HomSets (1,F(C)) � F(C), natural in both X and F.

Proof. Recall that in Sets, 1 = {0}.
Let C ∈ C , we define the mapping:

ϕF ,C :
{
HomSets (1,F(C)) −→ F(C)

f 7−→ f (0)

Of course, ϕF ,C is a bijection (isomorphism between sets): y ∈ F(C) then there is exactly one function
f : 1→ F(C) such that f (0) = y.

As for the naturality in C, if c : C → C ′ then we chekc if the following diagram commutes:

C HomSets (1,F(C)) F(C)

{ ?

C ′ HomSets (1,F(C ′)) F(C ′)

c HomSets(1,F(c))

ϕF ,C

F(c)

ϕF ,C′

For f ∈ HomSets (1,F(C)):

F(c) ◦ ϕF ,C( f ) = F(c)( f (0))
ϕF ,C′ ◦ HomC (1,F(c)) ( f ) = ϕF ,C′ (F(c)( f ))

= F(c)( f )(0)
= F(c) ◦ ϕF ,C( f )

hence the naturality in C.
Then, for a fixed C ∈ C , if y : F → F ′ is a natural transformation, we need to check if the following

diagram commutes:
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F HomC (1,F(C)) F(C)

{ ?

F ′ HomC (1,F ′(C)) F ′(C)

α HomC (1,αC )

ϕF ,C

αC

ϕF′ ,C

For f ∈ HomC (1,F(C)), it does:

αC ◦ ϕF ,C( f ) = αC ◦ f (0)
ϕF′,C ◦ HomSets (1, αC) ( f ) = ϕF′,C (αC ◦ f )

= αC ◦ f (0)
= αC ◦ ϕF ,C( f )

Definition 5.34 (Cartesian closed category [2]). The category C is called Cartesian closed whenever the
following three conditions hold:

1. There is a terminal object 1

2. C has finite products

3. For all objects C,D ∈ ObC , the exponential CD exists

Example 5.35. The category Sets is Cartesian closed.
Before introducing more "universal objects", let us study some properties of some morphisms. We

already introduced the notion of an isomorphism, and we saw that in Sets, they were exactly the bijections
(Remark 1.23). Thus, isomorphisms generalise the concept of bijection to other categories. Now, one could
ask: how to generalise the concept of injections and surjections?

Definition 5.36 (Epimorphisms and monomorphisms [1]). Let C be a category and let c : C → C ′ be an
arrow in C .

The arrow c is a monomorphism, or is monic, if, for all f ,g : A→ C, c ◦ f = c ◦ g ⇒ f = g:

A C C ′
f

g

c

The arrow c is an epimorphism, or is epic, if, for all f ,g : C ′→ B, f ◦ c = g ◦ c⇒ f = g:

C C ′ Bc
f

g

Remark 5.37. In Sets, suppose c : C → C ′ is monic. Let x, y ∈ C such that c(x) = c(y). Let fx and fy be
the functions:

fx :
{

1 −→ C
i 7−→ x

and fy :
{

1 −→ C
i 7−→ y

As c is monic, we have c ◦ fx = c ◦ fy ⇒ fx = fy ⇒ x = y.
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Conversely, if c is injective, then for all f ,g : X → C, if c◦ f = c◦g, then for all x ∈ X , c◦ f (x) = c◦g(x)
which by injectivity means f (x) = g(x) and then f = g.

Now, if c : C → C ′ is epic, let χc(C) : C ′ → 2 be the characteristic function of c(C) (the image of
c), and let cste1 : x → 1 be the constant function. We have χc(C) ◦ c = cste1 ◦ c, which by epicity gives
χc(C) = cste1, and thus C ′ = c(C), from which we deduce the surjectivity.

If c : C → C ′ is surjective, let f ,g : C ′→ B such that f ◦ c = g ◦ c. For all y ∈ C ′, there exists an x
such that y = c(x) and f ◦ c(x) = g ◦ c(x) = f (y) = g(y), which gives f = g, and c is epic.

In summary, in Sets, monomorphisms are exactly injective functions, and epimorphisms are exactly
surjective functions.
Remark 5.38. In Sets, monomorphisms are exactly injective functions and epimorphisms are exactly
surjective functions, but this is not necessary in most categories.

In most "structured sets" categories, for example, in Monoids, in Groups, in VectF (category of
vector spaces based on a field F), the monomorphisms are exactly the injective morphisms. However,
the epimorphisms are not exactly the surjective morphisms. For more information, see [1, Section 2.1,
pp30-31].

In a poset category (P,6), every arrow is monic and epic. This is due to the unicity of the arrow between
two objects.

Proposition 5.39. Let f : A→ B and g : B→ A such that g ◦ f = idA. Then f is monic while g is epic.

Proof. Let a,a′ : A′→ A such that f ◦ a = f ◦ a′, then g ◦ f ◦ a = g ◦ f ◦ a′⇒ a = a′, so f is monic.
Let b, b′ : A→ A′ such that b ◦ g = b′ ◦ g, then b ◦ g ◦ f = b′ ◦ g ◦ f ⇒ b = b′, so g is epic.

From Remark 5.37, we deduce that a function in Sets is an isomorphism if and only if it is both monic
and epic. However, the "if and only if" does not hold for most categories (see [1, Section 2.1.1, pp32-33]
for an example). What does hold is the following:

Corollary 5.40. If c : C → C ′ is an isomorphism, then c is both a monomorphism and an epimorphism.

Let us apply it right now with in the following proposition.

Proposition 5.41. Let X and C any categories. Let F,G : X → C be two functors and let α : F → G
be a natural transformation between those two functors.

If for all X ∈ X , αX : F(X) → G(X) is monic (resp. epic), then so is α : F → G.

Proof. Suppose that each X-component is monic. The proof is similar when we are considering epic
components.

Consider β, β′ : H → F such that α ◦ β = α ◦ β′.

H F G ⇔ H(X) F(X) G(X)
β

β′

α
βX

β′X

αX

In terms of components, this means that for all X ∈ X , we have αX ◦ βX = αX ◦ β
′
X . As every

component is monic, this gives βX = β′X , and then β = β
′. Thus, α is monic.

Surprisingly, the converse does not hold in general. In fact, it needs some more properties about the
codomain category.

The digression about epimorphisms and monomorphisms is over now. We can get back to the examples
of objects with universal properties.

Definition 5.42 (Equalisers [1]). Let C be a category, and let f ,g : A→ B be two arrows.
An equaliser of f and g is a pair (E, e) with E ∈ C and e : E → A, such that f ◦ e = g ◦ e and, for

all x : X → A such that f ◦ x = g ◦ x, there exists a unique u : X → E such that the following diagram
commutes:
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X

E A B

xu

e

f

g

Example 5.43. (From [1]).
In Sets, given two functions f ,g : A→ B, their equaliser is (E, e) where E = {x ∈ A | f (x) = g(x)}

and e : E → A is the canonic inclusion.
In a poset category (P,6), there is at most one arrow p→ q. Thus, the equaliser of f ,g : p→ q, with

p = q is
(
p, idp

)
.

Proposition 5.44. The equaliser is unique up to isomorphism.

Proof. Let (E, e) and (E ′, e′) be equalisers of f and g. There exist unique u : E ′ → E and u′ : E → E ′

such that e = u′ ◦ e′ and e′ = u ◦ e, as in the following diagram:

E A B

E ′

e

u′

f

g

e′
u

Thus, we have: e = u′ ◦ e′ = u′ ◦ u ◦ e, which gives the following diagram:

E A B

E

e
f

g

u′◦u◦e
u′◦u idE

By unicity of the arrow E → E which makes the diagram commute, we have u′ ◦ u = idE . A similar
reasoning yields u ◦ u′ = idE .

Proposition 5.45. Let (E, e) be an equaliser of f ,g : A→ B.
Then e is monic.

Proof. Let c, c′ : C → E such that e ◦ c = e ◦ c′.

C

E A B

cc′
e◦c=e◦c′

e

f

g

By definition of an equaliser, we have f ◦ e ◦ c = g ◦ e ◦ c, so there exists a unique u : C → E such that
e ◦ u = e ◦ c = e ◦ c′. By unicity of u, we have u = c = c′, hence e is monic.

Proposition 5.46. Let (E, e) be an equaliser of f ,g : A→ B.
If e is an epimorphism then e is an isomorphism.

Proof. Suppose e is epic. As an equaliser, we have the following diagram:

E A Be
f

g

IMTA-RR-2019-01-SC 45/106



5. Objects with some universality in them

and as an epimorphism, we deduce that f ◦ e = g ◦ e⇒ f = g.
Thus, the identity idA : A→ A verifies f ◦ idA = g◦ idA. Consequently, there exists a unique u : A→ E

such that the following diagram commutes:

E A B

A

e
f

g

idA

u

from which we deduce e ◦ u = idA.
The same occurs with e : E → A:

E A B

A

E

e
f

g

idA

u

e=e◦u◦e
idE

e

We know that e = e◦ idE = e◦(u ◦ e) = (e ◦ u)◦ e = idA◦ e. As an equaliser, e is monic, so u◦ e = idE ;
e is an isomorphism and e−1 = u.

We deduce from this proposition what a monic epimorphism (or an epic monomorphism, or monic/epic)
lacks to be an isomorphism:

Corollary 5.47. Let c : C → C ′ be any arrow.
The arrow c is an isomorphism⇔ c is an epic equaliser.

Take the arrows and reverse them; you get the definition of a coequaliser:

Definition 5.48 (Coequalisers [1]). Let C be a category, and let f ,g : A→ B be two arrows.
A coequaliser of f and g is a pair (Q,q) with Q ∈ C and q : B→ Q, such that q ◦ f = q ◦ f and, for

all x : B → X such that x ◦ f = x ◦ g, there exists a unique u : E → X such that the following diagram
commutes:

A B Q

X

f

g

q

x
u

By duality, the following proposition holds:

Proposition 5.49. The coequaliser is unique up to isomorphism.

Proposition 5.50. Let (Q,q) be a coequaliser of f ,g : A→ B.
Then q is epic.

Proposition 5.51. Let (Q,q) be a coequaliser of f ,g : A→ B.
If q is a monomorphism then q is an isomorphism.

Corollary 5.52. Let c : C → C ′ be any arrow.
The arrow c is an isomorphism⇔ c is a monic coequaliser.
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Example 5.53. In Sets, take f ,g : A→ B. Let R be the relation such that ∀a ∈ A, ( f (a),g(a)) ∈ R, and let
R̄ be the smallest equivalence relation containing R. Consider

(
B/R, b

)
, where B/R is the quotient of B by

the equivalence relation R, and b is the function that sends an element of B to its equivalence class. Then,(
B/R, b

)
is the coequaliser of f and g.

For more details, see [2, Section 9.4.1, pp 278-279].
We finish our presentation of the constructions with some universality in them, with pullbacks, and

their dual, pushouts.

Definition 5.54 (Pullback [1]). Let C be a category. Let f : A→ C and g : B→ C be arrows with same
codomain.

The pullback of f and g is a 3-tuple (A ×C B, pA, pB) such that the following diagram commutes:

A ×C B A

X

B C

pA

pB f

g

and such that, for all (X, xA, xB) such that the following diagram commutes:

X A

X

B C

xA

xB f

g

there is a unique arrow u : X → A ×C B such that xA = pA ◦ u and xB = pB ◦ u, that is, such that the
triangles and squares commute:

P

A ×C B A

B C

xA

xB

u

pA

pB f

g

Example 5.55 (Pullbacks in Sets). In Sets, let f : A→ C and g : B→ C be two functions. Their pullback
(A ×C B, πA, πB) is:

A ×C B = {z ∈ P (P (A ∪ B)) | f ◦ πA(z) = g ◦ πB(z)}

� {(x, y) ∈ A × B | f (x) = g(y)}

with projections πA : A ×C B→ A and πB : A ×C B→ B.
Note that there is the idea of "equalising" two functions. As we will see in a following proposition,

there is a link between equalisers and pullbacks, and the explicit construction is based on this idea.
Consider the special case where f and g are inclusion mappings (that is: functions of the form

f :
{

A −→ C
x 7−→ x

for A ⊂ C and g :
{

B −→ C
x 7−→ x

for B ⊂ C). The pullback of f and g is then:
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A ×C B = { (a, b) ∈ A × B | a = b}

= {(a,a) ∈ A × B}

� {a ∈ A} a ∈ B

= A ∩ B

The intersection of sets consists in a pullback of inclusion mappings in Sets.
Example 5.56 (Pullbacks in a poset). In a poset category (P,6), as there is at most one arrow between two
objects, we don’t need to check that any diagram commutes. In fact, the pullback is exactly the same as a
product; that is, a pullback between p→ q and p′→ q is p ×q p′ = p × p′ = inf(p, p′).

Proposition 5.57. Pullbacks are unique up to isomorphism.

Proof. This proof is similar to the ones for products, coproducts, equalisers, coequalisers.

Let us study some more properties related to pullbacks. For example, pullbacks allow for a different
characterisation of monomorphisms in a category.

Proposition 5.58. Let f : A→ B be an arrow. Then the following propositions are equivalent:

1. f is a monomorphism

2. The pullback of f with itself exists and is (P, p, p′) with p = p′

3. The pullback of f with itself exists and is (A, idA, idA)

Proof. [(1)⇒ (3)] Suppose f is a monomorphism. Then for all c, c′ : C → A such that f ◦ c = f ◦ c′, we
have c = c′.

C A B
c

c′

f

Then consider the triple (A, idA, idA). Consider the following diagram:

Q

A A

X

A B

u

q1

q2
idA

idA f

f

such that f ◦ q1 = f ◦ q2. As f is monic, then q1 = q2 and the unique u is u = q1 = q2 and (A, idA, idA)

is the pullback of A with itself.
[(2)⇒ (1)] Suppose (P, p, p) is the pullback of f with itself. Let Q be as in the following pullback

diagram:
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Q

P A

X

A B

u

q1

q2
p

p f

f

such that f ◦ q1 = f ◦ q2. By definition of a pullback, the unique u verifies: q1 = p ◦ u = q2, hence the
monicity of f .

[(3)⇒ (2)] Obvious.

Proposition 5.59. Consider the following diagram:

A1 B1 C1

X

A2 B2 C2

a

a1

b

b1

c

a2 b2

Suppose that (B1, b1, b) is the pullback of c with b2. Then (A1,a1,a) is the pullback of b with a2 ⇔

(A1, b1 ◦ a1,a) is the pullback of c with b2 ◦ a2.

Suppose the right-hand square is a pullback; then the left-hand square is a pullback if and only if the
whole rectangle is a pullback.

Proof. By diagram chase.

This result proves sometimes to be useful, when some objects are defined in terms of pullbacks. More
properties of pullbacks will come later. For now, let us just focus on the links between pullbacks, equalisers,
products and terminal objects.

Lemma 5.60. Let C be a category with products and equalisers. Let f : A→ C and g : B→ C be arrows.
Let (A × B, πA, πB) be the product of A and B, E ∈ C , e : E → A × B, eA : E → A and eB : E → B,

as in the following diagram.

E

A × B A

B C

eA

eB

e

πA

πB f

g

We suppose that eA = πA ◦ e and eB = πB ◦ e. The rest of the diagram is not supposed to commute
otherwise.
(E, e) is an equaliser of f ◦ πA and g ◦ πB ⇔ (E, eA, eB) is a pullback of f and g.
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Proof. Suppose (E, e) is an equaliser of f ◦ πA and g ◦ πB. Let (P, pA, pB) such that pA : P → A,
pB : P → B and f ◦ pA = g ◦ pB. By definition of the product A × B, there is a unique u : P → A × B
such that the two upper triangles commute:

P

B A × B A

C

pApB
u

g

πAπB

f

Now, we have:

f ◦ pA = g ◦ pB

( f ◦ πA) ◦ u = (g ◦ πB) ◦ u

As (E, e) is an equaliser of f ◦ πA and g ◦ πB, there exists a unique v : P → E such that e ◦ v = u.
Consequently, we have:

e ◦ v = u

πA ◦ e ◦ v = πA ◦ u

eA ◦ v = pA

Similarly, for B, we have eB ◦ v = pB. In summary, for any (P, pA, pB) such that f ◦ pA = g ◦ pB, there
is a unique v : P→ E such that eA ◦ v = pA and eB ◦ v = pB; thence, (E, eA, eB) is a pullback of f and g.

Conversely, suppose (E, eA, eB) is a pullback of f and g; we have: f ◦ eA = g ◦ eB.
By definition of the product A × B, there is a unique u : E → A × B such that the two upper triangles

commute:

E

B A × B A

C

eAeB u

g

πAπB

f

We already have eA = πA ◦ e and eB = πB ◦ e, so that unique u is e.
Let (P, p) be such that p : P→ A× B and f ◦ πA ◦ p = g ◦ πB ◦ p. Such a p induces arrows pA = πA ◦ p

and pB = πB ◦ p; we have:

f ◦ pA = g ◦ pB

As (E, eA, eB) is a pullback of f and g, there is a unique v : P → E such that pA = eA ◦ v and
pB = eB ◦ v.

We deduce:
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pA = eA ◦ v ⇒ πA ◦ p = πA ◦ e ◦ v

pB = eB ◦ v ⇒ πB ◦ p = πB ◦ e ◦ v

which yields:

(πA ◦ p, πB ◦ p) = (πA ◦ e ◦ v, πB ◦ e ◦ v)

(πA, πB) ◦ p = (πA, πB) ◦ e ◦ v

idA×B ◦ p = idA×B ◦ e ◦ v

p = e ◦ v

To be an equaliser, there is one thing missing: f ◦ πA ◦ e = g ◦ πB ◦ e. This can be deduced from:

f ◦ eA = g ◦ eB
f ◦ πA ◦ e = g ◦ πB ◦ e

Corollary 5.61. If a category has finite products and equalisers, then it has pullbacks.

Lemma 5.62. Let C be a category.
If C has pullbacks and a terminal object, then C has finite products.

Proof. Let A,B ∈ ObC . There are unique arrows !A : A→ 1 and !B : B→ 1. Let (A ×1 B, pA, pB) be the
pullback of !A and !B.

Let X be any object and let xA : X → A and xB : X → B be any arrows from X to A and B. By
definition of a terminal object, there is a unique arrow !X : X → 1, so !X is:

!X =!A ◦ xA =!B ◦ xB

Then X qualifies for the existence of a unique u : X → A ×1 B such that the two triangles commute, as
in the following diagram:

X

A ×1 B A

B 1

xA

xB

u

pA

pB !A

!B

Thus, A ×1 B is a product of A and B.

Lemma 5.63. Let C be a category.
If C has pullbacks and finite products, then C has equalisers.

Proof. The proof again consists in finding the right pullback that will be the equaliser. As C has products,
we define B × B. The pullback of (idB, idB) : B→ B × B and ( f ,g) : A→ B × B exists and is such that:
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(idB, idB) ◦ e′ = ( f ,g) ◦ e

(e′, e′) = ( f ◦ e,g ◦ e)

⇒ f ◦ e = g ◦ e

as in the diagram:

X

E A

B B × B

xA

xB
u

e′

e

( f ,g)

(idB ,idB )

The universality of the equaliser comes from that of the pullback.

Finally, the dual notion of a pullback is a pushout:

Definition 5.64 (Pushout [5]). Let C be a category. Let f : A→ B and g : A→ C be arrows with same
domain.

The pushout of f and g is a 3-tuple (B +A C, pB, pC) such that the following diagram commutes:

A B

X

C B +A C

f

g pB

pC

and such that, for all (X, xA, xB) such that the following diagram commutes:

A B

X

C X

f

g xB

xC

there is a unique arrow u : B +A C → X such that xB = pB ◦ u and xC = pC ◦ u, that is, such that the
triangles and squares commute:

A B

C B +A C

X

f

g pB

xBpC

xC

u

The arrows pB : B→ B +A C and pC : C → B +A C are often called the inclusion mappings, just like
in the coproduct.
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Example 5.65 (Pushout in Sets). In Sets, consider the functions f : A→ B and g : A→ C. Then their
pushout B +A C is identified with a subset of B + C; in fact, it is:

B +A C = (B + C) /≡

where ≡ is the smallest equivalence relation on B + C such that for all a ∈ A, f (a) ≡ g(a).
Another interesting special case is the following. In Example 5.55, we defined the intersection A∩ B of

two sets A and B. This intersection comes with trivial inclusion mappings iA :
{

A ∩ B −→ A
x 7−→ x

and

iB :
{

A ∩ B −→ B
x 7−→ x

, so we can compute its pushout.

A ∩ B A

X

B A +A∩B B

iA

iB pA

pB

We have A +A∩B B = (A + B) /≡ where ≡ is the smallest equivalence relation such that for all a ∈ A,
iA(a) ≡ iB(a). In our case, iA(a) = iB(a) = a, so ≡ is simply the equality =. This means that, in the
coproduct, which is a disjoint union in Sets, the pushout doesn’t contain duplicates of the same element a if
a is in both A and B. Thus, the pushout A +A∩B B is simply the union A ∪ B.

The notions of equalisers and pullbacks will appear again in the rest of this course. The other two
(coequalisers and pushouts) are introduced for the sake of completeness (and duality).
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6. Your only colimit is yourself
Products/coproducts, initial/terminal objects, equalisers/coequalisers, pullbacks/pushouts are examples of
the broader notion of limit. There are three ways to introduce limits, as illustrated in [2, Par. 9.2.6, p270].
We choose to introduce the limits using the characterisation with diagrams.

Definition 6.1 (Diagram [6]). Let C ,I be categories. A diagram in C of shape I is a functor I → C .
The category I is called the index category and it is usually (but not always!) small. If I is finite,

then the diagram is said finite.

In the following, the objects of I will be denoted by i, j, k, . . . while the values of the functor I → C
will be denoted by Di,Dj,Dk, . . . .

As explained in Section 1, a functor gives the picture of a category into another. A diagram I → C is
no more than that: just a picture of the category I into the category C , hence the name.

Definition 6.2 (Category of diagrams). Let C ,I be categories. The category of diagrams in C of shape
I is the functor category Func (I ,C ) = C I .

Definition 6.3 (Diagonal functor). Let C ,I be categories.
The diagonal functor ∆ is the functor C → C I such that:

1. For all object C ∈ C , ∆(C) is the diagram:

∆ :


I −→ C
i 7−→ C

i → j 7−→ idC

2. For all arrow c : C → C ′ ∈ C , ∆(c) : ∆(C) → ∆(C ′) is the natural transformation ∆(c) =(
C

c
−→ C ′

)
i∈I

(each component ∆(c)i is a copy of c).

In summary, the functor ∆(C) "collapses" the category I into one element C. For example, if I is the
following five-element category:

0 1 C

2

3 4 C ′

∆(C)

idC

c
∆(c)

∆(C′)

idC′

One can also see ∆(C) as a sequence of copies of C, indexed by the objects of I . Here, the arrows of
I don’t matter, as they always become idC . If I is a category with two objects, then ∆(C) = (C,C). A
better view of the action of ∆(C) is the following diagram:
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0 1 C C

2 C

3 4 C C

∆(C)

where all the arrows in the right diagram are identity arrows.

Definition 6.4 (Colimit). Let C ,I be categories. Let ∆ : C → C I be the diagonal functor and let
D : I → C be a diagram.

The pair (Colim (D), ηD) is the colimit diagram for D when (Colim (D) , ηD) is a universal arrow from
D to ∆.

Remark 6.5. We have Colim (D) ∈ ObC , ηD : D→ ∆ (Colim (D)); that is, ηD is a natural transformation
between the two diagrams D : I → C and ∆ (Colim (D)) : I → C .
Example 6.6. In Sets, a diagram D : I → Sets is a functor that defines a small subcategory inside Sets.
One might say it’s a graph whose nodes are sets and whose arrows are functions such that the composite of
two function is still an arrow in the graph. Note that, for all arrow u : i → j inI , the arrow D(u) : Di → Dj

is a function between sets.
Define X =

⊎
i∈ObI

Di to be the coproduct in Sets of all Di’s. For the sake of clarity, let us explicitly

define this coproduct as:

X =
⊎

i∈ObI

Di = {(i, x) | i ∈ ObI , x ∈ Di }

(You can check that this actually is a coproduct.)
Define the preorder � over X such that: (i, x) � (i′, x ′) iff there exists some u : i → i′ such that

D(u)(x) = x ′. Let ∼ be the equivalence relation generated by this preorder.
Then, the colimit of the diagram D is the quotient set:

Colim (D) = X/∼=
⊎

i∈ObI

Di/∼

The natural transformation ηD is composed of the inclusion maps Di →
⊎

i∈ObI

Di/∼.

Note that the coproduct of two sets corresponds to the special case where card (ObI ) = 2 and there is
no arrow between the two objects, so that the equivalence relation ∼ is only the equality.
Example 6.7. In a poset category (P,6), the diagram D : I → P defines a sub-order, and the colimit of
that diagram, if it exists, is the sup of all Di’s: Colim (D) = sup

i∈ObI

Di.

Remark 6.8. Let (Colim (D) , ηD) be a colimit. By definition, it is a universal arrow from D to ∆, so for all
C ∈ ObC , for all α : D→ ∆(C), there is a unique x : Colim (D) → C such that:

α = ∆(x) ◦ ηD (17)

Note that α : D→ ∆(C) is:

α = (αi : D(i) → ∆(C)(i))i∈I = (αi : Di → C)i∈I

and ηD is:
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ηD = (ηD(i) : Di → ∆ (Colim (D)) (i))i∈I = (ηD(i) : Di → Colim (D))i∈I
Finally, for x : Colim (D) → C, we have ∆(x) = (x : Colim (D) → C)i∈I .
Thus, Equation 17 rewrites:

(αi : Di → C)i∈I = (x : Colim (D) → C)i∈I ◦ (ηD(i) : Di → Colim (D))i∈I

=

(
x ◦

(
Di

ηD (i)
−→ Colim (D)

))
i∈I

Therefore, for all i ∈ I :

Di Colim (D)

C

ηD (i)

αi
x

Besides, as α : D → ∆ (C) and ηD : D → ∆ (Colim (D)) are natural transformations, the following
diagrams commute:

i Di Colim (D)

C

j Dj Colim (D)

C

u

ηD (i)

αi

D(u)

x

∆(Colim(D))(u)

∆(C)(u)

ηD (j)

αj
x

which simplifies to:

i Di

Colim (D)

C

j Dj

u

ηD (i)

αi

D(u) x
ηD (j)

αj

Now, using a more complex starting graph:
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0 D0

2 D2 Colim (D)

1 D1

3 D3 C

4 D4

ηD

x

α

where all triangles commute.
We see some cone-like figures in red and orange, the base of which is the diagram with the Di’s. W call

these figures cocones from D to C. Definition 6.10 makes it more formal.
If follows from the previous remark that:

Proposition 6.9. Let C ,I be categories. Let ∆ : C → C I be the diagonal functor and let D : I → C
be a diagram. Let CD ∈ ObC and ηD : D→ ∆ (CD).

The pair (CD, ηD) is a colimit diagram for D⇔ ∀C ∈ ObC , ∀α : D → ∆(C), ∃!c ∈ HomC (CD,C)
such that ∀i ∈ ObI , αi = c ◦ ηD .

Proof. See Remark 6.8. Otherwise, it follows from the definition of a colimit.

The notion of cocone was introduced in Remark 6.8. Here is the formal definition:

Definition 6.10 (Category of cocones). Let C ,I be categories. Let D : I → C be a diagram.
The category Cocones (D) of cocones from D contains:

Objects: The objects are the natural transformations α : D → ∆(C) =
(
Di

αi
−→ C

)
i∈ObI

for each
C ∈ ObC , called cocones from D to C

Morphisms: Let α :
(
Di

αi
−→ C

)
i∈ObI

and β :
(
Di

βi
−→ C ′

)
i∈ObI

be two cocones. An arrow c : α→ β

is an arrow c : C → C ′ such that the following diagram commutes:

Di C

C ′

αi

βi
c

Identities: An identity morphism is an arrow idC : C → C

Composition: The composition law for morphisms is the composition law for morphisms in C .

Example 6.11. In a poset category, a cocone from D to C exists if and only if C is an upper bound of the
Di’s. Note that the colimit is the least upper bound of the Di’s. This fact is made formal in the following
proposition.

Proposition 6.12. Let C ,I be categories. Let D : I → C be a diagram. Let Cocones (D) be the
category of cocones from D. Let CD ∈ C and ηD : D→ ∆ (CD).
(CD, ηD) is a colimit diagram for D⇔ ηD is an initial object in Cocones (D).
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Proof. Using Proposition 6.9, the proof is easy:

ηD is an initial object in Cocones (D)
⇔∀C ∈ ObC ∀α : D→ ∆(C), ∃!c : ηD → α

⇔∀C ∈ ObC ∀α : D→ ∆(C), ∃!c : CD → C such that ∀i ∈ ObI αi = c ◦ ηD(i)

⇔∀C ∈ ObC ∀α : D→ ∆(C), ∃!c : CD → C such that α = ∆(c) ◦ ηD
⇔(CD, ηD) is a universal arrow from D to ∆
⇔(CD, ηD) is a colimit diagram for D

Corollary 6.13. (CD, ηD) is a colimit diagram for D⇔ ηD is a cocone which is universal: for any cone
α : D→ ∆(C), ∃!c : CD → C such that α = ∆(c) ◦ ηD .

We gave a characterisation of a colimit (CD, ηD) based on some property of ηD . There is also a
characterisation of a colimit based on the object CD .

Lemma 6.14. If 0 is the initial object of C , then the unique arrows iX : 0→ X define the unique natural
transformation i : ∆(0) → IdC .

If 1 is the terminal object of C , then the unique arrows !X : X → 1 define the unique natural
transformation t : IdC → ∆(1).

Proof. Let f : X → Y . We need to check if the following diagram commutes:

∆(0)(X) IdC (X) 0 X

=

∆(0)(Y ) IdC (X) 0 Y

∆(0)( f )

iX

IdC ( f ) id0

iX

f

iY iY

We have f ◦ iX : 0→ Y . By definition of an initial element, there is a unique arrow iY : 0→ Y ; thus,
iY = iY ◦ id0 = f ◦ iX . Besides, this natural transformation i is unique due to the uniqueness of the arrows
iX .

The statement with the terminal objects has a similar proof.

Proposition 6.15. Let C be a category and let T ∈ ObC .
T is terminal in C ⇔ T is the colimit of IdC .

Proof. [Proof of⇒]
Suppose T is terminal in C . By Lemma 6.14, there is a unique natural transformation i : IdC → ∆(T).

This natural transformation is of course a cocone from T to IdC .
Let α : IdC → ∆(C) be a cocone from C to D for some object C ∈ C . We are looking for an x so that

the following diagram commutes:

X T

A

!X

αX
x

If X = T , we have:
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T T

A

!T

αT
x

There is a unique arrow !T : T → T , and !T = idT . Then, we have: αT = x◦!T = x. Consequently,
αT is a morphism of cocones; but if m : A→ 1 is another morphism of cocones, the following diagram
commutes:

T

A

T

idT

αT

m

which gives m = idT ◦ αT = αT = x, hence the unicity of the x. Finally, (T, t) is the colimit of IdC .
[Proof of⇐]
Let (T, η) be the colimit of IdC .
The first step consists in proving that ηT is idT .
For all f : X → Y , the following diagram commutes:

X

T

Y

ηT

f

ηY

In particular, if f = ηX :

X

T

T

ηT

ηT

ηX

As this is true for any X , we conclude that ηT is a morphism of cocones ηT : η→ η. By Proposition 6.12,
η is initial in Cocones (IdC ), so the arrow ηT is ηT = idT .

The second step consists in showing the unicity of some arrow X → T .
Let f : X → L; the following diagram commutes:

IdC (X) ∆(T)(X) X T

X = X

IdC (T) ∆(T)(T) T T

ηX

IdC ( f ) ∆(T )( f )

ηX

f idT

ηT idT

which gives ηX = f , hence the unicity of ηX . Note that η defines one arrow X → T for each X ∈ ObC ;
so, for each X ∈ ObC , there is only one arrow X → T , so T is terminal.
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Proposition 6.16. Let C be a category and let A,B ∈ ObC such that the coproduct (A + B, cA, cB) exists.

Then A + B is the colimit of the diagram D :


2 −→ C
0 7−→ A
1 7−→ B

, where 2 is the category with two objects

0,1 and no morphism between those two.

Proof. Note that for all X ∈ C , the cocone α : D → ∆(X) has only two components αA : A → X and
αB : B → X . Besides, if A + B exists, then there is a unique u : A + B → X such that αA = u ◦ cA
and αB = u ◦ cB; in other words, (A + B, c), where c : D → ∆(A + B) is the natural transformation with
components cA and cB, is the colimit of D.

We now introduce the dual notion of a colimit, namely that of a limit. We will need to introduce cones
(the dual notion of cocones) as well.

Definition 6.17 (Limit). Let C ,I be categories. Let ∆ : C → C I be the diagonal functor and let
D : I → C be a diagram.

The pair (Lim (D), εD) is the limit diagram for D when for all C ∈ ObC , for all α : ∆(C) → D, there is
a unique x : C → Lim (D) such that α = εD ◦ ∆(x).

We say that C has finite limits if every diagram D : I → C with finite index category I has a limit.

Remark 6.18. We have Lim (D) ∈ ObC , εD : ∆ (Lim (D)) → D; that is, εD is a natural transformation
between the two diagrams ∆ (Lim (D)) : I → C and D : I → C .
Example 6.19. As stated in Example 6.6, in Sets, a diagram D : I → Sets is a functor that defines a small
subcategory inside Sets.

The limit of D can be defined explicitly as:

Lim (D) =

{
(si)i∈ObI

∈
∏

i∈ObI

Di

����� ∀u : i → j, D(u)(si) = sj

}
And the natural transformation εD is composed of each projection

∏
i∈ObI

Di → Di.
Again, the product is a special case of limit, when I is the category with only two objects and no arrow

between them, so that the condition ∀u : i → j, D(u)(si) = sj is vacuously true.
Example 6.20. In a poset category (P,6), the diagram D : I → P defines a sub-order, and the limit of that
diagram, if it exists, is the inf of all Di’s: Lim (D) = inf

i∈ObI

Di.

Remark 6.21. Using the same diagram as in the last example in Remark 6.8, and using the duality, a limit
illustrates this way:

D0

D2 C

D1

D3 Lim (D)

D4

α

x

εD

Definition 6.22 (Cone). Let D : I → C be a diagram.
We define the category Cones (D) of cones to D as the following category:

IMTA-RR-2019-01-SC 60/106



6. Your only colimit is yourself

Objects: The objects are the natural transformations α : ∆(C) → D =
(
C

αi
−→ Di

)
i∈ObI

for C ∈ ObC ,
called cones from C to D

Morphisms: Let α :
(
C

αi
−→ Di

)
i∈ObI

and β :
(
C ′

βi
−→ Di

)
i∈ObI

be two cones. An arrow c : α→ β

is an arrow c : C → C ′ such that the following diagram commutes:

Di C

C ′

αi

c
βi

Identities: An identity morphism is an arrow idC : C → C

Composition: The composition law for morphisms is the composition law for morphisms in C .

Remark 6.23. Note that a cocone is from the diagram D to the object C, while a cone is from the object C to
the diagram D.
Example 6.24. In a poset category, a cone from C to D exists if and only if C is a lower bound of the Di’s.
Just like in Example 6.11, note that the limit is the greatest lower bound of the Di’s. This fact is made
formal in Proposition 6.25.

As the dual notion of colimit, we have the dual characterisations of limits:

Proposition 6.25. Let C ,I be categories. Let D : I → C be a diagram. Let Cones (D) be the category
of cones to D. Let CD ∈ C and εD : ∆ (CD) → D.
(CD, εD) is a limit diagram for D⇔ εD is a terminal object in Cones (D).

Proof. Similar to the proof of Proposition 6.12.

Proposition 6.26. Let C be a category and let I ∈ ObC .
I is initial in C ⇔ I is the limit of IdC .

Proof. Similar to the proof of Proposition 6.15.

Remark 6.27. Colimits are the initial objects of the category of cocones (Proposition 6.12), while the
terminal object of a category is the colimit of the identity functor (Proposition 6.15). Dually, limits are the
terminal objects of the category of cones (Proposition 6.25), while the initial object of a category is the
limit of the identity functor (Proposition 6.26). Try not to confuse!

In the following, wemention the other limit diagrams; the proof is essentially the same as Proposition 6.16.

Proposition 6.28. The following constructions are limits:

1. A terminal object in C is the limit of the empty diagram D : ∅ → C , with ∅ as the empty category:

X

1
u

2. A product A × B in C is the limit of the diagram D : C2 → C , with C2 being the index category with
two objects and no arrow between those two:

A X

B A × B

u
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3. A pullback of f : A→ C and g : B → C is the limit of the diagram D : C3 → C , where C3 is the
index category described below:

X

A B

C A ×C B

u

4. An equaliser of f ,g : A→ B is the limit of the diagram D : C4 → C where C4 is the index category
described below:

A X

B E

gf u

The dual statement is also true:

Proposition 6.29. The following constructions are colimits:

1. An initial object in C is the colimit of the empty diagram D : ∅ → C , with ∅ as the empty category:

0

X

u

2. A coproduct A + B in C is the colimit of the diagram D : C2 → C , with C2 being the category with
two objects and no arrow between those two:

A A + B

B X

u

3. A pushout of f : A→ B and g : A→ C is the colimit of the diagram D : C3 → C , where C3 is the
category described below:

A +C B

A

C B X

u
g

f

4. A coequaliser of f ,g : A→ B is the colimit of the diagram D : C4 → C where C4 is the category
described below:
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A Q

B X

f g u

So in fact products, equalisers, terminal objects, pullbacks are special cases of limits (and their duals
are special cases of colimits). Before exploring another link between those constructions, let us give two
other instances of limits and colimits that may be useful in example-building.
Remark 6.30. Consider the category D with only one object (and the identity morphism).

A diagram D : D → C may be identified to the single object D(0) = D0. It is easy to see that D0 is its
own limit and colimit.
Remark 6.31. Consider the category D consisting in two objects and one arrow:

· ·

Consider a diagram D : D → C ; its image will be an arrow D(d) : D1 → D2. What could be the limit
and colimit of this diagram?

Let (P, (p1, p2)) be a cone to D, and suppose D has a limit (Lim (D) , (l1, l2)).

P D1 Q

D2

Lim (D) Colim (D)

p1

p2

D(d)

q1

c1

q2

c2

l1

l2

The limit Lim (D) is such that there is a unique arrow x : P→ Lim (D) such that:

pi = li ◦ x (i = 1,2)
p2 = D(d) ◦ p1

l2 = D(d) ◦ l1

A cone to D defines two arrows p1 : P → D1 and p2 : P → D2 such that p2 = D(d) ◦ p1. So, given
a cone (P, (p1, p2)) to D, there is a unique arrow p1 : P → D1 such that the diagram commutes. In fact,(
D1, (idD1,D(d))

)
is the limit of D.

With the same reasonning, it is easy to see that
(
D2, (D(d), idD2)

)
is the colimit of D.

This is a better way to state this remark (better for memory): considering an arrow A→ B, A is its limit
and B is its colimit. The limit is the domain, and the colimit is the codomain of the arrow.
Remark 6.32. Categories may or may not have all limits or all colimits, maybe for some diagrams and not
others. However, diagrams from the one-object and the two-object categories always have a limit and a
colimit in any category.

There is another, stronger link between products, equalisers, terminal objects and pullbacks. A similar
link exists between their dual counterparts, see Theorem 6.35.

Lemma 6.33. Let C be any category.
If C has finite products and equalisers, then C has finite limits.
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Proof. (The proof written here is a resolution of [2, Exercise 3, Section 2.13, Chapter 9])
We will start the proof with one special case of index category. We then give a hint for a second special

case. Those two proofs generalise to any index category.
Suppose I is any finite category with only one non-identity arrow a : j → k. It will then look like this

category:

∗ ∗ ∗

∗ ∗

∗

∗ ∗ ∗

∗ ∗

Now let D : I → C be any diagram.
As C has finite products, the product

∏
i∈n

Di with arrows πi :
∏
i∈I

Di → Di exists. As C has equalisers,

consider the equaliser (E, e) of D(a) ◦ πj and πk .

E
∏
i∈I

Di Dk
e

D(a)◦πj

πk

Define ε = (ei = πi ◦ e)i∈I . By definition of (E, e), we have:

D(a) ◦ πj ◦ e = πk ◦ e

which proves that ε is a natural transformation ∆ (Lim (D)) → D (there is only one arrow to check).
We now prove that (E, ε) is the limit of the diagram D : I → C . Let α : ∆(C) → D be a cone to D;

we have D(a) ◦ αj = αk .
Consider the function Πα : C →

∏
i∈I

Di such that ∀i ∈ I , πi ◦ Πα = αi. We have:

D(a) ◦ αj = αk

D(a) ◦ πj ◦ Πα = πj ◦ Πα

As (E, e) is an equaliser of D(a) ◦ πj and πj , there exists a unique u : C → E such that e ◦ u = Πα,
from which we infer, for all i ∈ I :

e ◦ u = Πα

πi ◦ e ◦ u = πi ◦ Πα

ei ◦ u = αi
⇒ ε ◦ ∆(u) = α

So (E, ε) is the limit of D.
Now suppose I is any finite category with only two non-identity arrow a0 : j0 → k0 and a1 : j1 → k1.

It will then look like this category:

∗ ∗ ∗

∗ ∗

∗

∗ ∗ ∗

∗ ∗
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Note that no assumption is made about a0 and a1 being distinct; we only suppose that k0 , j1 and
j0 , k1; otherwise they would compose and give birth to a third arrow.

For a diagram D : I → C , we also build the product
∏
i∈I

Di with its projections πi :
∏
i∈I

Di → Di.

We also define the following arrows:

r0 = D(a0) ◦ πj0

r1 = D(a1) ◦ πj1

s0 = πk0

s1 = πk1

r = (r0,r1)

s = (s0, s1)

AsC has equalisers, consider the equaliser (E, e) of r :
∏
i∈I

Di → Dk0×Dk1 and s :
∏
i∈I

Di → Dk0×Dk1 .

The proof is very similar to the previous one. If α : ∆(C) → D is a cone to D, then we define Πα to
be the concatenation of the components of α: ∀i ∈ I , αi = πi ◦ Πα. We check that s ◦ Πα = r ◦ Πα
using the fact that α is a natural transformation. As (E, e) is an equaliser, there exists a unique u : C → E
such that e ◦ u = Πα, and we conclude that ε ◦ ∆(u) = Πα, with ε = (ei = πi ◦ e)i∈I (which is a natural
transformation ∆(E) → D). Finally, (E, ε) is the limit of D.

As the final case, let I be any finite category. Again, C has finite products, so we define
∏
i∈I

Di and its

projections πi. As the set of arrows in I is also finite, we can consider all arrows a : j → k ∈ MorI and
define the product

∏
a:j→k∈MorI

Dk , that is, the product of all codomains of all arrows in I . For b : m→ n,

the projection of index a will be denoted πa :
∏

a:j→k∈MorI
Dk → Dn.

We now define:

r, s :
∏
i∈I

Di →
∏

a:j→k∈MorI

Dk

such that, for all a : j → k ∈ MorI , we have:

πa ◦ r = D(a) ◦ πj = D(a) ◦ πdom a

πa ◦ s = πk = πcod a

Let (E, e) be an equaliser of r and s; the rest of the proof is very similar to the previous two ones.

We can now bring together all the lemmas that we disseminated throughout the last two sections, and
prove:

Theorem 6.34. Let C be any category. The following propositions are equivalent:

1. C has finite products and equalisers

2. C has pullbacks and a terminal object

3. C has finite limits

Proof. (1⇒ 2)
By Corollary 5.61, products and equalisers give pullbacks, while by Lemma 5.31, having all finite

products gives a terminal object.
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(2⇒ 1)
By Lemma 5.62, pullbacks and terminal object give products, while by Lemma 5.63, pullbacks and

products give equalisers.
(1⇒ 3)
By Lemma 6.33, products and equalisers give limits.
(3⇒ 1)
By Proposition 6.28, products and equalisers are special cases of limits.

Of course, the dual theorem is also true:

Theorem 6.35. Let C be any category. The following propositions are equivalent:

1. C has finite coproducts and coequalisers

2. C has pushouts and an initial object

3. C has finite colimits

Note that the theorems we mentionned with limits used any index category, be it small or large. Some
results we proved only for finite limits, but, for example, Proposition 6.34 generalises to any cardinality
(and thus, for any small category):

Theorem 6.36. Let κ be a cardinal and let C be any category.
C has all products of cardinality 6 κ and equalisers⇔ C has all limits of cardinality 6 κ.
In other words, C has all small products and equalisers⇔ C has all small limits.
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7. Limits and adjunctions
We will now study some properties of adjunctions and their behaviour with regards to limits.

We start with a remark. We saw in Theorem 5.20 that + a ∆2 a ×. There is a more general statement,
that we mention but will only give a sketch of proof.

Let C be a category with finite limits, and let I be any finite category. The mappings:

Lim (−) :
{

C I −→ C
D 7−→ Lim (D)

Colim (−) :
{

C I −→ C
D 7−→ Colim (D)

are in fact functors. What is best, is that if ∆I : C → C I is the diagonal functor of shape I , then we
have:

Theorem 7.1. Colim (−) a ∆I a Lim (−)

Sketch of proof. This can be deduced from the definitions of a limit (resp. of a colimit), due to the existence
and unicity of the arrow C → Lim (D) (resp. Colim (D) → C) whenever we have a cone ∆I (C) → D (resp.
a cocone D → ∆I (C)). This gives the bijectivity between HomC I (∆I (C),D) and HomC (C,Lim (D))
(resp. HomC (Colim (D) ,C) and HomC I (D,∆I (C))). We then have to check that this defines a natural
transformation. The (contravariant) naturality inC is easy, due to the definition of ∆I , while the naturality in
D requires a bit more attention not to confuse between cones and a natural transformation δ : D→ D′.

The main question we will tackle in this section is the following. Suppose we have a functor F : C → D .
Does it have an adjoint? How to know if it does or not? And if it does, how to find it?

A first step may be to look at some properties of adjoints.
We deduce from Definition 4.1 and Theorem 3.17 that:

Proposition 7.2. Let U : C → Sets be functors.
U has a left adjoint⇔ for all C ∈ C , HomSets (C,U(−)) has a universal element.

Another interesting property of adjoints is described right after the following definition. Just as some
functors preserve products (see Definition 5.9), some functors preserve limits:

Definition 7.3 (Preserving limits and colimits). Let I be an index category, and let C , D be categories.
We say that the functor F : C → D preserves all limits (resp. small limits; resp. finite limits) when, for

all index category (resp. small index category; resp. finite index category) I , for all diagram D : I → C ,
if the limit (Lim (D) , ηD) exists, then (F (Lim (D)) ,F(ηD)) is the limit of the diagram F ◦ D.

Dually, we say that the functor F : C → D preserves all colimits (resp. small colimits; resp. finite
colimits) when, for all index category (resp. small index category; resp. finite index category) I , for all
diagram D : I → C , if the colimit (Colim (D) , εD) exists, then (F (Colim (D)) ,F (εD)) is the colimit of
the diagram F ◦ D.

Proposition 7.4. Let C be a category with finite limits and let C ∈ ObC .
The covariant Hom-set functor HomC (C,−) preserves all finite limits.

Proof. By Theorem 6.34, it suffices to show that HomC (C,−) preserves finite products and equalisers.
We already know from Proposition 5.10 that HomC (C,−) preserves binary products. For it to preserve

finite products, we need to show that it preserves the terminal object. If T is the terminal object in C then
HomC (C,T) contains only one arrow (the unique arrow C → T in C ). Consequently, HomC (C,T) � 1
(where 1 is the terminal object of Sets) and HomC (C,−) preserves the terminal object.

Now, let (E, e) be the equaliser of f ,g : A→ B. For all z : Z → A such that f ◦ z = g ◦ z, there is a
unique u : Z → E such that the following diagram commutes:
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E A B

Z

e
f

g

u
z

The hom-set functor preserves the diagram (this is a property of functors). We need to check whether
(HomC (C,E) ,HomC (C, e)) is an equaliser of HomC (C, f ) and HomC (C,g). Let h : X → HomC (C, A)
such that HomC (C, f ) ◦ h = HomC (C,g) ◦ h as in the diagram:

HomC (C,E) HomC (C, A) HomC (C,B)

X

HomC (C ,e)
HomC (C , f )

HomC (C ,g)

v?
x

We need to find a v : X → HomC (C,E) such that HomC (C, e) ◦ v = h.
Let x ∈ X . We have h(x) : C → A and:

HomC (C, f ) ◦ h(x) = HomC (C,g) ◦ h(x)

f ◦ (h(x)) = g ◦ (h(x))

So, the equaliser in C applies here: there is a unique u(x) : C → E such that e ◦ (u(x)) = h(x). Define
u to be:

u :
{

X −→ HomC (C,E)
x 7−→ u(x)

Then, by construction, for all x ∈ X , h(x) = e ◦ (u(x)) = (HomC (C, e) ◦ u) (x) and u is unique.
Consequently, (HomC (C,E) ,HomC (C, e)) is still an equaliser.

Corollary 7.5. Representable functors preserve all finite limits.

The dual version of this theorem is the following:

Proposition 7.6. The contravariant Hom-set functor HomC (−,C) sends finite colimits to finite limits.

Proof. We have to show that the contravariant sends the initial object to the terminal object, the coproduct
to the product, and the coequalisers to equalisers.

We have HomC (0,C) � 1 because there is only one arrow 0→ C (definition of an initial object).
Let f : A→ C and g : B→ C be two arrows; by definition of the coproduct A + B, there is a unique

u : A + B→ C such that the following diagram commutes:

A + B

A B

C

u

iA

f

iB

g

This exactly says that there is a bijection (an isomorphism in Sets):

αA,B :
{
HomC (A + B,C) −→ HomC (A,C) × HomC (B,C)

u 7−→ (u ◦ iA,u ◦ iB)
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This isomorphism is natural in A + B:

A HomC (A′ + B,C) HomC (A′,C) × HomC (B,C)

{ ?

A′ HomC (A + B,C) HomC (A,C) × HomC (B,C)

a HomC (a+B,C)

αA′ ,B

HomC (a,C)×HomC (B,C)

αA,B

Let f ∈ HomC (A′ + B,C):

HomC (a,C) × HomC (B,C) ◦ αA′,B( f ) = HomC (a,C) × HomC (B,C) ( f ◦ iA′, f ◦ iB)

= ( f ◦ iA′ ◦ a, f ◦ iB)

αA,B ◦ HomC (a + B,C) ( f ) = αA,B ( f ◦ (a + idB))

= ( f ◦ (a + idB) ◦ iA, f ◦ (a + idB) ◦ iB)

Seeing the coproduct as a colimit, we deduce that the following diagram commutes:

A + B

A B

X X

A′ + B

A′ B

a+idB

iA

a

iB

idB

iA′ iB

(Seeing i = (iA : A→ A + B)A∈C as a natural transformation IdC → IdC + ∆(B))
We have:

(a + idB) ◦ iA = iA′ ◦ a

(a + idB) ◦ iB = iB ◦ idB

⇒( f ◦ (a + idB) ◦ iA, f ◦ (a + idB) ◦ iB) = ( f ◦ iA′ ◦ a, f ◦ iB)

The naturality in B is similar.
Finally, as for seeing that the contravariant Hom-set functor sends coequalisers to equalisers, the proof

is very similar to showing that the covariant Hom-set functor preserves equalisers.

In fact, these theorems are not only true for finite limits, but also for small limits. As there is something
I don’t understand here, because a product of any set of sets could be empty (without the Axiom of Choice)
(but always exists?) , we will trust Awodey [1, Chapter 5, Proposition 5.25, p107] and admit the following
proposition and corollaries:

Proposition 7.7. Let C be a category with small limits and let C ∈ ObC .
The covariant Hom-set functor HomC (C,−) preserves all small limits.

Corollary 7.8. Representable functors preserve all small limits.
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Proposition 7.9. The contravariant Hom-set functor HomC (−,C) sends small colimits to small limits.

Proposition 7.10 (Right Adjoints Preserve Limits [2], [1]). Let (F,U, β) be an adjunction.
Then F preserves colimits and U preserves limits.

This proposition is commonly refered to as the the "RAPL" ("Right Adjoints Preserve Limits").

Proof. Suppose F : C →X , U : X → C and let D : I →X be a diagram with a limit Lim (D).
For C ∈ C , we have:

HomC (C,U (Lim (D))) � HomC (F(C),Lim (D))
� Lim (HomC (F(C),D(−)))

� Lim (HomC (C,U ◦ D(−)))

� HomC (C,Lim (U ◦ D))

The first and third equations are due to the adjunction, while the second and fourth are due to the
preservation of limits by the Hom-set functor (Proposition 7.4). As a consequence of Yoneda Lemma
(Corollary 2.16), we deduce:

U (Lim (D)) � Lim (U ◦ D)

Similarly, if D : I →X has a colimit Colim (D), and for X ∈ X :

HomC (F (Colim (D)) ,X) � HomC (Colim (D) ,U(X))
� Lim (HomC (D(−),U(X)))

� Lim (HomC (F ◦ D(−),X))

� HomC (Colim (F ◦ D) ,X)

Which also gives (by Corollary 2.17):

F (Colim (D)) � Colim (F ◦ D) (18)

Definition 7.11 (Complete category). A category C is said complete (resp. cocomplete) when it has all
small limits (resp. all small colimits).

Example 7.12. The category Sets is complete and cocomplete. Of course Sets has all finite limits (because
it has products, equalisers, a terminal object and pullbacks) and colimits (because it has coproducts,
coequalisers, an initial object and pushouts), but in the rest of this course, we will just admit that Sets has
all small limits and colimits.

Definition 7.13 (Continuous functor). A functor F : C → D is called continuous (resp. cocontinuous) if
it preserves all small limits (resp. all small colimits).

Example 7.14. The covariant Hom-set functor is continuous but not cocontinuous.
We now move towards the next important theorem: the adjoint functor theorem. There are a few details

to expand before.

Definition 7.15 (Weakly initial [6]). Let C be any category.
A set C∗ = {Ci ∈ ObC | i ∈ I} of objects in C is a weakly initial set when for all C ∈ C , there is an

i ∈ I such that there is an arrow Ci → C.
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"There exists a set of objects that connects to any other object of the category" or "there is a (non-
necessarily connected) subgraph that is connected to the rest of the category", or "there is some weakly
initial subset of objects".

Lemma 7.16 ([6], [1]). Let C be a locally small, complete category.
C has an initial object⇔ There is a weakly initial set of objects in C

Proof. If C has an initial object, then any set containing that initial object is weakly initial.
Suppose that (Ci)i∈I is a weakly initial set in C .
Consider the category CI defined by:

Objects: The objects of CI are the Ci for i ∈ I

Morphisms: If c ∈ MorC is an arrow Ci → Cj for i, j ∈ I, then c ∈ CI

Identities: An identity morphism of an object Ci is an identity morphism idCi ∈ C

Composition: The composition law for morphisms is the usual composition in C

It is easy to see that CI is a small subcategory of C . Then, the inclusion mapping:

F :


CI −→ C
C 7−→ C
c 7−→ c

is a functor; or rather, as CI is small, F is a small diagram. As C is complete, it has a limit Lim (F).
We now show that Lim (F) is initial. Clearly, for all C ∈ C , there is an arrow ci : Ci → C. As Lim (F)

is the limit of F, there is also an arrow ηi : Lim (F) → Ci , so for all C ∈ C , there is an arrow: Lim (F) → C,
but this arrow is not necessarily unique.

Let f ,g : Lim (F) → C be two arrows, and let (E, e) be an equaliser of f and g. There is an i ∈ I such
that:

E Lim (F) C

Ci

Lim (F)

e
f

gci

idLim(F )

ηi

Besides, by unicity of the arrow Lim (F) → Lim (F), we deduce that:

e ◦ ci ◦ ηi = idLim(F)

which gives:

f = f ◦ e ◦ ci ◦ ηi
= g ◦ e ◦ ci ◦ ηi
= g

using the fact that f ◦ e = g ◦ e.
Consequently, there is a unique arrow Lim (F) → C for any C ∈ C ; so Lim (F) is an initial object.

Definition 7.17 (Comma-category). Let F : C →X and G : D →X be two functors.
The comma-category (F | G) is the category described below:
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Objects: The objects of (F | G) are triples (C, f ,D) such that f : F(C) → G(D), C ∈ C and D ∈ D

Morphisms: A morphism (C, f ,D) → (C ′, f ′,D′) is a pair (c, d) such that c : C → C ′, d : D → D′

and the following square commutes:

F(C) F(C ′)

X

G(D) G(D′)

F(c)

f f ′

G(d)

Identities: The identity morphism of an object (C, f ,D) is the pair (idC, idD)

Composition: The composition law formorphisms is the usual composition (c, d)◦(c′, d ′) = (c◦c′, d◦d ′)

If F is the diagonal functor ∆(C) for some C ∈ C , then the comma-category is written (C | G) and
simplifies to:

Objects: The objects of (C | G) are pairs (D, f ) such that f : C → G(D) and D ∈ D

Morphisms: A morphism (D, f ) → (D′, f ′) is an arrow d : D → D′ such that the following square
commutes:

G(D)

F(C)

G(D′)

G(d)

h

h′

Identities: The identity morphism of an object (D, f ) is an identity arrow idD

Composition: The composition law for morphisms is the usual composition in D

Now, we consider the comma-category (C | U) where U : X → C and C ∈ C .

Lemma 7.18. Let (C | U) where U : X → C and C ∈ C .
If X is locally small, then the comma-category (C | U) is also locally small.

Proof. Just note that, for any X,X ′ ∈ X , HomC (X,X ′) is a set. Also, note that HomC ((X, f ) , (X ′, f ′)) ⊂
HomC (X,X ′).

Lemma 7.19. Let (C | U) where U : X → C and C ∈ C .
If X is complete and U preserves small limits, then (C | U) is also complete.

Proof. It is easy to check that, due to the preservation of limits by U, the comma-category (C | U) has
products and equalisers.

J’ai la flemme

Lemma 7.20. Let (C | U) where U : X → C and C ∈ C .
The universal arrows from C to U are the initial objects of (C | U).

Proof. Let us recall the definition of a universal arrow from C to U: it is a pair
(
U#
C, ηC

)
such that:
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� U#
C ∈ X and ηC : C → U

(
U#
C

)
� for all X ∈ X , for all c : C → U(X), there is a unique x : U#

C → X such that c = U(x) ◦ ηC

An initial object in (C | U) is a pair (I, i) where I ∈ X and i : C → U(I) such that for all object
(X, c) ∈ (C | U), there is a unique arrow x such that the following triangle commutes:

U(I)

C

U(X)

U(x)

i

c

Both definitions are equivalent, hence the result.

Lemma 7.21. Let U : X → C .
U has a left adjoint⇔ for each C ∈ C , the comma-category (C | U) has an initial object.

Proof. Combine the previous lemma (Lemma 7.20) and Definition 4.1.

We can finally prove the following version of the Adjoint Functor Theorem, as it appears in [1]:

Theorem 7.22 (Adjoint Functor Theorem - Awodey version [1]). Let X be locally small and complete.
Let C be any category and let U : X → C be a continuous functor.

U has a left adjoint⇔ for each object C ∈ C , the comma-category (C | U) has a weakly initial set.

Proof. By Lemma 7.21, U has a left adjoint iff for each C ∈ C , the comma-category (C | U) has an initial
object. As X is locally small and complete, by Lemma 7.16, for each C ∈ C , the comma-category (C | U)
has an initial object iff for each object C ∈ C , the comma-category (C | U) has a weakly initial set.

The following variant is also called Adjoint Functor Theorem:

Theorem 7.23 (Adjoint Functor Theorem - Leinster version [6]). Let X be locally small and complete. Let
C be any category and let U : X → C be a functor such that for each object X ∈ X , the comma-category
(X | U) has a weakly initial set.

U has a left adjoint⇔ U preserves limits.

Proof. [Proof of⇒]
Direct consequence of Proposition 7.10.
[Proof of⇐]
By Lemma 7.18, X is locally small, so is (X | U). By Lemma 7.19, as U preserves limits and as X is

complete, (X | U) is complete. We can then use Lemma 7.16: for each object X ∈ X , (X | U) has a weakly
initial set, so for all X ∈ ObX , (X | U) has an initial object. By Lemma 7.21, U has a left adjoint.

Note that if the category X is small (instead of only locally small) then the condition on the weakly
initial set is useless. We then have the following corollary:

Corollary 7.24. Let X be small (not only locally small) and complete. Let U : X → Sets be a functor.
The following propositions are equivalent:

1. U is continuous

2. U has a left adjoint

3. U is representable
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Proof. The equivalence 1⇔ 2 is obvious.
The proof of 3⇔ 1 is easy: if U is representable, then U � HomC (CU,−) for some CU ∈ C ; and

HomC (CU,−) is continuous (Proposition 7.4).
Je ne vois pas pour 1 ou 2 implique 3...

Remark 7.25. A word on forgetful functors: See Awodey, p243-245 for an exaplanation, and Mac Lane,
chapter V, for a proof.

The following remark is beyond the scope of this course, so we will not go into the technical details.
Chercher comment Cori et Lascar définissent les langages en théorie des modèles
An important application of the Adjoint functor theorem is the following:
If T is a finite theory, with T −Models being the category of the models of T and homomorphisms

between them (in the model-theoretic sense), then the forgetful functor T −Models → Sets has a left
adjoint.

This is powerful because it means that we can, in a sense, add some structure to a Set in order to make it
a group or a ring (not exactly because axiom of choice)

If U : T −Models→ Sets is the forgetful functor, then there is an adjoint F : Sets→ T −Models such
that, for all S ∈ Sets, for all M ∈ T −Models, we have:

HomT−Models (F(S),M) � HomSets (S,U(M))

The adjoint of U is called the free functor. In short, the free functor F : Sets → T −Models is the
functor that maps a set S to a structure "generated" by that set S (for example, if T is the theory of vector
spaces, then the free functor F will consider that a given set S is a basis, and will build a vector space using
this basis).

See MacLane Chapter IV, pp87-88 for a list of adjoints, some of them being between forgetful and free
functors.

According to nLab: A general way to construct free functors is with a transfinite construction of free
algebras (in set-theoretic foundations), or with an inductive type or higher inductive type (in type-theoretic
foundations).
Remark 7.26. Consider two categories SetsC and D , and a functor L : SetsC → D . Suppose we want to
find R : D → SetsC the right adjoint of L (we suppose that such an adjoint exists). We will study the
behaviour of R on objects and arrows.

Let D ∈ D ; we have R(D) ∈ SetsC : it is a contravariant functor R(D) : C → Sets. By Yoneda Lemma,
for some C ∈ C , we have:

R(D)(C) � Nat (HomC (C,−) ,R(D))

� Nat (L (HomC (C,−)) ,D)

where the second equation is the definition of an adjunction. The simplest choice of R(D) should be:

R(D) = Nat (L (HomC (−,−)) ,D) (19)
So we have the behaviour of R(D) on objects. On arrows c : C → C ′, we suppose that R(D) is a functor

C → Sets; so, by Yoneda lemma, the following diagram should commute:

C R(D)(C) Nat (HomC (C,−) ,R(D))

{ X

C ′ R(D)(C ′) Nat (HomC (C ′,−) ,R(D))

c R(D)(c)

θR(D),C

Nat(HomC (c,−),R(D))

θR(D),C′

ξR(D),C′
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where ξR(D),C is the Yoneda isomorphism Nat (HomC (C,−) ,R(D)) → R(D)(C) and θR(D),C is its
inverse (cf. Definitions 2.3 and 2.4).

We deduce a (brutal) formula for R(D)(c):

R(D)(c) = ξR(D),C′ ◦ Nat (HomC (c,−) ,R(D)) ◦ θR(D),C

Finally, we want the behaviour of R(d). For C ∈ C , we have:

R(d)(D) = Nat (L (HomC (C,−)) ,d)

So we have now described the functor R : D → SetsC in terms of functors and natural transformations
whose expression we know.

In the same vein of the Adjoint Functor Theorem, the following proposition is sometimes useful when
we have to prove that some functor has a right adjoint.

In the special case where we only have finite limits, we have the converse to Proposition 5.23 (exponential
is right adjoint to product).

Proposition 7.27. Let C be a category with all finite limits, and C ∈ C .
Let PC be the functor:

PC :


C −→ C
X 7−→ X × C

x : X → X ′ 7−→ x × idC : X × C → X ′ × C

Then, there exists a right adjoint EC to PC ⇔ for all A, the exponential AC exists.

Proof. The proof falls beyond the scope of this course. See [2, Chapter 13, Section 13.3, Exercise 5, p359]
for an exercise that will guide you into the proof of⇒.

Note that Proposition 5.23 is exactly⇐.

This proposition will be useful later in order to prove that some functor in a category with finite limits,
has a right adjoint.
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8. Sets-like categories
Besides adjoints, elementary topoi (plural of "topos" in Greek) are the second big part of this course.
Before exploring this notion, we have to introduce some amount of notions around the following theme:
introduction of set-like elements in categories.

We start with the categorical equivalent of a subset.
In Sets, when X ⊂ Y , if x : X → Y is the inclusion, then (X, x) is an equaliser, and x is a monomorphism.
In several categories based on sets (for example, the category of groups, the category of graphs, the

category of rings; of "sets with structure"), when we have X ⊂ Y , if x : X → Y is a monic inclusion (that is,
"an inclusion that respects the structure"), then x(X) is a sub-"set with structure" (for example, a subgroup,
a subgraph, a subring...) of Y .

Definition 8.1 (Category of subobjects). Let C be a category and let C be an object of C .
The category of subobjects of C, denoted by SubObjC (C) is the following category:

Objects: A subobject of C is a monomorphism m : M → C

Morphisms: A morphism between subobjects m : M → C and m′ : M ′→ C is an arrow f : M → M ′

such that the following diagram commutes:

M

C

M ′

f

m

m′

Identities: The identity morphism m : M → C is the identity morphism idM : M → M

Composition: The composition law for morphisms is the usual composition of morphisms in the
category C

Example 8.2. Consider R the set of real numbers; let’s study SubObjSets (R).
The subobjects of R are any injections x : X → R. Consequently, the subobjects of R are not only the

(inclusions of) subsets of R but also any injection from X to R where card (X) 6 card (R).
Note that if card (X) 6 card (R), then there are card

(
RX

)
injections from X → R, and each injection is

a different subobject. As the collection of all sets with a certain cardinality is large (not a set) we deduce
that SubObjSets (R) is a large category (but locally small, according to the next proposition).

Proposition 8.3. Let C be a category and let C be an object of C . The category SubObjC (C) is a
preorder.

Proof. As any two subobjects m : M → C and m′ : M ′→ C are monic, there is at most one arrow f such
that m′ ◦ f = m. A category where there is at most one arrow is a preorder.

Definition 8.4 (Inclusion and equivalence of subobjects). Let SubObjC (C) be a category of subobjects.
For m,m′ ∈ SubObjC (C), we define the inclusion relation as: m ⊂ m′ ⇔ there exists some arrow

f : m→ m.
If m ⊂ m′ and m′ ⊂ m, then we say that m and m′ are equivalent and we write m ≡ m′.

Proposition 8.5. For m,m′ ∈ SubObjC (C), m ≡ m′⇔ m � m′.
In other words: two subobjects of C are equivalent iff they are isomorphic.
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Proof. Suppose m ≡ m′; then there are two arrows f : M → M ′ and f ′ : M ′→ M such that the following
diagram commutes:

M

M ′ C

M

f m

m′

f ′
m

There are two arrows f ′ ◦ f , idM : M → M; as SubObjC (C) is a preorder, there is at most one arrow
between two subobjects, so f ◦ f ′ = idM . Similarly, f ′ ◦ f = idM′, so f ′ = f −1 and m � m′.

If m � m′, then let f : m → m′ be an isomorphism; we deduce that m ⊂ m′. Also, f −1 is an
isomorphism, so m′ ⊂ m, and m ≡ m′.

Corollary 8.6. Equivalent subobjects have isomorphic domains.

Remark 8.7. If (E, e) is the equaliser of f ,g : A→ B, then E is a subobject of A (cf. Proposition 5.45).
Remark 8.8. In SubObjSets (R), take x : X → R and x ′ : X ′ → R. If x ≡ x ′, then there is a bijection
between both; equivalently, card (X) = card (X ′). Consequently, the equivalence classes of the subobjects
of R are the cardinals κ 6 card (R). If you consider a category Sets with the Continuum Hypothesis, then
κ ∈ N ∪

{
ℵ0,2ℵ0

}
.

If Sets respects the axiom of choice, then this is true for any set: the equivalence classes of the subobjects
of a set X are the cardinals κ 6 card (X).

Proposition 8.9. Let C be a category. Let c : C → C ′ be an arrow, and let m′ : M ′→ C ′ be a subobject
of C ′.

Suppose that the following diagram is a pullback:

M M ′

X

C C ′

k

m m′

c

Then m : M → C is also a subobject of C.
In other words: the pullback of a subobject is a subobject (or more generally: the pullback of a

monomorphism is a monomorphism).

Proof. Suppose there are two arrows z, z′ : Z → M such that m ◦ z = m ◦ z′.

Z

M M ′

X

C C ′

m◦z

k◦z
z

z′ k

m m′

c
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As (M,m, k) is a pullback, we have c ◦ m = m′ ◦ k, which yields:

c ◦ m ◦ z = m′ ◦ k ◦ z

= m′ ◦ k ◦ z′

= c ◦ m ◦ z′

By the universality of the pullback, the arrow z : Z → M is unique, so z = z′. Thus, m is monic.

Proposition 8.10. Let C be a category. Let c : C → C ′ be an arrow, let m′ : M ′→ C ′ and m′0 : M ′0 → C ′

be subobjects of C ′.
Suppose that the two following squares are pullbacks:

M M ′ M0 M ′0

X X

C C ′ C C ′

k

m m′

k0

m0 m′0

c c

(20)

If m′ ≡ m′0, then m ≡ m0.

Proof. Let f ′0 be the isomorphism f ′0 : m′0 → m′. Consider the following diagram:

M0 M ′0

M M ′

X

C C ′

m0

f ′0 ◦k0

k0

f ′0

k

m m′

c

As f ′0 : m′0 → m′ is an isomorphism between subobjects, we have m′ ◦ f ′0 = m′0. We then deduce from
the diagrams 20 that:

c ◦ m0 = m′0 ◦ k0 = m′ ◦ f ′0 ◦ k0

As M is the pullback of c and m′, there is a unique arrow u : M0 → M such that k ◦ u = f ′0 ◦ k0 and
m ◦ u = m0. With the same reasonning, we have a unique u′ : M → M0 such that k0 ◦ u = f ′−1

0 ◦ k and
m0 ◦ u = m′. We then have to prove that u′ = u−1; this is because there is a unique arrow idM : M → M
such that the diagram commutes; from which we deduce u ◦ u′ = idM and u′ ◦ u = idM′.

As stated in Remark 8.8, in Sets, subobjects can be grouped into equivalence classes, the representative
of a given equivalence class being the cardinal of the subobjects. The collection of cardinals lower than a
certain other cardinal is a set, while the collection of all subobjects generally is not. This is then easier, and
more practical, not to refer to the collection of all subobjects SubObjX (Sets), but rather, to the set of the
equivalence classes of the subobjects:
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Definition 8.11 (Set of subobjects). Let C be a category.
For C ∈ ObC , we define SubObjC (C) to be the set of all equivalence classes3of subobjects of C; more

explicitly:

SubObjC (C) = ObSubObjC (C )/≡

where ≡ is the equivalence of subobjects (Definition 8.4).

In the rest of this course, we will refer to equivalence classes of subobjects, instead of bare subobjects.
So, a set of subobjects is to be understood as the set of equivalence classes of subobjects.
Remark 8.12. As noticed in Proposition 8.10, the pullbacks of equivalent subobjects are equivalent. So, in
a category with pullbacks, given an arrow c : C → C ′, for any subobject m′ : M ′ → C ′ of C ′, there is a
subobject m : M → C of C such that the following square is a pullback:

M M ′

X

C C ′

k

m m′

c

For an arrow c : C → C ′, there is some function that sends any subobject ofC ′ to one subobject ofC in a
way that gives the above pullback. This function is denoted as SubObjC (c) : SubObjC (C ′) → SubObjC (C)
(beware of the inversion!).

Definition 8.13 (Subobject functor). Let C be a category with pullbacks.
The subobject functor SubObjC (simply written SubObj when there is no doubt about the category) is

the contravariant functor:

SubObjC :


C −→ Sets
C 7−→ SubObjC (C)

c : C → C ′ 7−→ SubObjC (c)
where SubObjC (C) is the set of subobjects (Definition 8.11) and SubObjC (c) : SubObjC (C ′) →

SubObjC (C) is the function introduced in Remark 8.12.

We now generalise the notion of characteristic function with the following definition.

Definition 8.14 (Subobject classifier). Let C be a category with all finite limits.
A subobject classifier in C is a pair (Ω, t) where Ω ∈ ObC and t : 1→ Ω such that, for all C ∈ C , and

for any m : M → C subobject of C, there is a unique arrow u : C → Ω such that the following diagram is a
pullback:

M 1

X

C Ω

m t

u

The arrow u : C → Ω is called the classifying arrow for m and is generally written χM .

3In fact, an equivalence class in this case, might not be a set. For example, in Sets, the collection of all subobjects of R of
cardinality ℵ0 is not a set. As a consequence, the collection of equivalence classes is not a set, as a set can only contain sets, at
least in the set-theoretic sense (hereditarily: sets contain sets that contain sets and so on; there should not be any proper class in
between). However, each representative is a cardinal, and there is only a set of cardinals below some cardinal. It is then more
correct to refer to SubObjC (C) as the set of representatives.
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In a sense, the subobject classifier is a "universal subobject".

Proposition 8.15. Let C be a category with a subobject classifier (Ω, t).
The subobject classifier is unique up to isomorphism.

Proof. Let (Ω, t) and (Ω′, t ′) be two subobjects classifiers.
Note that an arrow 1→ X is necessarily monic (since there is only one arrow to the terminal object).

So, t : 1→ Ω is a subobject of Ω. By definition of a subobject classifier, there exist unique χ1 : Ω→ Ω′
and χ′1 : Ω′→ Ω such that following diagram commutes:

1 1 1

X X

Ω Ω′ Ω

id1

t t′

id1

t

χ1 χ′1

As there is a unique arrow Ω→ Ω, which already is idΩ (same for Ω′), we deduce that χ′1 = χ1
−1.

Example 8.16. What could the subobject classifier be in Sets? For now, let us justify the notation χM .
Suppose the simplest case. Consider a set X , a subset of Y (an actual subset, not only a subobject), and

its canonical inclusion morphism i : Y → X .
The terminal object in Sets is any one-element set; take the set-theoretic 1 = {0}. Besides, there is a

unique arrow !Y : Y → 1. We are looking for Ω and t : 1→ Ω. Let’s be explicit: !Y and t are the functions:

!Y :
{

Y −→ 1
y 7−→ 0 t :

{
1 −→ Ω

0 7−→ ω

where ω is some element in Ω.
As a subobject classifier, the following square is a pullback:

Y 1

X

X Ω

!Y

i t

u

Let us observe the diagram in explicit terms. The function u is such that, for all y ∈ Y :

u ◦ i(y) = t◦!Y (y)
u(y) = t(0)
u(y) = ω

That is, for each y ∈ Y , the function u gives the same constant ω.
Now take another subset Z ⊂ X with its inclusion mapping i′ : Z → X and its terminal arrow

!Z : Z → 1. We also suppose that u ◦ i′ = t◦!Z . As Y is a pullback, there is a unique e : Z → Y such that
the following diagram commutes:
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Z

Y 1

X

X Ω

i′

!Ze

!Y

i t

u

For all z ∈ Z , we have:

i′(z) = i ◦ e(z)

z = e(z)

so e does not "alter" z; it is an inclusion mapping: Z ⊂ Y . So, for all Z ⊂ X such that, for all z ∈ Z ,
we have u(z) = ω, we deduce that Z ⊂ Y . Such a behaviour indicates that u should be the characteristic
function χY of Y , Ω = 2 = {0,1} and t : 0 7→ 1 (the constant function that assigns 1 to its unique element
0).

In fact, we can check that (2,0 7→ 1) is the subobject classifier of Sets. In fact, the subobject classifier is
designed to generate classifying arrows, which are the categorical generalisation of characteristic functions.
Proposition 8.17. Let C be a category with all finite limits.

C has a subobject classifier (Ω, t) ⇔ the subobject functor SubObjC is representable.

Proof. By definition of a subobject classifier, for all C, for all m : M → C ∈ SubObjC (C) subobject of C,
there is a unique arrow χM : C → Ω such that the following diagram is a pullback:

M 1

X

C Ω

!M

m t

χM

By definition of the subobject functor, m = SubObj(χM )(t). By Proposition 3.4, (Ω, t) is a universal
element of SubObj, and by Theorem 3.17,

(
Ω, θSubObj,Ω(t)

)
is a representation of SubObj.

Corollary 8.18. If the subobject functor SubObjC is representable, then its universal element is (Ω, t).

Corollary 8.19. SubObjC (−) � HomC (−,Ω).

We finish the section with the notion of a power object.
Definition 8.20 (Power object). Let C be a category with finite limits. Let C ∈ C .

The power object of C is a pair (P (C) , p) where P (C) is an object of C and p : εC → C × P (C) is
a subobject of C × P (C), such that, for all D ∈ C , for all subobject h : E → C × D of C × D, there is a
unique u : D→ P (C) such that the following diagram is a pullback:

E εC

X

C × D C × P (C)

e

h p

idC×u
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Remark 8.21. In terms of sets, the power object P (C) is the powerset of C (the set of all subsets of C).
The object D is interpreted to be a family of subsets of C (a subset of P (C)). The interpretation of
p : εC → C × P (C) will come later.

Proposition 8.22. Let C be a category with finite limits. Let C ∈ C .
The power object of C is unique up to isomorphism.

Proof. Let (P (C) , p) and (P′, p′) be two power objects of C.

εC ε ′C εC ε ′C

X X X

C × P (C) C × P′ C × P (C) C × P′

p p′ p p′

idC×u′

idC×idP(C)

idC×u

idC×idP′

idC×u′

Considering the unicity of u, u′, idP(C) and idP′, and noticing that each adjacent two pullbacks are
pullbacks, we have u′ = u−1.

Proposition 8.23. Let C be a category with finite limits. Let C ∈ C with a power object P (C).
For all X ∈ C , HomC (X,P (C)) � SubObjC (X × C) naturally in X .

Proof. By definition of a power object, there is a bijection ϕX : HomC (X,P (C)) → SubObjC (X × C).
Let x : X → X ′ be an arrow; we check wether the following diagram commutes:

X HomC (X ′,P (C)) SubObjC (X ′ × C)

{ ?

X ′ HomC (X,P (C)) SubObjC (X × C)

HomC (x,P(C))

ϕX′

SubObjC (x×C)

ϕX

We want:

SubObjC (x × C) ◦ ϕX′ = ϕX ◦ HomC (x,P (C))

Let u : X ′→ P (C); there is a unique subobject h′ : E ′→ C × X ′ such that the following is a pullback:

E ′ εC

X

C × X ′ C × P (C)

h′ p

idC×u

Besides, SubObjC (x × C)(h′) is defined as the unique h that makes the following diagram a pullback:

E E ′

X

C × X C × X ′

h h′

idC×x

(21)
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We deduce:

SubObjC (x × C) ◦ ϕX′(u) = SubObjC (x × C)(h′)

= h

Then:

ϕX ◦ HomC (x,P (C)) (u) = ϕX(u ◦ x) = h′′

where h′′ is the unique arrow such that the following diagram is a pullback:

E ′′ εC

X

C × X C × P (C)

h′′ p

idC×(u◦x)

(22)

Note that the above diagram decomposes into this:

E ′′ E ′ εC

X X

C × X C × X ′ C × P (C)

h′′ h′ p

idC×x idC×u

(The arrow E ′′→ E ′ can be obtained knowing that the right square is a pullback.)
By Proposition 5.59, if the right square E ′εC(C × P (C))(C × X ′) and the outer rectangle E ′′εC(C ×

P (C))(C × X) are pullbacks, then the left square E ′′E ′(C × X ′)(C × X) is also a pullback; by unicity of h′′

(from Diagram 22) and h (from Diagram 21), we deduce that h = h′′, which let us conclude:

h = h′′

SubObjC (x × C) ◦ ϕX′(u) = ϕX ◦ HomC (x,P (C)) (u)

In Sets, we know that P (X) � 2X (because each characteristic function X → 2 defines a subset of X
and conversely). There is a similar result with the categorical equivalents of a subobject classifier and the
power object.

Proposition 8.24. Let C be a category with finite limits and with a subobject classifier (Ω, t). Let C ∈ C .
Then, P (C) � ΩC .

Proof. By Proposition 8.23, we have:

HomC (−,P (C)) � SubObjC (− × C)

By Corollary 8.18:

SubObjC (−) � HomC (−,Ω)

By Theorem 5.23:
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HomC (− × C,−) � HomC

(
−, (−)C

)
Combining those three results:

HomC (−,P (C)) � SubObjC (− × C)

� HomC (− × C,Ω)

� HomC

(
−,ΩC

)
By Corollary 2.17, we deduce that P (C) � ΩC .

Corollary 8.25. If a category has all power objects, then P (1) is the subobject classifier.

Proof. Just write the definition of the power object of 1.
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9. Elementary topoi
We can now introduce topoi. We will first see the general notion of elementary topoi (which we will simply
call topoi) and we will then study the notion of a Grothendieck topos.

Definition 9.1 (Elementary topos (1) [1]). An elementary topos (or topos for short) is a category E that
has finite limits, all exponentials, and a subobject classifier.

Definition 9.2 (Elementary topos (2) [2]). An elementary topos (or topos for short) is a category E that is
cartesian closed, has finite limits, and a representable subobject functor.

Definition 9.3 (Elementary topos (3) [7]). An elementary topos (or topos for short) is a category E that
has finite limits and such that every object has a power object.

Of course:

Proposition 9.4. The three definitions of a topos are equivalent.

In fact, it is easy to see that (2)⇔ (1)⇒ (3); however (3)⇒ (1) requires some more work. Let us just
admit this proposition.
Example 9.5. As we have seen through this course, Sets has finite limits, all exponentials, a subobject
classifier, every set has a powerset: Sets is an elementary topos. In fact, topoi are thought as categories that
"roughly" behave like Sets.

As a first property of elementary topoi, we give the following theorem, but will not prove it as it is far
from the scope of this course.

Proposition 9.6. A topos has finite colimits.

Proof. According to [2, Theorem 15.2.8, p389], this is very hard to prove, and the demonstration requires
many notions that are beyond the scope of this course. We will just admit this theorem.

Proposition 9.7. Let E be a topos. A monomorphism in E is an equaliser.

Proof. According to the definition of a subobject classifier (Ω, t), a monomorphism m : M → C is indeed
the equaliser of χM : C → Ω and !C ◦ t.

Proposition 9.8. Let E be a topos. The isomorphisms in E are exactly the monic/epic.

Proof. By Corollary 5.40, every isomorphism is both monic and epic; this is true in any category.
The converse comes from the topos-ness of E . In a topos, all monomorphisms are equalisers, thus all

monic/epic are epic equalisers, and by Proposition 5.47, all epic equalisers are isomorphisms.

Definition 9.9 (Image of an arrow [8]). Let f : A→ C be an arrow.
We say that f factors through m : B→ C when there exists e : A→ B such that f = m ◦ e.
The image of f is a monomorphism m : B→ C such that f factors through m, and for all monomorphism

m′, if f factors through m′, then so does m.

Remark 9.10 (Explicit definition). The image of f is a monomorphism m : B→ C such that there exists
e : A→ B such that f = m ◦ e, and for all monomorphism m′ : B′→ C, if there exists e′ : A→ B′ such
that f = m′ ◦ e′, then there exists e′′ : A→ B′ such that m = m′ ◦ e′′.

In a sense, the image of f is the "smallest" subobject of C through which f can factor.
In Sets, the image of a function f : X → Y is the inclusion mapping f (X) → Y .

Definition 9.11 (Epi-mono factorisation). Let f : A→ C be an arrow in a category C .
An epi-mono factorisation of f is a pair (m, e) where m : B→ C is a monomorphism and e : A→ B is

an epimorphism such that f = m ◦ e.
A category C is said to have epi-mono factorisations when every arrow f has an epi-mono factorisation.
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In Sets, this property is very easy to see. Let f : X → Y ; then we can define e : X → f (X) (the
restriction of f to its image) and then m : f (X) → Y as the inclusion function. Then e is epic (i.e. a
surjection) and m is monic (i.e. an injection). As said before, topoi generalise in a sense the category of
sets; and the following proposition holds:

Proposition 9.12. Let E be a topos. Then E has epi-mono factorisations.

Proof. We need the fact that a topos has colimits. Let f : A→ B be a function; the pushout of f with f
exists:

A B

X

B Q

f

f x

y

and x ◦ f = y ◦ f .
Let (M,m) be the equaliser of x and y; there exists a unique e such that f = m ◦ e:

M B Q

A

m x

y

f
e

We now show that m is the image of f . Suppose f = m′ ◦ e′ for some monic m′ : M ′→ B. As we are
in a topos, the monic m′ is an equaliser of some x ′, y′ : B→ Q′, as in the diagram:

M ′ B Q′

A

m′ x′

y′

f
e′

As x ′ ◦ f = y′ ◦ f , and using the fact that Q is a pushout of f with itself, there is a unique arrow
q : Q→ Q′ such that x ′ = q ◦ x and y′ = q ◦ y, as in the following diagram:

A B

X

B Q

Q′

f

f x

x′
y

y′

q

Now, we have:

x ′ ◦ m = u ◦ x ◦ m = u ◦ y ◦ m = y′ ◦ m

so, m′ being the equaliser of x ′ and y′, there is a unique e′′ : M → M ′ such that m = m′ ◦ e′′; so m is
indeed the image of f .
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The only fact to prove now is the epicness of e. To do so, let us introduce and explain the following
diagram:

A B

N M M

N

f

e
e′

n

m

e′′

m

n

We have proven that every arrow factors through some monomorphism thanks to some pushout; then
there are two arrows z, z′ : M → Q such that z and z′ are the pushout of e with itself, and there exist
e′ : A→ N and a monomorphism n : N → M such that e = n ◦ e′, and n is the equaliser of z and z′.

First, let us focus on e′ and n. We have f = m ◦ e = m ◦ n ◦ e′; so f factors through m ◦ n, which is
monic (composition of monomorphisms is monic). As m is the image of f , m also does: there exists a
e′′ : M → N such that m = m ◦ n ◦ e′′; as m is monic, we deduce:

idM = n ◦ e′′⇒ n = n ◦ e′′ ◦ n⇒ e′′ ◦ n = idN

as n is also monic; but as e′′ ◦ n = idN and n ◦ e′′ = idM , we deduce that n is an isomorphism.
Now, consider z and z′, the pushout of e with itself, with n being the equaliser of z and z′. As n is an

isomorphism, we have z = z′. Now let c, c′ : M → C be such that c ◦ e = c′ ◦ e; as z and z′ are a pushout
of e with itself, there exists a unique u such that:

A M

X

M Z

C

e

e z

c
z′

c′

u

and c = u ◦ z = u ◦ z′ = c′. Thus, e is epic.

For the following property of a topos, let us get back to slice categories. We did not introduce slice
categories as such, but rather, comma-categories (Definition 7.17).

Definition 9.13 (Slice category). Let C be a category, and let C ∈ C be an object.
The slice category of C over C, simply written C /C, is the following category:

Objects: The objects are the arrows x : X → C ∈ MorC

Morphisms: For x : X → C and x ′ : X ′ → C, a morphism f : x → x ′ is defined as an arrow
f : X → X ′ ∈ MorC such that the following triangle commutes:

X

C

X ′

f

x

x′
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Identities: The identity morphism of x : X → C is simply idX

Composition: The composition law for morphisms is the usual composition law in C

Confronting Definition 7.17 with Definition 9.13, it is easy to see that:

Proposition 9.14. Let C be a category and C ∈ C be an object.
The slice category C /C is the comma-category (IdC | ∆(C)).

Proposition 9.15. Let C be a category with a terminal object 1. Then C /1 � C .

Proof. The proof is quite easy. Define the functors:

F :


C −→ C /1
C 7−→ !C : C → 1

c : C → C ′ 7−→ c

U :


C /1 −→ C
!C : C → 1 7−→ C
c :!C →!′C 7−→ c

Then U clearly is the inverse of F; thus F defines an isomorphism between C and C /1.

Another obvious fact is that any slice category has a terminal object:

Proposition 9.16. In the slice category C /C, idC is the terminal object.

Proposition 9.17. Let C be a category and C be an object in C .
Consider the following diagram:

P X2

X1 C

p2

p1
q

c2

c1

The previous diagram is a pullback in C ⇔ q = c1 ◦ p1 = c2 ◦ p2 is a product in C /C.

Proof. Just compare the universal properties of P (as a pullback) and q (as a product).

Let us spend some time studying examples of slice categories, as they will turn crucial in our
understanding of some properties of topoi.
Example 9.18 (Slice category in a poset). Consider the poset (P,6). Let p ∈ P; what does slice category
P/p look like? It is the following category:

Objects: The objects are the arrows q : q → p; that is, the objects are the pairs q = (q, p) such that
q 6 p.

Morphisms: The arrows x : q→ q′ are such that the following diagram commutes:

q

p

q′

x

q

q′

That is, arrows x : q→ q′ are simply pairs (q,q′) such that q 6 q′ 6 p.
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Identities: The identity morphism of q : q→ p is simply the reflexivity rule of a partial order.

Composition: The composition law for morphisms is the transitivity of the preorder.

In summary, the slice category of a poset P/p is a truncated version of the poset P, made with only the
objects that are below p (which have arrows that target p) (in red in the following diagram).

. . . . . .

∗

∗

∗ p

. . . ∗

∗

. . .

. . . . . .

Example 9.19 (Slice category in Sets). In Sets, a slice category is less obvious. Let A be a set.
If A = 1 then by Proposition 9.15, we have Sets/1 � Sets. If A = 0 = ∅ then Sets/0 � C1, where C1 is

the category with only one object and one identity morphism.
Now suppose A is not a trivial set: A , 0 and A , 1.
Let us start from the easy questions. What is the size of Sets/A?
The objects of Sets/A are all the functions a : X → A. As there are always card (A)card(X) > card (X)

functions between X and A, for each set X , there are card (A)card(X) arrows X → A. Thus, Sets/A is a large
category.

As for themorphisms; an arrow x : a→ a′ between a : X → A and a′ : X ′→ A is an arrow x : X → X ′

with some additional properties (the commutative triangle). We deduce that Hom (a,a′) ⊂ Hom (X,X ′).
Therefore, Sets/A is locally small, because Sets is.

Another question one may ask is: can we have two arrows a : X → A and a′ : X → A and a , a′, that
is, two different arrows from the same source? Consider the following functions:

mod2 :
{
N −→ 2
n 7−→ n mod 2

dom2 :
{
N −→ 2
n 7−→ (n + 1) mod 2

where 2 = {0,1} (the set-theoretic natural number 2). They are different functions and thus, different
objects in Sets/2.

There is also an arrow between them. The successor function:

succ :
{
N −→ N

n 7−→ n + 1

is an arrow succ : mod2 → dom2 in Sets/2.
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Intuitively, the slice category Sets/A is a kind of "zoom" on how A "sees" Sets. This zoom somehow
individualises the arrows that target A; in fact, mod2 and dom2 are indiscernible in Sets (they are arrows
from the same source N) while in Sets/2, they are different objects.

Now consider the functions:

mod3 :
{
N −→ 3
n 7−→ n mod 3

mod2 :
{
N −→ 3
n 7−→ n mod 2

where mod2 is the obvious extension of mod2 : N→ 2 to N→ 3 (we could have used different symbols
but it was only making the notations inconvenient).

Is there an arrow f : mod2 → mod3? That is, a function such that n mod 2 = f (n) mod 3. The
function mod2 : N→ N (extension of mod2) does the job, but there are an infinity of functions that would
do the job as well, for example: 

N −→ N

n 7−→

{
3k if n = 2k
3k + 1 if n = 2k + 1

What about an arrow f : mod3 → mod2? That is, a function such that n mod 3 = f (n) mod 2. Such
a function does not exist, because there is no m such that m mod 2 = 2 mod 3 = 2 (note that we are
not considering Z/(2Z), so the modulo operation only applies once). We conclude that there is no arrow
mod3 → mod2.

What condition makes it possible to have an arrow between two functions a : X → A and a′ : X ′→ A?
The previous example becomes obvious once we see that mod2 (N) ( mod3 (N). Consequently, there

cannot be arrows mod3 → mod2. This seems to be the condition we are looking for. In fact, we can
show that, in Sets/A, there is an arrow x : a → a′ between a : X → A and a′ : X ′ → A if and only if
a(X) ⊂ a′(X ′). As a corollary, there are arrows x : a→ a′ and x ′ : a′→ a if and only if a(X) = a′(X ′).

In other words, the slice category induces a preorder . on the functions that target A: for a : X → A
and a′ : X ′ → A, we have a . a′ ⇔ a(X) ⊂ a′(X ′). This preorder gives the general structure of a slice
category Sets/A. We will see in another example (Example 9.32) another interpretation of a slice category
in Sets.
Remark 9.20 (Slice of slice). Let C be a category and f : C → D be an arrow in C .

Consider the category C /D. The arrow f : C → D is an object in C /D. We can keep "slicing" the
category. Let’s have a closer look at (C /D) / f .

An object in (C /D) / f is an arrow x : d → f ∈ MorC /D , that is, such that the following triangle
commutes:

X

D

C

x

d

f

For x : d → f and x ′ : d ′→ f , an arrow u : x → x ′ in (C /D) / f is an arrow u : d → d ′ such that the
following diagram commutes:
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d

f

d ′

u

x

x′

But the arrows x and x ′ also make the following diagrams commute:

X

D

C

x

d

f

X ′

D

C

x′

d′

f

Finally, u : d → d ′ is an arrow u : X → X ′ such that the following diagram commutes:

X X ′

D D

C

u

x

d

x′

d′

ff

In summary, an object in (C /D) / f is an arrow x : X → C, that is, an object in C /C, and an arrow in
(C /D) / f is in fact an arrow in C /C.

Conversely, an arrow x : X → C (object in C /C) easily converts to an arrow x : x ◦ f → f (object in
(C /D) / f ). Besides, an arrow u : x → x ′ in C /C gives the following diagram:

X

C D

X ′

x

f ◦x

u
f

x′

f ◦x′

Thus, an arrow u : x → x ′ easily becomes an arrow u : f ◦ x → f ◦ x ′.
These two observations define two functors that are clearly inverses of each other. Consequently, we

have proven the following proposition.

Proposition 9.21 (Slice of a slice is a slice). Let C be a category, and let f : C → D be an arrow in C .
Then, (C /D) / f � C /C.

Proof. See Remark 9.20.

Definition 9.22 (Composition functor / dependent sum). Let C be a category with all pullbacks, and let
f : C → D be an arrow in C .

The composition functor of f , or dependent sum relative to f , written Σ f , is the following functor:

Σ f :


C /C −→ C /D
c 7−→ f ◦ c

x : c→ c′ 7−→ x : f ◦ c→ f ◦ c′
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Remark 9.23. Note that, in the definition of the composition functor, for x : c→ c′, we have the following
diagram:

X

C

X ′

x

c

c′

which gives, by composition by f :

X

C D

X ′

x

c

f

c′

Consequently, an arrow x ∈ C /C is also an arrow x ∈ C /D.

Definition 9.24 (Pullback functor). Let C be a category with all pullbacks, and let f : C → D be an arrow
in C .

The pullback functor f ∗ is the following functor:

f ∗ :


C /D −→ C /C
d 7−→ f ∗(d)

x : d → d ′ 7−→ f ∗(x)

where, for d : X → D, f ∗(d) is such that the following square is a pullback:

P X

X

C D

f ∗(d) d

f

and for an arrow x : d → d ′, f ∗(x) is the unique arrow P → P′ between pullbacks such that the
following diagram commutes:

P X

P′ X ′

C D

f ∗(x)

f ∗(d)

x

d′

f ∗(d′) d

f

Proposition 9.25. Let C be a category with pullbacks. Let f : A→ B be an arrow in C .
Then, Σ f a f ∗; that is, the composition functor is left adjoint to the pullback functor.

Proof. Let c : X → C and d : Y → D. We have to check that there is a natural isomorphism:

HomC /D
(
Σ f (c), d

)
� HomC /C (c, f ∗(d))
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Let u ∈ HomC
(
Σ f (c), d

)
; the following square commutes:

X Y

X

C D

u

c d

f

By definition of f ∗(d), the following diagram is a pullback; as a consequence, there is a unique
v : X → P such that the diagram commutes:

X

P Y

X

C D

v
u

c
p

f ∗(d) d

f

So, for all u ∈ HomC /D
(
Σ f (c), d

)
, there is a unique v ∈ HomC /C (c, f ∗(d)) such that the above diagram

commutes; in other words, the mapping ϕc,d : u 7→ v is a bijection4.
We now have to check the naturality in c and d.
Let x : c′→ c be an arrow in C /C; thus x makes the following diagram commute:

X ′ X

C

x

c′ c

We have to check whether the following diagram commutes:

HomC /D
(
Σ f (c), d

)
HomC /C (c, f ∗(d))

X

HomC /D
(
Σ f (c′), d

)
HomC /C (c′, f ∗(d))

HomC/D(Σ f (x),d)

ϕc ,d

HomC/C (x, f
∗(d))

ϕc′ ,d

Let u ∈ HomC /D
(
Σ f (c), d

)
; u makes the following diagram commute:

X Y

D

u

Σ f (c) d

So:
4In fact the formula establishes the reverse bijection, but this bijection will do.
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HomC /C (x, f ∗(d)) ◦ ϕc,d(u) = v ◦ x

where v is the unique arrow X → P that makes the following diagram commute:

X

P Y

X

C D

v
u

c
p

f ∗(d) d

f

(23)

Then:

ϕc′,d ◦ HomC /C
(
Σ f (x),d

)
(u) = ϕc′,d(u ◦ x)

= v′

where v′ is the unique arrow X ′→ P such that p ◦ v′ = u ◦ x and f ∗(d) ◦ v′ = c′, as in the following
diagram:

X ′

X

P Y

X

C D

c′

u◦xx v′

v

u

c
p

f ∗(d) d

f

(24)

By chasing diagram 24 and using the equations given by diagram 23, we see that:

f ◦ c′ = f ◦ c ◦ x = d ◦ u ◦ x

f ∗(d) ◦ v′ = c′ = f ∗(d) ◦ v ◦ x

p ◦ v′ = u ◦ x = p ◦ v ◦ x

By unicity of v′, we must have v′ = v ◦ x, hence the equality:

v′ = v ◦ x

ϕc′,d ◦ HomC /C
(
Σ f (x),d

)
(u) = HomC /C (x, f ∗(d)) ◦ ϕc,d(u)

Which gives the naturality in c. The naturality in d is very similar and is left to the reader.
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The adjunction Σ f a f ∗ may sometimes be completed with a third functor Π f , called the dependent
product functor, that is right adjoint to the pullback functor f ∗. However, this does not occur often; the
existence of this right adjoint depends on some property of the category C .

Definition 9.26 (Locally Cartesian closed). A category C is called locally Cartesian closed whenever, for
all object C ∈ C , the slice category C /C is Cartesian closed.

From the definition and Proposition 9.15, it is easy to see that:

Proposition 9.27. If C is locally Cartesian closed and has a terminal object, then C is Cartesian closed.

Another result that is easy to see is the following:

Proposition 9.28. Let C be a category.
If C is locally Cartesian closed, then so is every slice of C .

Proof. For all C ∈ C , C /C is Cartesian closed. Then keep slicing the category by c : X → C; we have
(C /C)/c � (C /X) (by Proposition 9.21), and C /X is Cartesian closed, hence the result.

The property that matters to us now is the following:

Proposition 9.29. Let C be a category with all pullbacks.
Then, C is locally Cartesian closed⇔ for all arrow f , the pullback functor f ∗ has a right adjoint Π f .

Proof. [Proof of⇐] Let f : C → D be an arrow, and let Π f be its right adjoint.
We have to find the terminal object, the products and the exponentials in C /D. By Proposition 9.16, we

know that the terminal object in C /D is idD . By Proposition 9.17, as C has all pullbacks, we know that
C /D has all products.

Consider the following pullback:

P X

X

C D

f ∗(d) d

f

By Proposition 9.25, the composition functor Σ f is left adjoint to the pullback functor f ∗. By
Proposition 9.17, the pullback of f and d in C corresponds to a product in C /D. Then:

f × d = f ◦ f ∗(d) = Σ f ( f ∗(d))

We deduce the following equivalence of hom-sets:

HomC /D ( f × d,u) = HomC /D
(
Σ f ( f ∗(d)) ,u

)
� HomC /C ( f ∗(d), f ∗(u))

� HomC /D
(
d,Π f ( f ∗(u))

)
Then, in C /D, by Proposition 5.23 (exponential is right adjoint to product), the exponential u f can

only be u f = Π f ( f ∗(u)). As such an exponential always exists (because f ∗ always does, and Π f does by
assumption), C /D is Cartesian closed.

Thus, C is locally Cartesian closed.
[Proof of⇒] Assume that C is locally Cartesian closed. Then each slice category is Cartesian closed,

so each slice category C /D of C has products. By Proposition 9.21, a slice of a slice is a slice. By the
same reasonning, each slice category (C /D) / f of C /D has products.
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By Proposition 9.17, each product in (C /D) / f is a pullback in C /D, so C /D has all pullbacks. By
Proposition 9.16, each slice category C /D has a terminal object idD .

Each slice category C /D has pullbacks and a terminal object, so by Proposition 6.34, it has all finite
limits. By Proposition 7.27, as every slice category has finite limits and exponentials, we deduce that the
pullback functor f ∗ (in C , that is the "product" functor in C /D) has a right adjoint.

Corollary 9.30. If C has all pullbacks and is locally Cartesian closed, then each slice category C /C has
finite limits.

Definition 9.31 (Dependent product). Let C be a category with all pullbacks and locally Cartesian closed.
Let f : C → D be an arrow in C .

The dependent product Π f is the right adjoint to the pullback functor f ∗.

Before studying more properties, maybe we should take a break and look at how this functor behaves.
Example 9.32 (Slice category in Sets, again). Consider Sets and some function f : C → D.

Let c : X → C be an object in Sets/C. It is a function, indeed, but the point of view that makes more
sense in this context is the following. For all y ∈ C, we can define the set c−1(y) = {x ∈ X | c(x) = y}.
In this case, the function c : X → C becomes an C-indexed set

(
c−1(y)

)
y∈C where X =

∑
y∈C

c−1(y)

(coproduct). Then, a morphism h : c → c′ in Sets/C is a function between C-indexed sets, such that
h =

∑
y∈C

hy : c−1(y) → c′−1(y).

Note that this point of view explains why there cannot be any arrow from c : X → C to c′ : X ′→ C
whenever c′(X ′) ( c(X). In fact, take y ∈ c(X)\c′(X ′); we have c′−1(y) = ∅, so the function hy : c−1(y) →

c′−1(y) is a function to the empty set, what does not exist unless c−1(y) = ∅ too.
What about Σ f ? If c : X → C ∈ C /C, then Σ f (c) = f ◦ c : X → D; that is, Σ f (c) can be seen as the

D-indexed set
(
( f ◦ c)−1(y)

)
y∈D

. The function betweenC-indexed sets h : c→ c′ ' h :
∑
y∈C

hy : c−1(y) →

c′−1(y) (morphism in C /C) is sent to Σ f (h) : f ◦ c → f ◦ c′ ' Σ f (h) :
∑
y∈D
( f ◦ h)y : ( f ◦ c)−1(y) →

( f ◦ c′)−1(y). Beware of the notation:
∑
y∈D

is a coproduct symbol.

As for Π f . Let y ∈ D and c : X → C be an object in C /C. We call partial section of f for y along c
any function s : f −1(y) → X such that the following diagram commutes:

f −1(y) X

C

⊆

s

c

that is, for all x ∈ f −1(y), c ◦ s(x) = x. Note that s is essentially a right inverse of c on the reverse
image of y ∈ D by f , and such an s may not be unique. Also, a partial section along c : X → C requires
that f −1(y) ⊂ c(X); so f may not have partial sections for all y along c, for example if f −1(y)\c(X) , ∅.

Awodey [1, p233, below Proposition 9.18] states that Π f (c) : S → D where S is:

S =
{
s : f −1(y) → X | y ∈ D and s is a partial section of f for y along c

}
S ⊂

⋃
y∈D

Hom
(

f −1(y),X
)

and for all s : f −1(y) → X ∈ S, Π f (c)(s) = y (that is, Π f (c) "projects" a partial section s : f −1(y) → X
to the base of the inverse image on which the section takes place).
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Finally, the pullback functor is easier to see. Remember that, in Sets, the pullback between f : C → D
and d : X → D is the set C ×D X = {(c, x) ∈ C × X | f (c) = d(x)} (cf. Example 5.55). The pullback
functor f ∗ sends d : X → D to the projection of C ×D X to C:

f ∗(d) :
{

C ×D X −→ C
(c, x) 7−→ c

One may wonder where d appears in the construction of f ∗(d); just remember the above definition of
C ×D X in Sets.

Proposition 9.33. Let E be a topos. Then every slice of E is a topos as well.

Proof. Let E ∈ ObE . By Corollary 9.30, the slice category E /E has finite limits. We now have to show
that every object has a power object.

So, the proof can be found in [8, Chapter IV, Section 7, Theorem 1, p190] and in [7, Chapter 5, Section
2, Theorem 2.1, p149], but I don’t want to spend too much time on it. The proofs are very long. We will
just admit this proposition.

Corollary 9.34. A topos is locally Cartesian closed.

Proof. In fact, as every slice of a topos is a topos, then in particular, each slice of a topos is Cartesian
closed.

The fact that a topos is locally Cartesian closed is crucial in theoretical computer science and logic,
because it means that any topos has an internal type theory.

Let us sum up the properties of a topos that we have seen:

Theorem 9.35 (Properties of a topos). Let E be a topos. Then E has all the following properties:

� It has all finite limits

� It has all finite colimits

� It has all exponentials

� Every object has a power object

� It has a subobject classifier

� It is Cartesian closed

� It is locally Cartesian closed

� Its slices are Cartesian closed

� Its slices are locally Cartesian closed

� Its slices are topoi

� Its isomorphisms are exactly the monic/epic

� It has all epi-mono factorisations
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10. Presheaves, sheaves, sheaf topoi
Incomplete section. We introduce the category of presheaves and prove it’s a topos, but the Crash Course
stops here for now (2019-01-18).

For now we have only see one example of topos. Let us introduce another example.

Definition 10.1 (Presheaf). Let C be a small category. A presheaf on C is a functor C
op
→ Sets.

The presheaf category, written
[
C

op
,Sets

]
, SetsC

op
or simply PSh (C ), is the functor category

Func
(
C

op
,Sets

)
.

The following propositions will aim at proving that the presheaf category PSh (C ) is a topos.

Lemma 10.2. Let C be a small category. Then for all diagram D : I → PSh (C ), we have Lim (D) (C) �
Lim (D(−)(C)); in other words, limits in a presheaf category are computed objectwise.

Proof. Let D : I → PSh (C ) be a diagram in PSh (C ). The proof lies on the (admitted) fact that Sets has
all small limits (admitted in Example 7.12).

Note that there is a canonical equivalence of categories: Func
(
I ,Func

(
C

op
,Sets

))
� Func

(
I × C

op
,Sets

)
.

Call D̂ the equivalent diagram D̂ : I × C
op
→ Sets.

For a given C ∈ C
op , D̂(−,C) is a diagram from I → Sets, and as Sets has all small limits, it has a

limit
(
Lim

(
D̂(−,C)

)
, εD,C

)
. Then, if c : C → C ′ ∈ C , then, as D̂ is a (contravariant) functor, there is an

arrow: D̂(−, c) : D̂(−,C ′) → D̂(−,C) between cones to D and by property of limits, there is a unique arrow
Lim

(
D̂(−, c)

)
: Lim

(
D̂(−,C ′)

)
→ Lim

(
D̂(−,C)

)
, such that the following diagram commutes:

C C ′ Lim
(
D̂(−,C ′)

)
{ X

C ′ C Lim
(
D̂(−,C)

)
c c

εD ,C′

Lim
(
D̂(−,c)

)

εD ,C

Note that we are considering the right-hand square diagram in C
op ; we have the naturality of εD,C in C.

There remains to show that Lim
(
D̂(−,C)

)
is indeed a limit. Let α : ∆(P) → D be a cone to D. Here,

the diagonal functor is: ∆ : PSh (C ) → PSh (C )I . We are looking for a unique γ : P→ Lim
(
D̂(−,−)

)
such that, for all objects i ∈ I and C ∈ C , the following diagram commutes: αi(C) = εD,C ,i ◦ γ(C).

D(i)(C)

∆(P)(i)(C)

Lim
(
D̂(−,C)

)
γ(C)

αi (C)

εD ,C ,i

Such a (unique) γ(C) always exists due to the universal property of limits in Sets. We only have to
check that this γ = (γ(C))C∈C is natural in C. It is due to the naturality of the other natural transformations
α and εD,−. Finally, γ is unique due to the uniqueness of each γ(C).

Thus, for every diagram D : I → PSh (C ), there is a limit, and for all C ∈ C , Lim (D) (C) �
Lim

(
D̂(−,C)

)
� Lim (D(−)(C)).
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In fact, we proved something stronger:

Corollary 10.3. PSh (C ) has all small limits.

Corollary 10.4. For all P,Q ∈ PSh (C ), P ×Q is the functor:

P ×Q :


C
op
−→ Sets

C 7−→ P(C) ×Q(C)
c 7−→ P(c) ×Q(c)

Corollary 10.5. The terminal object in PSh (C ) is the constant presheaf ∆(1) where ∆ is the diagonal
functor ∆ : Sets→ PSh (C ).

Proposition 10.6. Let α : P→ Q be a morphism between two presheaves in PSh (C ).
Then, α is monic⇔ for all X ∈ X , αX : F(X) → G(X) is monic.

Proof. The proof of⇐ has already been given in Proposition 5.41.
Conversely, suppose that α is monic. The characterisation of monics by pullbacks (Proposition 5.58

states that the pullback of α with itself is (P, idP, idP). As limits, and thus pullbacks, are computed
objectwise, we deduce that the pullback of each C-component αC : P(C) → Q(C) with itself is also a triple(
P(C), idP(C), idP(C)

)
, making each component monic.

Remark 10.7. We know that a presheaf category has all small limits. In particular, it has all binary products,
so maybe it has exponentials.

Let P,Q ∈ PSh (C ) be presheaves. Suppose their exponential QP exists; let us study it.
By adjunction product/exponential (Proposition 5.23), we know thatHomPSh(C ) (X × P,Q) � HomPSh(C )

(
X,QP

)
.

By Yoneda lemma, we have:

HomPSh(C )

(
HomC (−,C) ,QP

)
� QP(C)

which defines the functor QP as:

QP(C) � HomPSh(C ) (HomC (−,C) × P,Q)

We have to check that this actually defines an exponential; that is, for every f : X × P→ Q, there is a
unique f̂ : X → QP such that the following diagram commutes:

X P × X

QP P ×QP Q

f̂ idB× f̂
f

eval

Note that f : X × P → Q is a natural transformation, and as limits (hence, producs) are computed
objectwise, the previous diagram becomes:

X(C) P(C) × X(C)

QP(C) P(C) ×QP(C) Q(C)

f̂C idB ,C× f̂C
fC

evalC

We define the natural transformation evalC as:

evalC :
{

P(C) × Nat (HomC (−,C) × P,Q) −→ Q(C)
(p, α) 7−→ αC (idC, p)
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Note that eval is the counit of the adjunction HomPSh(C ) (X × P,Q) � HomPSh(C )
(
X,QP

)
.

Then, note that evalC is defined such that evalC◦
(
idP × f̂

)
C
(x, p) = evalC

(
p, f̂C(x)

)
= f̂C(x) (idC, p) =

fC(x, p) by commutativity of the previous diagrams.
We now have to find the expression of f̂ . For now we focus on f̂C(x). We already know that

f̂C(x) (idC, p) = fC(x, p). For c : C ′→ C, the following diagram commutes:

C ′ HomC (C,C) × P(C) Q(C)

{ X

C HomC (C ′,C) × P(C ′) Q(C ′)

c HomC (c,C)×P(c)

f̂C (x)C

Q(c)

f̂C (x)C′

that is:

Q(c) ◦ f̂C(x)C(u, p) = f̂C(x)C′ ◦ (HomC (c,C) × P(c)) (u, p)

and in particular, when u = idC :

Q(c) ◦ f̂C(x)C(idC, p) = f̂C(x)C′ ◦ (HomC (c,C) × P(c)) (idC, p)
Q(c) ( fC(c, p)) = f̂C(x)C′(c,P(c)(p))

which defines f̂C(x)C′(c, p′) on pairs (c, p′) such that p′ = P(c)(p) (which is enough for our purposes).
The naturality of f̂C(x) in C is immediate.
Finally, we have defined the exponential in PSh (C ).

Definition 10.8 (Exponential in a presheaf category). Let P,Q be two presheaves in PSh (C ). Their
exponential QP is defined as:

QP :


C
op
−→ Sets

C 7−→ HomPSh(C ) (HomC (−,C) × P,Q)
c 7−→ HomPSh(C ) (HomC (−, c) × P,Q)

Lemma 10.9. A presheaf category PSh (C ) has all exponentials.

Proof. The construction in Remark 10.7 holds for any preasheaves P and Q.

Corollary 10.10. A presheaf category is Cartesian closed.

We could have defined the exponential in a presheaf category, and then prove that the presheaf it defines
actually is an exponential, but we prefered showing how the definition naturally made sense.

So, we have all small (thus finite) limits, and all exponentials. The only thing missing is the subobject
classifier. To this extend, we define:

Definition 10.11 (Sieve [1]). Let C be a small category, and let C be an object in C .
A sieve on C is a set S ∈ Sets such that:

S = { f : X → C | for some arrows f : X → C}

∪ { f ◦ g : Y → C | Y ∈ C ,g : Y → X and f ∈ S}

In other words, S is a set of (some) arrows of C with codomain C (left-hand part of the union), stable
by precomposition (right-hand part of the union), that is, for all g : Y → X and f ∈ S, we have f ◦ g ∈ S.
Note that S doesn’t necessarily contain all arrows X → C.
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Definition 10.12 (Sieve presheaf). Let C be a small category.
For C ∈ C , we define Sieve(C) = {S ∈ Sets | S is a sieve on C}.
For c : C → C ′ ∈ C , we define:

Sieve(c) :
{

Sieve(C ′) −→ Sieve(C)
S 7−→ {g : X → C | c ◦ g ∈ S}

The sieve presheaf5, written Sieve, is the following contravariant functor:

Sieve :


C −→ Sets
C 7−→ Sieve(C)

c : C → C ′ 7−→ Sieve(c)

Lemma 10.13. Let C be a small category and let Sieve : C
op
→ Sets be its sieve presheaf. And let ∆(1)

be the terminal object in PSh (C ).
Then there exists t : ∆(1) → Sieve such that (Sieve, t) is a subobject classifier of PSh (C ).

Proof. The morphism (natural transformation) t is:

t =
(
tC :

{
1 −→ Sieve(C)
x 7−→ { f : X → C | X ∈ C , f : X → C}

)
C∈C

That is, tC is the function that selects the (unique) sieve that contains all arrows whose codomain is C
(remember that sieves need not contain all arrows). The naturality of t is quite obvious once we remember
that ∆(1)(C) = 1.

We now have to check that (Sieve, t) is a subobject classifier. Awodey describes the classifying arrow of
π : Q→ P as α such that:

αC :
{

P(C) −→ Sieve(C)
x 7−→ { f : X → C | P( f )(x) ∈ Q(X)}

but I am having trouble finding out that this defines a pullback. I leave the proof for now.

Proposition 10.14. Let C be a small category. Then PSh (C ) is a topos.

Proof. By Corollary 10.3, a presheaf category has all small limits; in particular, it has all finite limits. By
Lemma 10.9, a presheaf category has all exponentials. Finally, by Lemma 10.13, it has a subobject classifier.
Consequently, PSh (C ) deserves its title of topos.

5Note that this name is not standard.
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11. David’s riddles
Proposition 11.1. Consider C and its slice C /C.

The coproduct of a1 : A1 → C and a2 : A2 → C (objects of the slice) is a1 + a2 : A1 + A2 → C, where
a1 + a2 is the unique arrow from the UMP of the coproduct.

Proof. The proof is mainly diagram chase.
Let A1 + A2 be the coproduct of A1 and A2, the following diagram commutes for a unique arrow u:

C

A1 A1 + A2 A2i1

a1
u

i2

a2 (25)

This ensures that the inclusion maps i1 and i2 actually are arrows in C /C.
We denote this u = a1 + a2. We now have to check that this actually defines a coproduct. Let P as in

the diagram:

A1 + A2

A1 A2

P

C

a1+a2

v

i1

a1

p1

i2

a2

p2

p

The fact that A1 + A2 is a coproduct in C gives that unique arrow v : A1 + A2 → P such that v ◦ i1 = p1
and v ◦ i2 = p2. We than have to check that v actually is an arrow in C /C, that is, that p ◦ v = a1 + a2. In
fact, a1 + a2 is the unique arrow A1 + A2 → C that makes Diagram 25 commute; p ◦ v also does, so the
equality must hold.

Proposition 11.2 (Coproduct of pullbacks is a pullback). Let C be locally Cartesian closed.
Consider the following diagram:

A1 B1 A2 B2 A1 + A2 B1 + B2

+ ⇒

C D C D C D

b1

a1 d1

b2

a2 d2

b1+b2

a1+a2 d1+d2

c c c

If the left-hand squares are pullbacks, then the right-hand square is a pullback.

Proof. The category C is locally Cartesian closed. Then the pullback functor c∗ : C /D→ C /C based on
c : C → D has a right adjoint. Thus, it is a left adjoint. By Proposition 7.10, left adjoints preserve colimits,
so in particular, coproducts. In consequence:

c∗(d1 + d2) = c∗(d1) + c∗(d2) = a1 + a2 (26)

which gives the result.
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12. To do
Sur le fond :

1. A word on how special the exponential is: every limit is unique up to isomorphism due to the UMP,
while we needed adjunctions in order to make the exponential unique up to iso. It’s because there is
something more profund behind products and such, that the exponential doesn’t share and we will see
that in the next section. The nature of the exponential is different.

2. L’adjonction ∃ a?? a ∀

3. Introduire les monades (juste après les adjoints). C’est assez facile, il y a plein d’exemples.

4. ETCS ? Elementary Theory of the Category of Sets

5. Natural numbers objects + consturction of Z, Q and R... Cf David’s draft on discrete time behaviour
type (given while at MIT): the corresponding sheaves are constant, except for reals.

6. Well-pointed topos ?

7. Présenter les topoi de sheaves, sur une topologie, sur une Heyting algebra.

8. Préciser topos ⊃ presheaf topos ⊃ sheaf topos = Gorthendieck topos (+ presheaf topos is the sheaf
topos for the trivial topology)

9. Bon. J’adore les topoi, du coup peutêtre que je ne me rends pas compte si je veux en rajouter trop ou
pas. Donc voilà. Une fois qu’on a un topos (de presheaves par exemple), on peut définir une logique.
Puis on peut définir des modalities (local operators?) qui sont des arrows Ω → Ω qui vérifient
quelques propriétés. Chaque modality définit un subtopos dont la logique vérifie cette modalité (cf.
Seven sketches, chap 7) Cf aussi ce post

10. Kan extensions (ça a l’air vraiment accessible)

11. I like this exercise

12. Infinite chain of adjoint functors : (un peu compliqué)

13. Une chaine rigolote d’adjoints : cf cahier, le 15/05/2019.

14. Encore plus d’exemples d’adjunctions

15. Beautiful examples of adjunctions

16. Adjunctions in fundamental theorems

17. Question: Si F est adjoint à U est adjoint à F, que dire de F et U? Hypothèse: c’est une équivalence
de catégories.; je cherche donc à montrer que les unit/counits sont inverses l’une de l’autre; mais je
n’y arrive pas.

Sur la forme :

1. Donner des noms aux théorèmes (dire en gros ce qu’ils disent)

2. Présentation d’une catégorie pour les enfants ?

3. Harmoniser les notations: est-ce que la catégorie par défaut est C ou X ? Est-ce que l’object par
défaut est C ou X ? Est-ce que l’adjunction par défaut est U∗ ou F ?

IMTA-RR-2019-01-SC 103/106

https://mathoverflow.net/questions/298950/example-of-non-propositional-local-operators-on-a-topos
https://math.stackexchange.com/questions/1873437/exhibit-a-chain-of-adjoints-passing-through-the-diagonal
https://math.stackexchange.com/questions/1058960/sequences-or-chains-of-adjoint-functors
https://math.stackexchange.com/questions/46708/a-bestiary-about-adjunctions?rq=1
https://math.stackexchange.com/questions/1238125/what-are-some-beautiful-examples-of-adjunctions?noredirect=1&lq=1
https://math.stackexchange.com/questions/187228/if-adjunction-arises-everywhere-where-is-it-in-the-fundamental-theorems?noredirect=1&lq=1


12. To do

4. Comment lire un diagramme commutatif

5. Mettre des exemples partout!

5.1. A locally Cartesian closed category that is not Cartesian closed (LH, category of local
homeomorphismes, doesn’t have a terminal object), cf https://en.wikipedia.org/wiki/
Cartesian_closed_category#Examples

5.2. Examples of topoi: FinSets, Vω, Vα for α limit ordinal (small topos), cf: https://math.
stackexchange.com/questions/116023/example-of-a-small-topos

5.3. The category of topological spaces lacks some properties: https://ncatlab.org/nlab/
show/nice+category+of+spaces
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Symbols
β Adjunctor of two functors F a U

Colim (D) Colimit of the diagram D

Cocones (D) Category of cocones from D

Cones (D) Category of cones from D

(F | G) Comma-category

C /C Slice category over C

∆ Diagonal functor

ε Counit of an adjunction F a U

CB Exponential

EA Exponential functor

f ∗ Pullback functor

Func (C ,D) The functor category

η Unit of an adjunction F a U

Lim (D) Limit of the diagram D

Nat (F,G) Set of natural transformations F → G

C
op Opposite category

1 Terminal object

Ω Subobject classifier

A × B Product of objects

A + B Coproduct of objects

PA Product functor

A ×C B Pullback of f : A→ C and g : B→ C

B +A C Pushout of f : A→ B and g : A→ C

P (C) Power object of C

Π f Dependent product

Sets The category of sets

SubObjC (C) Subobject category

SubObjC Subobject functor

Σ f Dependent sum (or composition functor)

θH ,X The Yoneda natural isomorphism H(X) → Nat (HomC (X,−) ,H)
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U∗ The left adjoint of a functor U

Vλ The λ-th set from the von Neumann hierarchy

ξH ,X The Yoneda natural isomorphism Nat (HomC (X,−) ,H) → H(X)

y The Yoneda embedding

0 Initial object
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