
HAL Id: hal-02190027
https://hal.science/hal-02190027v2

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A crash course on Category Theory
Erwan Beurier, Dominique Pastor

To cite this version:
Erwan Beurier, Dominique Pastor. A crash course on Category Theory. [Research Report] RR-2019-
01-SC, IMT Atlantique. 2019. �hal-02190027v2�

https://hal.science/hal-02190027v2
https://hal.archives-ouvertes.fr

Collection des rapports de recherche d’IMT Atlantique
IMTA-RR-2019-01-SC

A crash course on Category Theory

Date d’édition : July 8, 2020
Version : 1.0

Erwan Beurier
IMT Atlantique
Dominique Pastor
IMT Atlantique

IMT Atlantique
Dépt. Signal & Communications
Technopôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
Téléphone: +33 (0)2 29 00 13 04
Télécopie: +33 (0)2 29 00 10 12
URL: www.imt-atlantique.fr

http://www.imt-atlantique.fr/

Contents

Contents
1. Basic notions. 3

2. Yoneda lemma . 10

3. Universal elements, universal arrows, representations. 19

4. Towards adjunctions . 23

5. Zoo of adjunctions . 37
5.1. What is the difference between an adjunction and an equivalence of categories? . . 37
5.2. An example of adjunction: inverse image of a function . 42
5.3. How long can a chain of adjoints be? Part 1: a chain of five adjoints 42
5.4. How long can a chain of adjoints be? Part 2: a chain of adjoints for any odd integer 42
5.5. How long can a chain of adjoints be? Part 3: an infinite chain of adjoints 44
5.6. A logical adjunction. 44
5.7. Forgetful and free functors. 44
5.8. Other simple examples . 44
5.9. A last word on adjunctions. 44

6. Objects with some universality in them . 46

7. Your only colimit is yourself . 65

8. Limits and adjunctions . 78

9. Monads . 87

10. Sets-like categories . 95

11. Elementary topoi . 104

12. Presheaves, sheaves, sheaf topoi. 117

13. David’s riddles . 121

14. To do . 122

Index . 124

Symbols . 126

References . 127

IMTA-RR-2019-01-SC 1/127

Contents

Introduction
This course will introduce category theory from an adjunction-driven point of view, which is somewhat
unusual.

This course is a modest introduction to category theory, written as the first author discovered this topic
while starting his PhD.

Note that this document is obviously not exhaustive. This non-exhaustivity comes from the context of
the PhD; the first author did not need to learn about n-categories or categorical logic, so there is nothing
about it here.

This document is also intended to be the starting point of a book. However, it is currently in an early
stage (see Section 14 to convince yourself that this document needs more work to be done).

Also note that this Crash Course has nothing to do with Bartosz Milewski’s Crash Course in Category
Theory.

IMTA-RR-2019-01-SC 2/127

1. Basic notions

1. Basic notions
This section will introduce some basic notions about category theory: categories, functors, opposite
categories, natural transformations.

Definition 1.1 (Category [1]). A category C consists of the following data:

� A collection of objects, denoted ObC

� A collection of morphisms, or arrows, denoted MorC

� A map dom : MorC → ObC ; for each morphism 5 , dom(5) is called the domain of 5

� A map cod : MorC → ObC ; for each morphism 5 , cod(5) is the called codomain of 5

� For each morphism 5 ∈ MorC , we write 5 : �→ � if � = dom(5) and � = cod(5)

� A composition law ◦ such that, for all 5 : � → � and 6 : � → �, there is a chosen morphism
6 ◦ 5 : �→ �

� For each object � ∈ ObC , there is a chosen morphism 1� : �→ � called identity morphism of �

The composition law is required to be associative: ∀�, �, �, � ∈ ObC , ∀ 5 : �→ � and 6 : �→ � and
ℎ : � → �, (ℎ ◦ 6) ◦ 5 = ℎ ◦ (6 ◦ 5). Identity morphisms are required to act like identities: ∀�, � ∈ ObC ,
∀ 5 : �→ �, 5 ◦ 1� = 1� ◦ 5 = 5 .

In the rest of the course, a category C will be described according to the following presentation:

Objects: An object in C is...

Morphisms: A morphism in C is...

Identities: An identity morphism is...

Composition: The composition law for morphisms is...

Usually, the description of morphisms suffices to implicitly define dom and cod, as in the following
examples.
Example 1.2 (Category of Sets). One of the easiest categories is the category in of sets. We define the
category Sets as the following:

Objects: An object in Sets is any set

Morphisms: A morphism in Sets is any function 5 : �→ �

Identities: An identity morphism is an identity function id� : �→ �

Composition: The composition law for morphisms is the usual composition of functions

Example 1.3 (Preorder category). Another different but useful example of category is the category based on
a preorder. If (%, 6) is a preordered set (we will refer to this as a proset), then we can define the following
category:

Objects: The objects are the elements of the set %

Morphisms: There is an arrow ? → @ if and only if ? 6 @

Identities: An identity morphism is an arrow ? → ? representing the trivial equality ? = ?

IMTA-RR-2019-01-SC 3/127

1. Basic notions

Composition: The composition law for morphisms is the transitivity of the preorder 6: if ?0 → ?1 and
?1 → ?2 then the transitivity of 6 implies that ?0 → ?2

Note that here, the arrows have a very different meaning to the ones in Sets. Arrows are not at all similar
to functions, but rather the representation of the preorder. Note that there is at most one arrow between two
objects in the proset.

This example will be useful not to base our intuition only on the category of Sets; Sets is a very nice
category with lots of properties and examples, however, it does not represent the "generic" category. There
are categories that behave differently and we need examples of them.

Definition 1.4 (Hom-set). Let C be a category, and let � and � be two objects of C . We denote by
HomC (�, �) the collection of arrows �→ � in the category C .

Example 1.5 (Hom-sets in Sets). In the category Sets, � and � are two sets, and HomSets (�, �) is the set
of functions 5 : �→ �.
Example 1.6 (Hom-sets in a proset). In a proset (%, 6), we have Hom% (?, @) = {(?, @)} ⇔ ? 6 @;
otherwise, Hom% (?, @) = ∅.

Let us study some properties of the arrows of a category. We start by considering isomorphisms and
will then study weaker properties (the categorical equivalents of surjective and injective functions).

Definition 1.7 (Isomorphism [1]). LetC be a category. Amorphism 5 : �→ � ∈ MorC is an isomorphism
when there exists 6 : �→ � ∈ MorC such that 6 ◦ 5 = id� and 5 ◦ 6 = id�. Such a 6 is denoted 5 −1.

Example 1.8 (Isomorphisms in Sets). An isomorphism in Sets is a function that is invertible. Thus, an
isomorphism in Sets is a bĳection.
Example 1.9 (Isomorphisms in a proset). In a proset category, there is at most one arrow ? → @. Thus, an
arrow is an isomorphism whenever we have two arrows ? → @ → ?.
Remark 1.10 (Isomorphisms in other categories). Sets and preorders are the canonical examples of
categories. There are lots of other categories. Some of them are refered to categories of structured sets:

1. LinF: the category of vector spaces over a field F, with linear mappings

2. Groups the category of groups, with group homomorphisms

3. Rings the category of rings, with ring homomorphisms

4. Fields the category of fields, with ring homomorphisms (this one has interesting properties)

In most structured sets categories, a bĳective morphism is an isomorphism, just like in Sets. However,
there exist bĳective morphisms that are not isomorphisms (in Top, the category of topological spaces), and
in more complicated categories, there exist isomorphisms that are not bĳective (see the homotopy category
of CW complexes). This is because bĳectivity is not a property of morphisms that makes sense in terms of
categories.

We have just introduced the notion of an isomorphism, and we saw that in Sets, they were exactly the
bĳections (Example 1.8). Thus, isomorphisms generalise the concept of bĳection to other categories. Now,
one could ask: how to generalise the concept of injections and surjections?

Definition 1.11 (Epimorphisms and monomorphisms [1]). Let C be a category and let 2 : � → � ′ be an
arrow in C .

The arrow 2 is a monomorphism, or is monic, if, for all 5 , 6 : �→ �, 2 ◦ 5 = 2 ◦ 6 ⇒ 5 = 6:

� � � ′
5

6

2

IMTA-RR-2019-01-SC 4/127

1. Basic notions

The arrow 2 is an epimorphism, or is epic, if, for all 5 , 6 : � ′→ �, 5 ◦ 2 = 6 ◦ 2 ⇒ 5 = 6:

� � ′ �
2

5

6

Example 1.12 (Epis and monos in Sets). In Sets, suppose 2 : � → � ′ is monic. Let G, H ∈ � such that
2(G) = 2(H). Let 5G and 5H be the functions:

5G :
{

1 −→ �

8 ↦−→ G
and 5H :

{
1 −→ �

8 ↦−→ H

As 2 is monic, we have 2 ◦ 5G = 2 ◦ 5H ⇒ 5G = 5H ⇒ G = H.
Conversely, if 2 is injective, then for all 5 , 6 : - → �, if 2 ◦ 5 = 2 ◦ 6, then for all G ∈ - ,

2 ◦ 5 (G) = 2 ◦ 6(G) which by injectivity means 5 (G) = 6(G) and then 5 = 6.
Now, if 2 : � → � ′ is epic, let j2 (�) : � ′ → 2 be the characteristic function of 2(�) (the image of

2), and let cste1 : G → 1 be the constant function. We have j2 (�) ◦ 2 = cste1 ◦ 2, which by epicity gives
j2 (�) = cste1, and thus � ′ = 2(�), from which we deduce the surjectivity.

If 2 : � → � ′ is surjective, let 5 , 6 : � ′→ � such that 5 ◦ 2 = 6 ◦ 2. For all H ∈ � ′, there exists an G
such that H = 2(G) and 5 ◦ 2(G) = 6 ◦ 2(G) = 5 (H) = 6(H), which gives 5 = 6, and 2 is epic.

In summary, in Sets, monomorphisms are exactly injective functions, and epimorphisms are exactly
surjective functions.
Example 1.13 (Epis and monos in a proset). In a proset category (%, 6), every arrow is monic and epic.
This is due to the unicity of the arrow between two objects. Note that, here, the arrows that are both monic
and epic, are not necessarily isomorphisms.
Remark 1.14 (Epis and monos in other categories). In most "structured sets" categories, for example,
in Monoids, in Groups, in LinF, the monomorphisms are exactly the injective morphisms. However,
the epimorphisms are not exactly the surjective morphisms. For more information, see [1, Section 2.1,
pp30-31].

Proposition 1.15. Let 5 : �→ � and 6 : �→ � such that 6 ◦ 5 = id�. Then 5 is monic while 6 is epic.

Proof. Let 0, 0′ : �′→ � such that 5 ◦ 0 = 5 ◦ 0′, then 6 ◦ 5 ◦ 0 = 6 ◦ 5 ◦ 0′⇒ 0 = 0′, so 5 is monic.
Let 1, 1′ : �→ �′ such that 1 ◦ 6 = 1′ ◦ 6, then 1 ◦ 6 ◦ 5 = 1′ ◦ 6 ◦ 5 ⇒ 1 = 1′, so 6 is epic.

From Remark 1.12, we deduce that a function in Sets is an isomorphism if and only if it is both monic
and epic. However, the "if and only if" does not hold for most categories (see Example 1.13 or [1, Section
2.1.1, pp32-33] for an example). What does hold is the following:

Corollary 1.16. If 2 : � → � ′ is an isomorphism, then 2 is both a monomorphism and an epimorphism.

We now go back to studying a bit more about categories. We consider here the size of categories, which
might be a concern of a reader with set-theoretic background.

Nothing in Definition 1.1 implies that ObC or MorC should be sets (nor should be HomC (�, �)). In
fact, ObSets is not a set. In that sense, categories can be as big as possible. However, in the scope of this
course, we will only use somewhat small categories, in the following sense.

Definition 1.17 (Small, locally small and large categories [2]). A category C is small if both ObC and
MorC are sets; otherwise, it is large.

A category C is locally small if, for all objects �, � ∈ C , the Hom-set HomC (�, �) is a set.

Example 1.18. Sets is large but locally small.
Example 1.19. If (%, 6) is a proset, then it is a small (thus locally small) category.
Example 1.20. The following example is inspired from set-theory. If +U is the U-th set of the von Neumann
hierarchy [3, Definition 2.1, p. 95], and if _ is a limit ordinal, then we define the category +_ by:

IMTA-RR-2019-01-SC 5/127

1. Basic notions

Objects: An object in +_ is any set � ∈ +_

Morphisms: A morphism in +_ is any function 5 : �→ � for �, � ∈ +_

Identities: An identity morphism is an identity function id� : �→ �

Composition: The composition law for morphisms is the usual composition of functions

We can see +_ as a truncated Sets category. The category +_ is a small category.
Example 1.21. For an example of a large, non-locally small category, see [4].
Remark 1.22. Small categories are locally small (because "sets contain sets").

In this course, we will consider locally-small categories, for a reason explained later. For now, we
continue with a few more basic notions.

We also define mappings somewhat similar to functions, or homomorphisms, between categories.

Definition 1.23 (Functor [1]). Let C and D be categories.
A functor � : C → D is a mapping from C to D such that:

� ∀� ∈ ObC , � (�) ∈ ObD

� ∀ 5 : �→ � ∈ MorC , � (5) : � (�) → � (�) ∈ MorD

� ∀� ∈ ObC , � (1�) = 1� (�)

� ∀ 5 : �→ �, 6 : �→ � ∈ MorC , � (6 ◦ 5) = � (6) ◦ � (5)

In other words, a functor � : C → D sends the objects (resp. morphisms) in C to objects (resp.
morphisms) in D , preserving domains and codomains of morphisms, as well as identities and composition.

Example 1.24 (Functors between prosets). If (%1, 61) and (%2, 62) are prosets, then a functor between
those two categories is a monotone function such that ? 61 @ ⇒ � (?) 62 � (@).
Example 1.25 (Forgetful functors). Every category of structured sets C , for example C = LinF or
C = Fields, comes with a functor � : C → Sets that "takes away the structure". For example, if C = LinF,
then it sends a vector space to its underlying set. Such a functor generally has interesting properties as well
(but we will have to wait until Section 5.7).

One can interpret a functor C → D as a way to have the picture of the category C into the category D
([1]). It is the idea behind diagrams as we will see in Section 7.
Remark 1.26. It is important to note here that the image of a category by a functor is not necessarily a
category. Consider the following functor:

� � (�)

�

↦→ � (�) = � (�)

�

� � (�)

5

� (5)

� (6)

6

IMTA-RR-2019-01-SC 6/127

1. Basic notions

In the domain category, there is no composite 6 ◦ 5 because the domain of 6 is not the codomain of 5 .
However, in the image of the functor, we have an arrow � (6) whose domain coincides with the codomain
of � (5). If it were a category, it would need a composite arrow � (?) = � (6) ◦ � (5), which doesn’t exist in
the first category.

Of course, we can complete the image of a functor and make it a category.

Sometimes, we come across some functors that behave strangely. Namely, sometimes a functor
� : C → D may send 2 : � → � ′ to � (2) : � (� ′) → � (�) (note the inversion). We will give an example
of such a functor. What is happening, is that � is actually not a functor C → D but somehow defined on a
similar, but "reversed" category of C .

Definition 1.27 (Opposite category [1]). Let C be any category. We call opposite, or dual category of C ,
denoted by C

op , the following category:

Objects: An object in C
op is an object in C

Morphisms: An arrow 5 : �→ � in C
op is an arrow 5 : �→ � in C

Identities: An identity in C
op is an identity in C

Composition: The composition law in C
op is the same as in C

Basically, the opposite category C
op is the same category as C , with inverted arrows.

If a functor � : C → D sends 2 : � → � ′ to � (2) : � (� ′) → � (�), then � is not actually defined on
C but rather on C

op : � : C
op → D . However, it is often simpler to consider only functors on C , hence the

following notions:

Definition 1.28 (Covariant and contravariant functor). A functor � : C → D is called covariant if it sends
5 : �→ � to � (5) : � (�) → � (�).

A functor � : C → D is called contravariant if it sends 5 : � → � to � (5) : � (�) → � (�), or
equivalently, if � : C

op → D is a covariant functor.

Two examples of such functors are the following:

Definition 1.29 (Covariant Hom-set functor [5]). Let C be a (locally small) category, and let � ∈ C be an
object.

The mapping HomC (�) − :
{

C −→ Sets
� ↦−→ HomC (�, �)

defines the covariant Hom-set functor. It

sends an object � ∈ C to the set HomC (�, �) of arrows from � to �, and an arrow 1 : � → �′ to the
arrow HomC (�, 1) : HomC (�, �) → HomC (�, �′) in Sets.

Definition 1.30 (Contravariant Hom-set functor [5]). Let C be a (locally small) category, and let � ∈ C be
an object.

The mapping HomC (−, �) :
{

C
op −→ Sets
� ↦−→ HomC (�, �)

defines the contravariant Hom-set functor.

It sends an object � ∈ C
op to the set HomC (�, �) of arrows from � to �, and an arrow 0 : �→ �′ to the

arrow HomC (0, �) : HomC (�′, �) → HomC (�, �) in Sets.

Remark 1.31. Their names are not stolen: �→ HomC (�) � is a covariant functor and �→ HomC (�) �
is a contravariant functor.

Note that both Hom-set functors imply C to be locally small. As stated a few paragraphs before, all the
categories we will encounter in this course are locally small, unless stated otherwise, because we will often
need this functor to be defined.

IMTA-RR-2019-01-SC 7/127

1. Basic notions

Also note that along this course, we will encounter lots of examples of contravariant functors. This
notion may look confusing. With a bit of practice, it is no more a problem.

We continue and end this section with a final basic notion of category theory, namely, natural
transformations, which are a kind of mappings between functors.

Definition 1.32 (Natural transformation [1]). Let C and D be two categories, and let �, � : C →
D be functors. A natural transformation \ : � → � consists of a collection of morphisms in D
(\� : � (�) → � (�))�∈ObC

such that, for all �, � ∈ C , and for all ℎ : � → �, the following square
commutes:

� � (�) � (�)

{ X

� � (�) � (�)

ℎ � (ℎ)

\�

� (ℎ)

\�

(1)

For each object � ∈ C , the morphism \� is called the �-component of \.
The natural transformation \ : � → � can be written in the following diagram:

C D

�

�

\

We denote by Nat (�, �) the collection of all natural transformations between � and �.

Depending on the context, and for the sake of readability, the �-component of a natural transformation
\ can be written \� as above (� as an index) or \ (�) (� as a parameter).

Natural transformations can be seen as a way to extract the parameters �, � and ℎ from � (�), � (�)
and � (ℎ) and input them into �, while preserving arrows. It’s a variable substitution.
Remark 1.33. Consider two functors �, � : C → X , and their respective (categorified) images Im (�)
and Im (�). A natural transformation \ : � → � may be seen as a functor \̂ : Im (�) → Im (�) such that:

1. for all object � ∈ C , \̂ (� (�)) = � (�) (\̂ preserves the objects)

2. for all arrow 2 : � → � ′ ∈ C , \̂ (� (2)) = � (2) with � (2) : � (�) → � (� ′) and � (2) : � (�) →
� (� ′) (\̂ preserves the arrows)

3. \̂ makes the natural transformation diagram (Diagram 1) commute

Note that this view of natural transformations is not standard, but it may help some readers to grasp this
notion.

Before introducing the notion of natural isomorphism, we need to make something clear on the nature
of natural transformations.

Definition 1.34 (Composition of natural transformations). Let C , D be categories, and let �, � and � be
functors C → D .

If \ : � → � is the natural transformation \ =
(
� (�) \�−→ � (�)

)
�∈C

and [: � → � is the natural

transformation [=
(
� (�)

[�−→ � (�)
)
�∈C

then the composition of \ by [is [◦ \ : � → �, defined by

[◦ \ =
(
� (�)

[�◦\�−→ � (�)
)
�∈C

.

IMTA-RR-2019-01-SC 8/127

1. Basic notions

Definition 1.35 (Functor category [1]). Let C and D be two categories. The functor category, denoted by
Func (C ,D), or by DC , is the following category:

Objects: The objects are the functors � : C → D

Morphisms: A morphism between two functors � and � is a natural transformation \ : � → � =(
� (�) \�−→ � (�)

)
�∈C

Identities: An identity on a functor� is the identity natural transformation id� =
(
� (�)

id� (�)−→ � (�)
)
�∈C

Composition: The composition law in Func (C ,D) is defined in Definition 1.34.

Natural transformations are morphisms between functors. Besides, if �, � : C → D are two functors,
then the notation Nat (�, �) actually stands for HomFunc(C ,D) (�, �); however Nat (�, �) is usually more
convenient.

Using Definition 1.35 (functor category), and Definition 1.7 (isomorphism), we deduce the definition of
a natural isomorphism:

Definition 1.36 (Natural isomorphism [1]). Let �, � : C → D be functors. A natural isomorphism
\ : � → � is a natural transformation that is an isomorphism in the functor category Func (C ,D).

It is easy to see that:

Lemma 1.37. A natural transformation \ : � → � is a natural isomorphism whenever the �-components
\� : � (�) → � (�) are isomorphisms.

This lemma gives a useful description of what a natural isomorphism is. It makes it easier to look for
an inverse. We will use this lemma in the following section.

This lemma does not exactly hold for monic or epic natural transformations. In fact, we have only one
implication.

Proposition 1.38. Let X and C any categories. Let �, � : X → C be two functors and let U : � → �

be a natural transformation between those two functors.
If for all - ∈ X , U- : � (-) → � (-) is monic (resp. epic), then so is U : � → �.

Proof. Suppose that each --component is monic. The proof is similar when we are considering epic
components.

Consider V, V′ : � → � such that U ◦ V = U ◦ V′.

� � � ⇔ � (-) � (-) � (-)
V

V′
U

V-

V′
-

U-

In terms of components, this means that for all - ∈ X , we have U- ◦ V- = U- ◦ V′- . As every
component is monic, this gives V- = V′- , and then V = V

′. Thus, U is monic.

Surprisingly, the converse does not hold in general. In fact, it needs some more properties about the
codomain category, but this is far beyond the scope of this crash course.

We have now introduced the basic notions of category theory: categories, hom-sets, isomorphisms,
monomorphisms, epimorphisms, opposite categories, (covariant or contravariant) functors, natural transfor-
mations. We can now move on to the next section, in which we introduce the very first important result
about category theory.

IMTA-RR-2019-01-SC 9/127

2. Yoneda lemma

2. Yoneda lemma
Given a functor � : C → Sets, can we transform it into a Hom-set functor? The answer is provided by the
Yoneda lemma. The Yoneda lemma is based on a natural transformation, as illustrated by the following
series of figures.

Diagrame incomplet !!!!

(C) -

. /

(Sets)

H 5 ◦ H

� (-)

� (.) � (/)

H 5 ◦H

�

5

�

HomC (-,−) HomC (-,−)

� HomC (-, 5)

� (H) � (5)◦� (H)

� (5)

Diagrame incomplet !!!!
The Yoneda lemma is surprisingly treated as a full theorem. However, the Yoneda lemma requires

lemmas.

Lemma 2.1 (The simplest representation lemma). Let X ,C be categories, and let * : X → C be a
functor.

1. ∀� ∈ ObC ,∀G : - → - ′ ∈ MorX ,∀2 ∈ HomC (�,* (-)) ,HomC (�,* (G)) (2) = * (G) ◦ 2

2. ∀- ∈ ObX ,∀G : - ′→ - ′′ ∈ MorX ,∀H ∈ HomX (-, - ′) , G ◦ H = HomX (-, G) (H)

3. ∀- ∈ ObX ,∀G : - → - ′ ∈ MorX , G = HomX (-, G) (id-)

Proof. 1. By direct application of the definitions of a functor (Definition 1.23) and of the covariant Hom-set
functor (Definition 1.29):

HomC (�,* (G)) :
{
HomC (�,* (-)) −→ HomC (�,* (- ′))

0 ↦−→ HomC (�,* (G)) (0)
where HomC (�,* (G)) (0) is the morphism such that:

�

X

* (-) * (- ′)

0 HomC ,� (* (G)) (0)

* (G)

which gives HomC (�,* (G)) (0) = * (G) ◦ 0, hence the result.
2. Consequence of first part of the lemma with C = X ,* = IdC , 2 = G and - = �.
3. Consequence of second part of the lemma with - = - ′ and H = id- .

IMTA-RR-2019-01-SC 10/127

2. Yoneda lemma

Lemma 2.2. Let X ,C be two categories and let � : X → Sets be a functor.
Given any - ∈ ObX and any natural transformation i =

(
HomX (-,.)

i.−→ � (.)
)
. ∈ObX

such that:

X Sets

HomX (-,.)

�

i

then i- (id-) is the unique element 4 ∈ � (-) such that:

∀. ∈ ObX ,∀H ∈ HomX (-,.) , i. (H) = � (H) (4)

Proof. Let . ∈ ObX , and let H ∈ HomX (-,.).
By simplest representation lemma (Lemma 2.1, item 3), we have:

H = HomX (-, H) (id-)

Thus:

i. (H) = i. (HomX (-, H) (id-))
= (i. ◦ HomX (-, H)) (id-)

Besides, i : HomX (-,−) → � is a natural transformation; thus using Definition 1.32, diagram 1 with
� = HomX (-,−) and � = �, we have:

i. ◦ HomX (-, H) = � (H) ◦ i-
which yields:

i. (H) = (� (H) ◦ i-) (id-)
= � (H) (i- (id-))

Hence the result. Now we have to prove that 4 = i- (id-) is unique with that property. Let 4′ ∈ � (-)
such that ∀. ∈ ObX ,∀H ∈ HomX (-,.) , i. (H) = � (H) (4′) = � (H) (4). Using - = . and H = id-
yields:

� (id-) (4′) = � (id-) (4)
id� (-) (4′) = id� (-) (4)

4′ = 4

Lemma 2.3. Let X ,C be two categories and let � : X → Sets be a functor. Let - ∈ ObX and
4 ∈ � (-).

The mapping i =
(
HomX (-,.)

i.−→ � (.)
)
. ∈ObX

defined by:

i. :
{
HomX (-,.) −→ � (.)

H ↦−→ � (H) (4)
is a natural transformation such that i- (id-) = 4.

IMTA-RR-2019-01-SC 11/127

2. Yoneda lemma

Proof. We need to prove that, for any H : . → . ′ ∈ MorX , the following square commutes:

. HomX (-,.) � (.)

{ X

. ′ HomX (-,. ′) � (. ′)

H HomX (-,H)

i.

� (H)

i. ′

that is, we want:

∀H : . → . ′, i. ′ ◦ HomX (-, H) = � (H) ◦ i.
Let H : . → . ′ be an arrow in X . For all G ∈ HomX (-,.) = dom (HomX (-, H)):

i. ′ ◦ HomX (-, H) (G) = i. ′ (H ◦ G) (2)
= � (H ◦ G) (4) (3)
= � (H) ◦ � (G) (4) (4)
= � (H) ◦ i. (G) (5)

Equation 2 is due to the simplest representation lemma (Lemma 2.1-2); Equations 3 and 5 are due to
the definition of i and Equation 4 comes from the definition of a functor (Definition 1.23).

Besides:

i- (id-) = � (id-) (4)
= id� (-) (4)
= 4

Definition 2.4 (The b natural isomorphism). Let X be a category, let � : X → Sets be a functor and let
- be an object in ObX .

We define:

b�,- :
{
Nat (HomX (-,−) , �) −→ � (-)

i ↦−→ i- (id-)
The b natural isomorphism is the mapping b : �, - → b�,- .

Definition 2.5 (The \ natural isomorphism). Let X be a category, let � : X → Sets be a functor and let
- be an object in ObX .

We define:

\�,- :

� (-) −→ Nat (HomX (-,−) , �)

4 ↦−→ i
�,-
4 =

(
i
�,-

4,.
:
{
HomX (-,.) −→ � (.)

H ↦−→ � (H) (4)

)
. ∈ObX

The \ natural isomorphism is the mapping \ : �, - → \�,- .

Please note that those two natural isomorphisms are standard in the demonstrations of the Yoneda
lemma; however their notation isn’t. We highlight those two ismorphisms because they will have several
occurrences in the current course.

IMTA-RR-2019-01-SC 12/127

2. Yoneda lemma

Proposition 2.6. The mappings b and \ are both actual natural isomorphisms, covariant in � and
contravariant in - , and they are inverse of each other.

Corollary 2.7 (Yoneda lemma [2]). Let X be a category, let � : X → Sets be a functor and let - be an
object in ObX .

Then, Nat (HomX (-,−) , �) � � (-).

Proof. Let � : X → Sets and let - ∈ ObX .
[Inverse]
We first prove that \ is the inverse of b. Then, we will prove that both are natural transformations.
Let 4 ∈ � (-).

b�,- ◦ \�,- (4) = b�,-
(
i�,-4

)
= i

�,-

4,-
(id-) (6)

= 4 (7)

The transition 6⇒ 7 comes from Lemma 2.3.
Similarly, let i ∈ Nat (HomX (-,−) , �). Note that, according to Lemma 2.2, i is:

i =

(
i. :

{
HomX (-,.) −→ � (.)

H ↦−→ � (H) (i- (id-))

)
. ∈ObX

Thus:

\�,- ◦ b�,- (i) = \�,- (i- (id-))

=

(
i
�,-

i- (id-) ,. :
{
HomX (-,.) −→ � (.)

H ↦−→ � (H) (i- (id-))

)
. ∈ObX

= i

Consequently, \ and b are mutually inverses.
We only have to check their naturalities.

[b is a natural transformation in �]
Let U : � → � ′ be a natural transformation. We want to check if the following diagram commutes:

� Nat (HomX (-,−) , �) � (-)

{

� ′ Nat (HomX (-,−) , � ′) � ′(-)

U Nat(HomX (-,−) ,U)

b�,-

U-

b�′,-

Let i ∈ Nat (HomX (-,−) , �).

b�,- ◦ Nat (HomX (-,−) , U) (i) = b�,- (U ◦ i)
= (U- ◦ i-) (id-)
= U- (i- (id-))
= U- ◦ b�,- (i)

IMTA-RR-2019-01-SC 13/127

2. Yoneda lemma

which gives the expected result.

[b is a natural transformation in -]
Recall that b is contravariant in - . Let G : - ′ → - ∈ MorX . We want to check if the following

diagram commutes:

- ′ Nat (HomX (-,−) , �) � (-)

{

- Nat (HomX (- ′,−) , �) � (- ′)

G Nat(HomX (G,−) ,�)

b�,-

� (G)

b�,-′

The arrows Nat (HomX (G,−) , �) and � (G) are inverted because b is supposed to be contravariant in
- .

Let i ∈ Nat (HomX (G,−) , �).
On the one hand:

b�,- ′ ◦ Nat (HomX (G,−) , �) (i) = b�,- ′ (i ◦ HomX (G,−))
= (i ◦ HomX (G,−))- ′ (id- ′)
= i- ′ ◦ HomX (G, - ′) (id- ′)
= i- ′ (id- ′ ◦ G)
= i- ′ (G)

On the other hand, note that i is also a natural transformation. Thus, for G : - ′→ - in X
op (note that

we are in the opposite category), the following diagram does commute:

- ′ HomX (-, -) � (-)

{ X

- HomX (-, - ′) � (- ′)

G HomX (-,G)

i-

� (G)

i-′

In particular: � (G) ◦ i- = i- ′ ◦ HomX (-, G), which gives:

� (G) ◦ b�,- (i) = � (G) (i- (id-))
= i- ′ ◦ HomX (-, G) (id-)
= i- ′ (id- ◦ G)
= i- ′ (G)
= b�,- ′ ◦ Nat (HomX (G,−) , �) (i)

Consequently, b is natural in both its parameters - and �.

[\ is a natural transformation in �]
The idea is similar to b. Let U : � → � ′ be a natural transformation. We want to prove that

Nat (HomX (-,−) , U) ◦ \�,- = \�,- ◦ U- .
Let 4 ∈ � (-).

\�,- ◦ U- (4) = i�
′,-

U- (4)

IMTA-RR-2019-01-SC 14/127

2. Yoneda lemma

and:

Nat (HomX (-,−) , U) ◦ \�,- (4) = Nat (HomX (-,−) , U)
(
i�,-4

)
= U ◦ i�,-4

where U ◦ i�4 is the natural transformation:

U ◦ i�4 =

(
U. ◦ i�,-4,.

:
{
HomX (-,.) −→ � ′(.)

H ↦−→ U. (� (H) (4))

)
. ∈ObX

(8)

=

(
U. ◦ i�,-4,.

:
{
HomX (-,.) −→ � ′(.)

H ↦−→ � ′(H) ◦ U- (4)

)
. ∈ObX

(9)

= i
� ′,-
U- (4)

= \�,- ◦ U- (4)

The transition 8⇒ 9 is due to the naturality of U.

[\ is a natural transformation in -]
Let G : - ′ → - be a morphism in X . We want Nat (HomX (G,−) , �) ◦ \�,- = \�,- ′ ◦ � (G). Let

4 ∈ � (-):

Nat (HomX (G,−) , �) ◦ \�,- (4) = Nat (HomX (G,−) , �)
(
i�,-4

)
= i�,-4 ◦ HomX (G,−)

where i�,-4 ◦ HomX (G,−) is the following natural transformation:

i�,-4 ◦ HomX (G,−) =
(
i
�,-

4,.
◦ HomX (G,.) :

{
HomX (- ′, .) −→ � (.)

H ↦−→ i
�,-

4,.
(H ◦ G)

)
. ∈ObX

However:

i
�,-

4,.
(H ◦ G) = � (H ◦ G) (4)

= � (H) (� (G) (4))

which yields:

i�,-4 ◦ HomX (G,−) = i�,-
′

� (G) (4)

= \�,- ′ ◦ � (G) (4)

Consequently, \ is natural in both its parameters - and �.

[Conclusion]
Both b and \ are natural transformations in � and - , and they are mutually inverses. As a consequence,

b and \ are natural isomorphisms between Nat (HomX (-,−) , �) and � (-).

IMTA-RR-2019-01-SC 15/127

2. Yoneda lemma

Remark 2.8. As stated inDefinition 1.35, Nat (HomX (-,−) , �) corresponds to theHom-set: HomFunc(X ,Sets)
(
HomX

op (-,−) , �
)
.

Note that it’s X
op and not X , because the natural isomorphism is contravariant in - .

Remark 2.9. The Yoneda lemma has a central role due to its various meanings and consequences.

1. First, depending on the "size" of X , we have different interpretations. If X is small, then
Nat (HomX (-,−) , �) is a set because SetsX becomes locally small. If X is locally small, then it
says nothing on SetsX . However, the Yoneda lemma states that Nat (HomX (-,−) , �) is always a
set. If X is non-locally small, then the functor HomX (-,−) doesn’t exist and the Yoneda lemma
doesn’t hold there.

2. Secondly, from a set-theoretic point of view, the Yoneda lemma states that there are not that many
natural transformations: there are exactly card (� (-)) natural transformations HomX (-,−) → �,
as each of these natural transformations is entirely determined by one element in � (-).

3. Thirdly, according to the Yoneda lemma, if � = HomX (.,−):

Nat (HomC (-,−) ,HomC (.,−)) � HomC (., -)

(Note the inversion) As stated in the previous paragraph, each element in HomC (., -) characterises
one natural transformation in Nat (HomC (-,−) ,HomC (.,−)). Consequently, any natural transfor-
mation HomC (-,−) → HomC (.,−) is determined by an arrow. → - using the application \ seen
in the proof of the Yoneda lemma. Consequently, the only arrows HomC (-, �) → HomC (., �)
are of the form HomC (5 , �) for some 5 : . → - .

The dual version of the Yoneda lemma is as follows:

Lemma 2.10 (Contravariant Yoneda lemma). Let X be a category, let� : X
op → Sets be a contravariant

functor and let - be an object in ObX .
Then, Nat (HomX (−, -) , �) � � (-).

The functor - → HomX (-,−) has good properties. Let’s spend some time studying them.

Definition 2.11 (Yoneda embedding [1]). Let C be a category.
The Yoneda embedding is the functor:

H :


C
op −→ Func (C , Sets)
� ↦−→ HomC (�,−)

5 : � → � ↦−→ HomC (5 ,−) : HomC (�,−) → HomC (�,−)

Remark 2.12. Note that the Yoneda embedding is defined C
op . Thus, 5 : � → � in C becomes 5 : � → �

in C
op , and H(5) has the direction of 5 ∈ C

op .

Definition 2.13 (Injective, surjective, full, faithful, embedding [1]). Let � : C → D be a functor.

1. (a) The functor � is said injective (resp. surjective) on objects if Ob� : ObC → ObD is injective
(resp. surjective).

(b) The functor � is said injective (resp. surjective) on arrows if Mor� : MorC → MorD is
injective (resp. surjective).

2. For all �, � ∈ ObC , define the mapping:

��,� :
{
HomC (�, �) −→ HomD (� (�), � (�))

5 ↦−→ � (5)
IMTA-RR-2019-01-SC 16/127

2. Yoneda lemma

(a) The functor � is said faithful if ∀�, � ∈ ObC , ��,� is injective.
(b) The functor � is said full if ∀�, � ∈ ObC , ��,� is surjective.

3. The functor � is called an embedding if it is injective on objects, full and faithful.

Difference between injective on arrows and faithful?

Proposition 2.14. The Yoneda embedding is an actual embedding.

Proof. The injectivity on objects is easy. Suppose H(�) = H(�); then:

H(�) = H(�)
HomC (�,−) = HomC (�,−)

⇒ HomC (�,�) = HomC (�,�)

Those two sets are equal. Thus, id� ∈ HomC (�,�) ⇒ id� ∈ HomC (�,�) ⇒ � = �. Thus, H is
injective on objects.

As noted in Remark 2.9-3, the Yoneda lemma implies that:

Nat (HomC (�,−) ,HomC (�,−)) � HomC (�,�)
Hom

SetsC
op (H(�), H(�)) � HomC (�,�)

Proposition 2.6 also states that the following natural transformation is an isomorphism:

\H (�) ,� :

{
HomC (�, �) −→ Hom

SetsC
op (H(�), H(�))

5 ↦−→ i
H (�) ,�
5

where i 5 is:

i
H (�) ,�
5

=

(
i
H (�) ,�
5 ,-

:
{
HomC (�, -) −→ H(�) (-)

6 ↦−→ H(�) (6) (5)

)
- ∈ObC

=

(
i
H (�) ,�
5 ,-

:
{
HomC (�, -) −→ HomC (�, -)

6 ↦−→ HomC (�, 6) (5)

)
- ∈ObC

=

(
i
H (�) ,�
5 ,-

:
{
HomC (�, -) −→ HomC (�, -)

6 ↦−→ 6 ◦ 5

)
- ∈ObC

We compare with what H(5) is:

H(5) =
(
H- (5) :

{
H(�) (-) −→ H(�) (-)

6 ↦−→ H- (5) (6)

)
- ∈ObC

=

(
H- (5) :

{
HomC (�, -) −→ HomC (�, -)

6 ↦−→ HomC (5 , -) (6)

)
- ∈ObC

=

(
H- (5) :

{
HomC (�, -) −→ HomC (�, -)

6 ↦−→ 6 ◦ 5

)
- ∈ObC

= i
H (�) ,�
5

Consequently:

IMTA-RR-2019-01-SC 17/127

2. Yoneda lemma

\H (�) ,� =

{
HomC (�, �) −→ Hom

SetsC
op (H(�), H(�))

5 ↦−→ H(5)
which yields that H is full and faithful.

Using the Yoneda lemma (both covariant and contravariant) and the fact that the Yoneda embedding is
an embedding, one can show the following corollaries:

Corollary 2.15. Let C be a locally small category. Then, ∀�, � ∈ ObC , 5 : � → � is an isomorphism
⇔ HomC (−, 5) : HomC (−, �) → HomC (−, �) is an isomorphism.

Corollary 2.16. Let C be a locally small category. Then, ∀�, � ∈ ObC , 5 : � → � is an isomorphism
⇔ HomC (5 ,−) : HomC (�,−) → HomC (�,−) is an isomorphism.

Corollary 2.17. LetC be a locally small category. Then, ∀�, � ∈ ObC , HomC (�,−) � HomC (�,−) ⇒
� � �.

Corollary 2.18. LetC be a locally small category. Then, ∀�, � ∈ ObC , HomC (−, �) � HomC (−, �) ⇒
� � �.

IMTA-RR-2019-01-SC 18/127

3. Universal elements, universal arrows, representations

3. Universal elements, universal arrows, representations
Introduction lol.

Definition 3.1 (Universal element [2]). Let C be a category, and � : C → Sets a functor.
The pair (-∗, 4∗) ∈ ObC ×� (-∗) is a universal element for � if the natural transformation \�,-∗ (4∗) :

HomC (-∗,−) → � is an isomorphism.

Remark 3.2. When one sees Definition 3.1, the two natural questions should be:

� Is this universal element unique?

� Does the Yoneda embedding have a universal element?

The answer to the second question is easy: no, the Yoneda embedding doesn’t have a universal element,
because it is a functor C → Func

(
C

op
, Sets

)
. However, for � ∈ C , its �-component H(�) : C

op → Sets
could have one.

We are looking for a pair (-∗, 4∗) such that:

\H (�) ,-∗ (4∗) =
(
i- :

{
HomC (-∗, -) −→ H(�) (-)

G ↦−→ H(�) (G) (4∗)

)
- ∈ObC

=

(
i- :

{
HomC (-∗, -) −→ HomC (�, -)

G ↦−→ HomC (�, G) (4∗)

)
- ∈ObC

=

(
i- :

{
HomC (-∗, -) −→ HomC (�, -)

G ↦−→ G ◦ 4∗
)
- ∈ObC

What could the pair (-∗, 4∗) be for \H (�) ,-∗ (4∗) to be an isomorphism? There is one obvious answer:
take (�, id�).

But is this answer unique? Probably not. But is it unique up to isomorphism? The answer to this
question lies in Proposition 3.5. Before, we have to show an intermediate proposition.
Remark 3.3. If the functor � : C → Sets is contravariant, then the universal element is a pair (-∗, 4∗) such
that \op

�,-∗ (4∗) : HomC (−, -∗) → �, where \op
�,-

: � (-) → Nat (HomC (−, -) , �) is the dual of \�,- .

Proposition 3.4 (Universal mapping property [5]). Let C be a category and � : C → Sets a functor.
The pair (�∗, 4∗) is a universal element for � if and only if ∀- ∈ ObC ,∀4 ∈ � (-), ∃!G ∈

HomC (�∗, -) 4 = � (G) (4∗).

Proof. Using Definition 3.1:

(�∗, 4∗) is a universal element for �

⇔\�,-∗ (4∗) =
(
i
�,-∗

4∗,- :
{
HomX (-∗, -) −→ � (-)

G ↦−→ � (G) (4∗)

)
- ∈ObX

is an isomorphism

⇔∀- ∈ ObC , i
�,-∗

4∗,- :
{
HomX (-∗, -) −→ � (-)

G ↦−→ � (G) (4∗) is an isomorphism

⇔∀- ∈ ObC ,∀4 ∈ � (-), ∃!G ∈ HomC (�∗, -) 4 = � (G) (4∗)

Proposition 3.5. Let C be a category, and � : C → Sets a functor.
If (-0, 40) and (-1, 41) are universal elements for �, then there exists a unique isomorphism i : -0 → -1

such that � (i) (40) = 41.

IMTA-RR-2019-01-SC 19/127

3. Universal elements, universal arrows, representations

Proof. If (-0, 40) and (-1, 41) are universal elements for �, then by Universal Mapping Property (Proposi-
tion 3.4):

1. there is a unique i0 ∈ HomC (-0, -1) such that � (i0) (40) = 41.

2. there is a unique i1 ∈ HomC (-1, -0) such that � (i1) (41) = 40.

3. there exists a unique k0 ∈ HomC (-0, -0) such that � (k0) (40) = 40. However, id-0 also has this
property, so k0 = id-0 .

4. there exists a unique k1 ∈ HomC (-1, -1) such that � (k1) (41) = 41. However, id-1 also has this
property, so k1 = id-1 .

Now let us study i0 ◦ i1 and i1 ◦ i0. Combining items 1 and 2, we have:

� (i0) (� (i1) (41)) = � (i0) (40)
� (i0) ◦ � (i1) (41) = 41

� (i0 ◦ i1) (41) = 41 (10)

� (i1) (� (i0) (40)) = � (i1) (41)
� (i1) ◦ � (i0) (40) = 40

� (i1 ◦ i0) (40) = 40 (11)

As id-0 (resp. id-1) is the unique arrow such that �
(
id-0

)
(40) = 40 (resp. �

(
id-1

)
(41) = 41), we

deduce from Equation 10 (resp. from Equation 11) that i1 ◦ i0 = id-0 (resp. i0 ◦ i1 = id-1). Consequently,
i0 is the isomorphism described in the proposition.

Definition 3.6 (Representable functor). Let C be a category, and � : C → Sets a functor.
A representation of � is a pair (-∗, k) where:

� -∗ ∈ ObC is called the representing object of �

� k : HomC (-∗,−) → � is a natural isomorphism.

The functor � is said representable if such a representation exists.

Remark 3.7. As in Remark 3.3, a representation of a contravariant functor � is a pair (-∗, k) such that
k : HomC (−, -∗) → � is a natural isomorphism.

Lemma 3.8. Let C be a category, and � : C → Sets a functor.
If (-∗, 4∗) is a universal element for � then

(
-∗, \�,-∗ (4∗)

)
is a representation of �.

Lemma 3.9. Let C be a category, and � : C → Sets a functor.
If (-∗, k) is a representation of �, then (-∗, k-∗ (id-∗)) is a universal element for �.

Theorem 3.10. Let C be a category, and � : C → Sets a functor.
There exists a universal element for � ⇔ � is representable.

Theorem 3.10 is an immediate consequence of the two previous lemmas. Besides, the two lemmas give
a way to convert a universal element into a representation.

Proof of Lemma 3.8. Let (-∗, 4∗) be a universal element for �; it follows from Definition 3.1 that
\�,-∗ (4∗) : HomC (-∗,−) → � is a natural isomorphism. Thence,

(
-∗, \�,-∗ (4∗)

)
is a representation of

�.

IMTA-RR-2019-01-SC 20/127

3. Universal elements, universal arrows, representations

Proof of Lemma 3.9. Let (-∗, k) be a representation of�. ByProposition 2.6, we havek = \�,-∗ (k-∗ (id-∗)).
Besides, by definition of a representation, k = \�,-∗ (k-∗ (-∗)) is an isomorphism, which gives that
(-∗, k-∗ (id-∗)) is a universal element for �.

Corollary 3.11. Representations of a functor � are unique up to isomorphism.

Definition 3.12 (Universal arrows [2]). Let X ,C be two categories. Let* : X → C be a functor and let
� ∈ ObC .

A universal arrow from � to * is a pair
(
*#
�
, [�

)
, where *#

�
∈ ObX and [� ∈ HomC

(
�,*

(
*#
�

))
,

such that, for all - ∈ ObX , for all 2 ∈ HomC (�,* (-)), there exists a unique G ∈ HomX
(
*#
�
, -

)
such

that 2 = * (G) ◦ [� .

In the following, this unique G will be denoted*#
2 , such that: 2 = *

(
*#
2

)
◦ [� .

Here is a diagram that sums up the idea behind universal arrows:

(X) *#
�

-

(C) �

X

*
(
*#
�

)
* (-)

*#
2

* *

[� 2

* (*#
2)

Lemma 3.13. Let X ,C be two categories. Let* : X → C be a functor and let � ∈ ObC .
If

(
*#
�
, [�

)
is a universal arrow from � to*, then*#

[�
= id*#

�
.

Proof. The arrow*#
[�

is the unique arrow that verifies: [� = *
(
*#
[�

)
◦[� . Of course, [� = *

(
id*#

�

)
◦[� ,

so id*#
�
= *#

[�
.

Proposition 3.14. Let X ,C be two categories. Let* : X → C be a functor and let � ∈ ObC .

1.
(
*#
�
, [�

)
is a universal arrow from � to*⇔ \HomC (�,* (−)) ,*#

�
([�) is a natural isomorphism.

2. If for all � ∈ ObC , there exists -� ∈ ObC and a natural isomorphism i : HomX (-� ,−) →
HomC (�,* (−)), then

(
-� , i-�

(
id-�

))
is a universal arrow from � to*.

Proof. [Item 1]
By definition of a universal arrow

(
*#
�
, [�

)
, for all - ∈ ObX , for all 2 ∈ HomC (�,* (-)), there

exists a unique G ∈ HomX
(
*#
�
, -

)
such that 2 = * (G) ◦ [� ; equivalently, for all - ∈ ObX , the function:

i- :
{
HomX

(
*#
�
, -

)
−→ HomC (�,* (-))

G ↦−→ * (G) ◦ [�
is an isomorphism; that is, those i- are the components of \HomC (�,* (−)) ,*#

�
([�), which is a natural

isomorphism.
[Item 2]
Let � ∈ C and - ∈ X .
We have -� ∈ ObC and a natural isomorphism i : HomX (-� ,−) → HomC (�,* (−)). We have

i = \HomC (�,* (−)) ,-�
(
i-�

(
id-�

))
, which by Item 1 yields that

(
-� , i-�

(
id-�

))
is a universal arrow

from � to*.

IMTA-RR-2019-01-SC 21/127

3. Universal elements, universal arrows, representations

When seeing the definitions of universal elements and arrows, we wonder what could be the link
between both. In fact, universal arrows and universal elements are two very close notions.

Proposition 3.15. Let X ,C be two categories. Let* : X → C be a functor and let � ∈ ObC .
If

(
*#
�
, [�

)
is a universal arrow from � to *, then

(
*#
�
, [�

)
is also a universal element for

HomC (�,* (−)).
Proof. This proposition directly follows from Definitions 3.1 (universal element) and 3.12 (universal arrow).
In fact, by definition of a universal element for HomC (�,* (−)), the following natural transformation
should be an isomorphism:

\HomC (�,* (−)) ,*#
�
([�) =

(
i. :

{
HomC

(
*#
�
, .

)
−→ HomC (�,* (.))

G ↦−→ HomC (�,* (G)) ([�)

)
. ∈ObC

By simplest representation lemma (Lemma 2.1), we have:

HomC (�,* (G)) ([�) = * (G) ◦ [�
By definition of a universal arrow, ∀. ∈ ObX ,∀2 ∈ HomC (�,* (.)) , ∃!2 = * (G) ◦ [� = �[� (.) (G).

Thus, i. ∈ MorSets is a bĳection, thus an isomorphism; consequently, the natural transformation
\HomC (�,* (−)) ,-� ([�) is also an isomorphism.

Remember that universal elements are defined for a functor C → Sets, and not just for a functor
between any two categories. The converse proposition is a bit less general.

Proposition 3.16. We denote by 1 the set P (∅) = {∅} = 1 where ∅ is the empty set. For any set � , for any
4 ∈ � , we define:

X�4 :
{

1 −→ �

G ↦−→ 4

Let X be a category, let* : X → Sets be a functor.
If (-∗, 4∗) is a universal element for*, then

(
-∗, X* (-

∗)
4∗

)
is a universal arrow from 1 to*.

Proof. By Proposition 3.4, if (-∗, 4∗) is a universal element for *, then ∀- ∈ X ,∀4 ∈ * (-), ∃!G ∈
HomX (-∗, -) such that:

4 = * (G) (4∗)

⇔ X
* (-)
4 (0) = * (G)

(
X
* (-∗)
4∗ (0)

)
⇔ X

* (-)
4 = * (G) ◦ X* (-

∗)
4∗

Consequently, we have: ∀- ∈ X ,∀X* (-)4 ∈ HomSets (1,* (-)) , ∃!G ∈ HomX (-∗, -), X* (-)4 =

* (G) ◦ X* (-
∗)

4∗ , which yields that
(
-∗, X* (-

∗)
4∗

)
is a universal arrow from 1 to*.

We sum up the results into this theorem:

Theorem 3.17. Let X be a category, and let* : X → Sets be a functor.

1. (-∗, 4∗) is a universal element for*⇔
(
-∗, *,-∗ (4∗)

)
is a representation of*.

2. (-∗, 4∗) is a universal element for*⇔
(
-∗, X* (-

∗)
4∗

)
is a universal arrow from 1 of*.

3. (-∗, k) is a representation of*⇔ (-∗, k- (id-)) is a universal element for*.

4.
(
*#
�
, [�

)
is a universal arrow from � to*⇔

(
*#
�
, [�

)
is a universal element for HomSets (�,* (−)).

IMTA-RR-2019-01-SC 22/127

4. Towards adjunctions

4. Towards adjunctions
Definition 4.1 (Left adjoint - from universal arrows). Let X ,C be two categories. Let* : X → C be a
functor. We suppose that for all � ∈ ObC , there exists a universal arrow

(
*#
�
, [�

)
from � to*.

The left adjoint of*, denoted by*∗, is the mapping:

*∗ :


C −→ X
� ↦−→ *#

�

2 : � → � ′ ↦−→ *#
[�◦2

Let’s study some properties of the left adjoint.

Lemma 4.2. Let X ,C be two categories. Let* : X → C be a functor, and let*∗ be the left adjoint of*.
For any 2 ∈ HomC (�,� ′), *∗(2) is the unique solution in G ∈ HomX

(
*#
�
,*#

�′
)
to the equation:

[�′ ◦ 2 = * (G) ◦ [� .

Proof. We have [�′ ◦ 2 ∈ HomC
(
�,*

(
*#
�′

))
. By definition of a universal arrow

(
*#
�
, [�

)
from � to*,

there exists a unique*#
[�′◦2 ∈ Hom� (�

′) such that: [�′ ◦ 2 = *
(
*#
[�′◦2

)
◦ [� = * (*∗(2)) ◦ [� .

Proposition 4.3. Let X ,C be two categories. Let* : X → C be a functor, and let*∗ be the left adjoint
of*.

The left adjoint*∗ : C →X is a functor.

Proof. The mapping*∗ sends objects (resp. arrows) in C to objects (resp. arrows) in X .
Using Lemma 3.13, we check the behaviour of*∗ on identity arrows:

*∗ (id�) = *#
[�◦id� = *

#
[�
= id*#

�

As for the composition, let 2 : � → � ′ and 2′ : � ′→ � ′′. By definition of*∗, we have:

[�′ ◦ 2 = * (*∗(2)) ◦ [�
[�′′ ◦ 2′ = * (*∗ (2′)) ◦ [�′

[�′′ ◦ 2′ ◦ 2 = * (*∗ (2′ ◦ 2)) ◦ [� (12)

But also:

[�′′ ◦ 2′ ◦ 2 = (* (*∗ (2′)) ◦ [�′) ◦ 2
= * (*∗ (2′)) ◦ ([�′ ◦ 2)
= * (*∗ (2′)) ◦* (*∗ (2))
= * (*∗ (2′) ◦*∗ (2)) (13)

Equations 12 and 13, together with Lemma 4.2, yield:

*∗ (2′ ◦ 2) = *∗ (2′) ◦*∗ (2)

Proposition 4.4. Let X ,C be two categories. Let* : X → C be a functor, and let*∗ be the left adjoint
of*.

The mapping [= ([� : � → * ◦*∗(�)) is a natural transformation [: IdC → * ◦*∗.

IMTA-RR-2019-01-SC 23/127

4. Towards adjunctions

Proof. We need to check if, for each 2 : � → � ′, the following diagram commutes:

� * (*∗(�))

X

� ′ * (*∗ (� ′))

2

[�

* (* ∗ (2))

[�′

That is, we need to check whether* (*∗(2)) ◦ [� = [�′ ◦ 2, which is the result of Lemma 4.2.

Proposition 4.5. Let X ,C be two categories. Let* : X → C be a functor, and let*∗ be the left adjoint
of*.

For all - ∈ X , for all � ∈ C , we define:

V�,- :
{
HomX (*∗(�), -) −→ HomC (�,* (-))

G ↦−→ * (G) ◦ [�
The mapping V : �, - ↦→ V�,- is a natural isomorphism HomX (*∗(−),−) → HomC (−,* (−)),

contravariant in � and covariant in - .

Proof. For � ∈ C , V�,− : HomX (*∗(�),−) → HomC (�,* (−)) is the same function as V�,− =
\HomC (�,* (−)) ,* ∗ (�) ([�) which we know is a natural isomorphism (cf. Proposition 3.14, item 1).

For - ∈ X , we study V−,- : HomX (*∗ (−) , -) → HomC (−,* (-)). Let 2 : � → � ′, we want the
following diagram to commute:

� HomX (*∗ (� ′) , -) HomC (� ′,* (-))

{ ?

� ′ HomX (*∗ (�) , -) HomC (�,* (-))

2 HomX (* ∗ (2) ,-)

V�′,-

HomC (2,* (-))

V�,-

(Note that V−,- is supposed to be contravariant in �).
Let 5 ∈ HomX (*∗ (� ′) , -). On the one hand:

V�,- ◦ HomX (*∗ (2) , -) (5) = V�,- (5 ◦*∗ (2))
= * (5 ◦*∗ (2)) ◦ [�

while on the other hand:

HomC (2,* (-)) ◦ V�′,- (5) = HomC (2,* (-)) (* (5) ◦ [�′)
= * (5) ◦ [�′ ◦ 2
= * (5) ◦* (*∗ (2)) ◦ [�
= * (5 ◦*∗ (2)) ◦ [�
= V�,- ◦ HomX (*∗ (2) , -) (5)

Thus, V−,- is a natural transformation. Note that each component in � of V−,- =
(
V�,-

)
�∈ObC

is an
isomorphism (because \HomC (�,* (−)) ,* ∗ (�) ([�), for any � ∈ ObC , is a natural isomorphism), thus so is
V−,- .

IMTA-RR-2019-01-SC 24/127

4. Towards adjunctions

Proposition 4.6. Let X ,C be two categories. Let* : X → C be a functor, and let*∗ be the left adjoint
of*.

If � : C → X is a functor for which there exists a natural isomorphism W : HomX (� (−),−) →
HomC (−,* (−)), then there exists a unique natural isomorphism U : � → *∗; in other words, the left
adjoint is unique up to a unique isomorphism.

Proof. Let � : C →X such that W : HomX (� (−),−) → HomC (−,* (−)) is a natural isomorphism.
For all � ∈ C , we have W�,− = \HomC (�,* (−)) ,� (�) (4�) for some 4� : � → * (� (�)) =

W�,� (�)
(
id� (�)

)
. We deduce from Proposition 3.14-2 that � is a left adjoint for *. As *∗ and �

are left adjoints for*, then (� (�), 4�) and (*∗(�), [�) are universal arrows from � to* (Definition 4.1),
so (� (�), 4�) and (*∗(�), [�) are also universal elements forHomC (�,* (−)) (Proposition 3.15). Accord-
ing to Proposition 3.5, there exists a unique isomorphism 0� : *∗(�) → � (�) such that* (0�) (4�) = [� .

We now have to show that U = (U�)�∈ObC
is natural in �.

We have the following diagram:

�

* (� (�)) * (*∗(�))

� ′

* (� (� ′)) * (*∗(� ′))

4�[�

2

* (� (2))

* (U�)

* (* ∗ (2))

4�′[�′

* (U�′)

where the following subdiagrams commute:

�

X

* (� (�)) * (*∗(�))

4�[�

* (U�)

� ′

X

* (� (� ′)) * (*∗(� ′))

4�′[�′

* (U�′)

due to the construction of U� and:

* (� (�)) � * (*∗(�))

X X

* (� (� ′)) � ′ * (*∗(� ′))

* (� (2))

4�[�

2 * (* ∗ (2))

4�′[�′

due to the naturality of 4 : IdC → * ◦ � and [: IdC → * ◦*∗.
By diagram chasing, we have:

* (U�′) ◦* (� (2)) ◦ [� = * (*∗ (2)) ◦* (U�) ◦ [�
* (U�′ ◦ � (2)) ◦ [� = * (*∗ (2) ◦ U�) ◦ [�

U�′ ◦ � (2) = *∗ (2) ◦ U�

The last equation is due to V�,- being an isomorphism. This equation makes the following diagram
commute:

IMTA-RR-2019-01-SC 25/127

4. Towards adjunctions

* (� (�)) *∗(�)

X

� (� ′) *∗(� ′)

� (2)

U�

* ∗ (2)

U�′

which makes U = (U�)�∈ObC
natural in �.

Definition 4.7 (Adjunction - official). Let X ,C be two categories. Let* : X → C and � : C →X be
two functors.

The 3-tuple (�,*, V) is called an adjunctionwhenever V is a natural isomorphism V : HomX (� (−),−) →
HomC (−,* (−)).

We also say that � is left adjoint to* and* is right adjoint to �. We will refer to V as the adjunctor1of
� and �.

If (�,*, V) is an adjunction, we may write � a * or
� (�) → -

� → * (-) (V).

The following lemma proves that if (�,*, V) is an adjunction, then � is actually left adjoint to * as
defined in Definition 4.1. In fact, both definitions are equivalent.

Lemma 4.8. Let X ,C be two categories. Let* : X → C and � : C →X be two functors.
� a *⇔ there exists a natural transformation [: IdC → * ◦ � such that ∀� ∈ ObC , (� (�), [�) is a

universal arrow from � to*.

Proof. [Proof of⇐]
Suppose that we have a [: IdC → * ◦ � such that ∀� ∈ ObC , (� (�), [�) is a universal arrow from �

to*. According to the definition of a left adjoint, � corresponds to a left adjoint on objects. We have to
check if, for all - ∈ X , for all 2 : � → � ′, � (2) is the unique solution in G ∈ HomX (� (�), -) to the
equation:

[′� ◦ 2 = * (G) ◦ [� (14)

The natural transformation [: IdC → * ◦ � makes the following diagram commute:

� * (� (�))

X

� ′ * (� (� ′))

[�

2 * (� (2))

[�′

which proves that � (2) is indeed a solution to Equation 14. The uniqueness of the solution comes from
the definition of a universal arrow (Definition 3.12).

Consequently, � is a left adjoint to *. By Proposition 4.5, we can define a V from [that is a natural
isomorphism HomX (� (�), -) → HomC (�,* (-)). Finally, (�,*, V) is an adjunction.

[Proof of⇒]
Suppose � a *, and suppose (�,*, V) is an adjunction. Define [to be the natural transformation with

components:

[� = V�,� (�)
(
id� (�)

)
∈ HomC (�,* (� (�)))

1The V natural isomorphism appears to be unamed in most references. However, in the rest of this course, it may be convenient
to give it a name. Please note that nobody but the authors give this name to that isomorphism.

IMTA-RR-2019-01-SC 26/127

4. Towards adjunctions

The naturality of [comes from the naturality of V =
(
V�,-

)
�∈C ,- ∈X in both its variables.

The naturality in - gives, when 2 : � → � ′, for � (2) : � (�) → � (� ′) ∈ X :

HomX (� (�), � (�)) HomX (�,* ◦ � (�))

X

HomX (� (�), � (� ′)) HomX (�,* ◦ � (� ′))

V�,� (�)

HomX (� (�) ,� (2)) HomX (�,*◦� (2))

V�,� (�′)

while the naturality in � gives, for 2 : � → � ′:

HomX (� (� ′) , � (� ′)) HomX (� ′,* ◦ � (� ′))

X

HomX (� (�), � (� ′)) HomX (�,* ◦ � (� ′))

V�′,� (�′)

HomX (� (2) ,� (�′)) HomX (2,*◦� (�′))

V�,� (�′)

From the first diagram, we obtain:

V�,� (�′) ◦ HomX (� (�), � (2))
(
id� (�)

)
= HomX (�, (* ◦ �) (2)) ◦ V�,� (�)

(
id� (�)

)
V�,� (�′) ◦ � (2) = (* ◦ �) (2) ◦ V�,� (�)

(
id� (�)

)
(15)

and from the second diagram:

V�,� (�′) ◦ HomX (� (2), � (� ′))
(
id� (�′)

)
= HomX (2,* ◦ � (� ′)) ◦ V�′,� (�′)

(
id� (�′)

)
V�,� (�′) ◦ � (2) = V�′,� (�′)

(
id� (�′)

)
◦ 2 (16)

Combining Equations 15 and 16, we obtain:

(* ◦ �) (2) ◦ V�,� (�)
(
id� (�)

)
= V�′,� (�′)

(
id� (�′)

)
◦ 2

(* ◦ �) (2) ◦ [� = [�′ ◦ 2

which proves that [is a natural transformation.
We have to show that each (� (�), [�) is a universal arrow from � to *. We have a nat-

ural isomorphism V�,− : HomX (� (�),−) → HomC (�,* (−)); so according to Proposition 3.14,(
� (�), V�,� (�)

(
id� (�)

))
= (� (�), [�) is a universal arrow. Besides, � is a left adjoint to*.

Definition 4.9 (Unit of an adjunction). Let (�,*, V) be an adjunction.
The unit of the adjunction (�,*, V) is the natural transformation [: IdC → * ◦ � such that

∀� ∈ ObC , [� = V�,� (�)
(
id� (�)

)
.

We will define the dual notion of a counit. However, we will not construct it explictly as we did the unit
(that is, using universal arrows, then left adjoints), because it is not that interesting. We will first compute
the inverse of the adjunctor V.

Note that Lemma 4.8 proves that Definitions 4.1 and 4.7 are not only equivalent, but also that we can
construct the unit [from the adjunctor V and conversely. The same goes from the counit Y that we will
define right after the following lemma.

IMTA-RR-2019-01-SC 27/127

4. Towards adjunctions

Lemma 4.10. Let (�,*, V) be an adjunction.
For all � ∈ ObC , define [� = V�,� (�)

(
id� (�)

)
. Then, V�,- is:

V�,- :
{
HomX (� (�), -) −→ HomC (�,* (-))

G ↦−→ * (G) ◦ [�
For all - ∈ ObX , define Y- = V−1

* (-) ,-
(
id* (-)

)
. Then, V−1

�,-
is:

V−1
�,- :

{
HomC (�,* (-)) −→ HomX (� (�), -)

2 ↦−→ Y- ◦ � (2)

Proof. By naturality of V and V−1, and for 2 : � → * (-) and G : � (�) → - , the following two diagrams
commute:

HomX (� (�) , � (�)) HomC (�,* ◦ � (�))

X

HomX (� (�), -) HomC (�,* (-))

V�,� (�)

HomX (� (�) ,G) HomX (�,* (G))

V�,-

HomC (* (-) ,* (-)) HomX (� ◦* (-) , -)

X

HomC (�,* (-)) HomX (� (�), -)

V−1
* (-) ,-

HomC (2,* (-)) HomX (� (2) ,-)

V−1
�,-

Suppose we have V�,- (G) = 2 (or equivalently V−1
�,-
(2) = G). Those two diagrams combine into this

one:

HomX (� (�) , � (�)) HomC (* (-) ,* (-))

HomC (�,* ◦ � (�)) HomX (� ◦* (-) , -)

HomC (�,* (-)) X HomX (� (�), -)

V�,� (�)

HomX (� (�) ,G)

V−1
* (-) ,-

HomC (2,* (-))
HomX (�,* (G)) HomX (� (2) ,-)

V−1
�,-

V�,-

Firstly, with id� (�) ∈ HomX (� (�), � (�)), we have:

IMTA-RR-2019-01-SC 28/127

4. Towards adjunctions

V−1
�,- ◦ HomC (�,* (G)) ◦ V�,� (�)

(
id� (�)

)
= HomX (� (�), G)

(
id� (�)

)
V−1
�,-

(
* (G) ◦ V�,� (�)

(
id� (�)

))
= G ◦ id� (�)

V−1
�,- (* (G) ◦ [�) = G

Secondly, with id* (-) ∈ HomC (* (-),* (-)), we have:

V�,- ◦ HomX (� (2), -) ◦ V−1
* (-) ,-

(
id* (-)

)
= HomC (2,* (-))

(
id* (-)

)
V�,- ◦ V−1

* (-) ,-
(
id* (-)

)
◦ � (2) = id* (-) ◦ 2

V�,- (Y- ◦ � (2)) = 2

Thefirst calculation shows that V�,- (G) = * (G)◦[� and the second shows that V−1
�,-
(2) = Y-◦� (2).

Lemma 4.11. Let X ,C be two categories. Let* : X → C and � : C →X be two functors.
� a *⇔ there exists a natural transformation Y : � ◦* → IdX such that ∀- ∈ ObX , ∀� ∈ ObC and

∀G : � (�) → - , there exists a unique arrow 2 : � → * (-) such that: Y- ◦ � (2) = G.

Proof. [Proof of⇒]
If � a *, then let (�,*, V) be the adjunction. We have V−1

�,-
: HomX (−,* (−)) → HomX (� (−),−).

Define Y = (Y-)- ∈ObX
to be:

Y- = V
−1
* (-) ,-

(
id* (-)

)
A diagram chasing very similar to the one in the proof of Lemma 4.8 shows that Y is a natural

transformation.
Let - ∈ ObX , let � ∈ ObC and let G : � (�) → - . The existence and unicity of the 2 : � → * (-)

such that Y- ◦ � (2) = G comes from the bĳectivity of V−1
�,-

as the equation is also: V−1
�,-
(2) = G. Of course,

that 2 is 2 = V�,- (G) = * (G) ◦ [� .
[Proof of⇐]
Define:

W�,- :
{
HomC (�,* (-)) −→ HomX (� (�), -)

2 ↦−→ Y- ◦ � (G)
The definition of Y states that each W�,- is an isomorphism. Now we have to prove that W =(

W�,-
)
�∈ObC ,- ∈ObX

is natural (but contravariant) in � and (covariant) in - .

� HomX (� ′,* (-)) HomX (� (� ′) , -)

{ ?

� ′ HomX (�,* (-)) HomX (� (�) , -)

2

W�′,-

HomX (2,* (-)) HomX (� (2) ,-)

W�,-

For 5 ∈ HomX (� ′,* (-)), we have:

HomX (� (2) , -) ◦ W�′,- (5) = Y- ◦ � (5) ◦ � (2)
W�,- ◦ HomX (2,* (-)) (5) = Y- ◦ � (5 ◦ 2)

So W is natural in �. As for the naturality in -:

IMTA-RR-2019-01-SC 29/127

4. Towards adjunctions

- HomX (�,* (-)) HomX (� (�) , -)

{ ?

- ′ HomX (�,* (- ′)) HomX (� (�) , - ′)

G

W�,-

HomX (�,* (G)) HomX (� (�) ,G)

W�,-′

Let 5 ∈ HomX (�,* (-)):

W�,- ◦ HomX (� (�) , G) (5) = G ◦ Y- ◦ � (5)
HomX (�,* (G)) ◦ W�,- ′ (5) = Y- ′ ◦ � (* (G)) ◦ � (5)

Don’t forget that Y is a natural transformation �◦* → IdX . Thence, we have the following commutative
diagram:

� ◦* (-) -

X

� ◦* (- ′) -

Y-

�◦* (G) G

Y-′

which gives:

G ◦ Y- = Y- ′ ◦ � (* (G))

and finally:

G ◦ Y- ◦ � (5) = Y- ′ ◦ � (* (G)) ◦ � (5)
W�,- ◦ HomX (� (�) , G) (5) = HomX (�,* (G)) ◦ W�,- ′ (5)

Thus, W is a natural transformation in both - and �; each component is an isomorphism, so
W is a natural isomorphism HomC (−,* (−)) → HomX (� (−),−); so W−1 is a natural isomorphism
HomX (� (−),−) → HomC (−,* (−)).

For all� ∈ ObC , define [� = W−1
�,� (�)

(
id� (�)

)
. By Proposition 3.14, item 2, we know that (� (�), [�)

is a universal arrow from � to*, which makes � the left adjoint of* by Lemma 4.8.

Definition 4.12 (Counit of an adjunction). Let (�,*, V) be an adjunction.
The counit of the adjunction (�,*, V) is the natural transformation Y : � ◦ * → IdX such that

∀- ∈ ObX , Y- = V
−1
* (-) ,-

(
id* (-)

)
.

The notion of adjunction appears everywhere in mathematics. As this notion is very important, we need
to give many examples.
Example 4.13 (Identity). Let C be a category. Then the identity functor IdC : C → C is both left and
right adjoint of itself; and Id−,− : HomC (IdC (−),−) → HomC (−, IdC (−)) is the adjunctor. The unit and
counit are: [, Y : IdC → IdC .
Example 4.14 (Isomorphisms). Let C ,X be categories, and let � : C →X be an isomorphism between
those categories. Then � a �−1 a �. In fact, G : � (�) → - ∈ X ⇔ �−1(G) : � → �−1(-) and
2 : �−1(-) → � ⇔ � (2) : - → � (�).

For the adjunction
(
�, �−1, V

)
, the adjunctor V has components:

IMTA-RR-2019-01-SC 30/127

4. Towards adjunctions

V�,- :
{
HomX (� (�), -) −→ HomC

(
�, �−1(-)

)
G ↦−→ �−1(G)

while for the second adjunction
(
�−1, �, W

)
, the adjunctor W has components:

W�,- :
{
HomX

(
�−1(-), �

)
−→ HomC (-, � (�))

2 ↦−→ � (2) = V−1
�,-

The units and counits are the identity natural transformations.
Example 4.15 (Increasing linear function). Let R = (R, 6) be the category of the totally ordered set R,
equipped with the usual order on real numbers.

Objects: An object in R is a real number G ∈ R

Morphisms: There is an arrow G0 → G1 if and only if G0 6 G1

Identities: An identity morphism is an arrow G → G

Composition: If G0 → G1 and G1 → G2 are two arrows, then there is one arrow G0 → G2

Note that there is only one arrow between two objects (real numbers) G0, G1; if G0 < G1 thenHomR (G0, G1)
contains only one arrow, while HomR (G1, G0) is empty. Similarly, there is only one arrow G → G, and it is
the identity. Finally, the composition law on arrows comes from the transitivity of the order relation 6.

Let � : R → R be the functor: � : G → 0G + 1 with 0 > 0. Let’s check if � is actually a functor.
If G0 → G1, then G0 6 G1, which gives 0G0 + 1 6 0G1 + 1, thus � (G0) → � (G1). If G → G then

� (G) → � (G). Finally, if G0 → G1 and G1 → G2 then � (G0) → � (G1) and � (G1) → � (G2) and
� (G0) → � (G2) (by transitivity of 6).

Now suppose you have G0, G1 ∈ R such that:

� (G0) 6 G1 ⇔ 0G0 + 1 6 G1

⇔ G0 6
1
0
G1 −

1

0

Define * :

{
R −→ R

G ↦−→ 1
0
G1 −

1

0

. Then � is left adjoint to *. The adjunctor V transforms arrows

� (G0) → G1 to arrows G0 → * (G1). The unit [and counit Y are the identity natural transformations
IdR → IdR .
Example 4.16 (Decreasing linear function). We can build a similar example of adjunctor using R = (R, 6)
and its opposite category R

op
= (R, >).

Let R
op
= (R, >) be the category of the totally ordered set R, equipped with the usual order on real

numbers.

Objects: An object in R
op is a real number G ∈ R

Morphisms: There is an arrow G0 → G1 if and only if G0 > G1

Identities: An identity morphism is an arrow G → G

Composition: If G0 → G1 and G1 → G2 are two arrows, then there is one arrow G0 → G2

IMTA-RR-2019-01-SC 31/127

4. Towards adjunctions

Note that (R, >) is actually the opposite category of (R, 6).
Let � : R

op → R be the functor: � : G → 0G + 1 with 0 < 0. Let G0, G1 ∈ R such that:

� (G0) > G1 ⇔ 0G0 + 1 > G1

⇔ G0 6
1
0
G1 −

1

0

⇔ G0 6 * (G1)

We can define the same* as in the previous example; and � is again left adjoint to*. The adjunctor V
transforms arrows � (G0) → G1 in R

op to arrows G0 → * (G1) in R. The unit and counit are the identity
natural transformations as* = �−1.
Example 4.17 (Image and inverse image of a function). Let 5 : - → . be a function between two sets
- and . . The two categories will be the partially ordered sets X = (P (-) , ⊆) and Y = (P (.) , ⊆)
equipped with the usual inclusion of sets.

Define the three functors:

� :
{

X −→ Y
� ↦−→ 5 (�) = { 5 (0) | 0 ∈ �}

� :
{

Y −→ X
� ↦−→ 5 −1(�) = {1 ∈ - | 5 (1) ∈ �}

�∗ :
{

X −→ Y
� ↦−→

{
H ∈ . | 5 −1 ({H}) ⊆ �

}
The functor � gives the image of a subset of - , � gives the inverse image of a subset of . and �∗

gives the subset of inverse images of singletons of elements of . . We let the reader check that those three
functions are actually functors.

Suppose we have � (�) → �. For all 0 ∈ �, 5 (0) ∈ � (�) ⊆ �, so for all 0 ∈ �, 0 ∈ 5 −1(�) = � (�),
which gives � ⊆ � (�). Conversely, suppose we have � → � (�). For all 0 ∈ �, 0 ∈ � (�) =
{1 ∈ - | 5 (1) ∈ �}, so for all 0 ∈ �, 5 (0) ∈ �, which gives � (�) ⊆ �.

We have � a �:

� (�) ⊆ �⇔ � ⊆ � (�)

The adjunctor V transforms arrows � (�) → � to arrows � → � (�). Note that � ⊂ � ◦ � (�) but
there is in general no reason why � should be equal to � ◦ � (�) (except if 5 is injective). Consequently,
the unit of the adjunction is:

[=

(
[� :

{
� −→ � ◦ � (�)
0 ↦−→ 0

)
�⊆-

Similarly, note that � ◦� (�) ⊂ � but there is in general no reason why � ◦� (�) should be equal to �
(except if 5 is surjective), so the counit is:

Y =

(
Y� :

{
� ◦ � (�) −→ �

1 ↦−→ 1

)
�⊆.

Besides, we also have � a �∗. In fact, suppose we have � (�) ⊆ �. Then, ∀G ∈ �, 5 −1 ({G}) ⊂
� (�) ⊂ �, so ∀G ∈ �, G ∈ �∗(�), hence � ⊆ �∗(�). Conversely, if � ⊆ �∗(�) then ∀G ∈ � (�), we have:

IMTA-RR-2019-01-SC 32/127

4. Towards adjunctions

G ∈ � (�) ⇒ 5 (G) ∈ � ⊂ �∗(�)
⇒ 5 (G) ∈

{
H ∈ . | 5 −1 ({H}) ⊆ �

}
⇒ 5 −1 ({ 5 (G)}) ⊆ �
⇒ G ∈ �

So we have � (�) ⊆ �.
The adjunctor V∗ transforms arrows � (�) → � to arrows �→ �∗(�).
Before computing the unit and counit, note that, for � ⊂ . :

�∗(� (�)) = �∗
(
5 −1(�)

)
=

{
H ∈ . | 5 −1 ({H}) ⊆ 5 −1(�)

}
=

{
H ∈ . | ∀G ∈ 5 −1 ({H}) , 5 (G) ∈ �

}
= {H ∈ . | H ∈ � ∧ ∃G ∈ -, H = 5 (G)}
= � ∩ 5 (-) ⊆ �

The interpretation is the following: �∗(� (�)) is the biggest subset of � that contains only images by 5 .
Again, �∗(� (�)) has no reason to be equal to �, except if 5 is surjective.

Also, for � ⊂ -:

� (�∗(�)) = 5 −1 (�∗(�))
= {G ∈ - | 5 (G) ∈ �∗(�)}
=

{
G ∈ - | 5 (G) ∈

{
H ∈ . | 5 −1 ({H}) ⊆ �

}}
=

{
G ∈ - | 5 −1 ({ 5 (G)}) ⊆ �

}
=

⋃
{� ⊆ - | 5 (�) ⊆ 5 (�)}

⊇ �

The interpretation of � (�∗(�)) is as follows: � (�∗(�)) is the biggest subset of - that gives 5 (�).
Again, � (�∗(�)) has no reason to be equal to �, except if 5 is injective.

In this case, the unit and counit are not easy to write. In fact, we will need to create an equivalence
relation over - , for example G = H mod 5 ⇔ 5 (G) = 5 (H). Then we will need a section function that
sends an equivalence class to its representative. Such a choice of section function should be chosen to be
compatible with what we want from the unit and counit.
Example 4.18 (Galois connections). The previous three examples are special cases of monotone Galois
connections. Every Galois connection between two posets is an adjunction.

Further examples of adjunctions will appear in the rest of the text, and we even propose a zoo of
adjunctions in the next section.

Definition 4.19 (Whiskering). Let �, � ′ : C → C ′ and �,� : C ′→ D be functors, and let U : � → � ′

and V : � → � ′ be natural transformations.

1. The whiskering of � and U, denoted by � ◦U, is the natural transformation: � ◦U : � ◦ � → � ◦ � ′
with components (� (U�) : � ◦ � (�) → � ◦ � ′(�))�∈C .

2. The whiskering of V and �, denoted by V ◦ �, is the natural transformation: V ◦ � : � ◦ � → � ′ ◦ �
with components

(
U� (�) : � ◦ � (�) → � ′ ◦ � (�)

)
�∈C .

IMTA-RR-2019-01-SC 33/127

4. Towards adjunctions

It is easy to check that:

Proposition 4.20. Let �, � ′ : C → C ′ and �,� : C ′ → D be functors, and let U : � → � ′ and
V : � → � ′ be natural transformations.

(� ◦ �) ◦ V = � ◦ (� ◦ V) IdC ′ ◦ V = V
U ◦ (� ◦ �) = (U ◦ �) ◦ � U ◦ IdC = U

Remark 4.21. Proposition 4.20 simply states that whiskering (on the left or on the right) can be seen as
a (left or right) monoid action of the monoid of functors (with composition) over the class of natural
transformations. In other words, whiskerings and compositions are "associative" in a sense.

Proposition 4.22. Let �, � ′ : C → C ′ and �,� : C ′ → D be functors, and let U : � → � ′ and
V : � → � ′ be natural transformations.

Then the following diagram commutes:

� ◦ � � ′ ◦ �

X

� ◦ � ′ � ′ ◦ � ′

�◦U

V◦�

�′◦U

V◦� ′

Proof. For � ∈ C , consider the following "implemented" diagram:

� (� (�)) � ′ (� (�))

� (� ′(�)) � ′ (� ′(�))

� (U�)

V� (�)

�′ (U�)

V�′ (�)

This diagram commutes because V is a natural transformation � → � ′ and U� is an arrow � (�) →
� ′(�).

Proposition 4.23 (Triangle identities). Let X ,C be two categories. Let * : X → C and � : C → X
be two functors. Let [: IdC → * ◦ � and Y : � ◦* → IdX be natural transformations.

The tuple (�,*, [, Y) is an adjunction iff the following triangles commute:

� � ◦* ◦ �

�

�◦[

id�
Y◦�

* * ◦ � ◦*

*

[◦*

id*
*◦Y

Proof. [Proof of⇒] Suppose (�,*, [, Y) is an adjunction. According to Lemma 4.10, we can compute
the adjunctor from the unit and counit:

V�,- :
{
HomX (� (�), -) −→ HomC (�,* (-))

G ↦−→ * (G) ◦ [�

V−1
�,- :

{
HomC (�,* (-)) −→ HomX (� (�), -)

2 ↦−→ Y- ◦ � (2)
Also, from Definition 4.9 and 4.12, we deduce the triangle identities:

IMTA-RR-2019-01-SC 34/127

4. Towards adjunctions

[� = V�,� (�)
(
id� (�)

)
⇔ V−1

�,� (�) ([�) = id� (�)
⇔ Y� (�) ◦ � ([�) = id� (�)
⇔ (Y ◦ �)� ◦ (� ◦ [)� = id� (�)

Y- = V
−1
* (-) ,-

(
id* (-)

)
⇔ V* (-) ,- (Y-) = id* (-)
⇔ * (Y-) ◦ [* (-) = id* (-)
⇔ (* ◦ Y)- ◦ ([◦*)- = id* (-)

[Proofof⇐] If we have the triangle identities, we can define the adjunctor V from [and its inverse W
(in place of V−1) from Y, and we prove that W is the inverse of V:

V�,- :
{
HomX (� (�), -) −→ HomC (�,* (-))

G ↦−→ * (G) ◦ [�

W�,- :
{
HomC (�,* (-)) −→ HomX (� (�), -)

2 ↦−→ Y- ◦ � (2)
And then, for G : � (�) → - , we have:

W�,- ◦ V�,- (G) = Y- ◦ � (* (G) ◦ [�)

This is equal to G due to the following diagram:

� (�) � ◦* ◦ � (�) � ◦* (-)

� (�) -

� ([�)

id� (�)

�◦* (G)

Y� (�) Y-

G

The left-hand triangle commutes because of the triangle identities; the right-hand square commutes
because it represents the naturality of Y : � ◦* → IdX .

The converse equality is similarly proven:

V�,- ◦ W�,- (2) = * (Y- ◦ � (2)) ◦ [�

which is equal to 2 according to the following diagram:

� * (-)

* ◦ � (�) * ◦ � ◦* (-) * (-)

2

[� [* (-)
id* (-)

*◦� (2) * (Y-)

The left-hand square commutes because [is a natural transformation, and the right-square commutes
because of the triangle identities.

Thus, V and W are both natural isomorphisms (the proof of naturality is not interesting and is left to the
reader) and are inverses of each other.

IMTA-RR-2019-01-SC 35/127

4. Towards adjunctions

We finally give a third definition of adjunction:

Definition 4.24 (Adjoint - triangle identities). Let X ,C be two categories. Let * : X → C and
� : C →X be two functors. Let [: IdC → * ◦ � and Y : � ◦* → IdX be natural transformations.

The tuple (�,*, [, Y) is called an adjunction if the following triangles commute:

� � ◦* ◦ �

�

�◦[

id�
Y◦�

* * ◦ � ◦*

*

[◦*

id*
*◦Y (17)

In the rest of this book, the left-hand diagram will be referred to as the "left-adjoint triangle identity"
(because it mainly concerns �, the left adjoint) and the right-hand diagram will be referred to as the
"right-adjoint triangle identity" (because it mainly concerns*, the right adjoint). Note however that the
usage of this terminology is specific to this book. Other categorists will understand but might have come to
other terms to refer to these triangles.

IMTA-RR-2019-01-SC 36/127

5. Zoo of adjunctions

5. Zoo of adjunctions
Adjunctions are a huge part of category theory. In this section, we present a bunch of adjunctions and
non-adjunctions. Most of them are examples or counterexamples of questions that the authors had at some
point.

5.1. What is the difference between an adjunction and an equivalence of categories?
We start with a counterexample that we think is important to see. Rather, this is an ambiguity, and maybe a
doubt, that is worth removing. In short: equivalences of categories are NOT adjunctions.

We need some definitions before showing this counterexample.

Definition 5.1 (Equivalence of categories). Let C and X be two categories, with functors* : X → C
and � : C →X .

The pair (�,*) is an equivalence of categorieswhen there exist two natural isomorphisms � ◦* � IdX

and* ◦ � � IdC .

It is easy to see that:

Proposition 5.2. The equivalence of categories is an equivalence relation.

The crucial thing to see here, is that an equivalence of categories is not the same as an isomorphism. In
fact:

Proposition 5.3. Let � : C →X be an isomorphic functor. Then
(
�, �−1) is an equivalence of categories.

The converse is false; there are examples of equivalences of categories that are not isomorphisms. This
is because equivalences of categories ("same worth") do not tell the same thing as isomorphisms ("same
form"). Let us introduce a few notions as an example of the intuition that we will explain.

Definition 5.4 (Skeletal category). A category C is said skeletal when, for all objects �,� ′ ∈ C ,
� � � ′⇒ � = � ′.

Definition 5.5 (Skeleton of a category). Let C be a category.
A skeleton of C , denoted by ((C) is a full, skeletal subcategory of C such that the inclusion functor

8 : (C) ↩→ C verifies:

∀� ∈ C , ∃- ∈ ((C) , � � -

Example 5.6. In Sets, the skeleton is the class of cardinals: two isomorphic sets in Sets are simply sets with
the same cardinality.
Example 5.7. In a preorder category, the skeleton is the partial order on the equivalence classes of its
elements.

In the previous examples, we refered to "the" skeleton of a category. This is due to the following
proposition:

Proposition 5.8. The skeleton of a category is unique up to isomorphism.

Proof. Let 8 : S ↩→ C and 8′ : S ′ ↩→ C be two inclusion functors from two skeletons of C to C .
Let � : S → S ′ be the following functor. For (∈ S , we have (∈ C , and there is a unique (′ ∈ S ′

such that (� (′. We call � (() that (′ = � (().
Also, choose (Axiom of Choice!) an isomorphism 8(: (→ � (() ∈ C for each (∈ S . Then, for

each B : (→) ∈ S ⊂ C , define � (B) = 8) ◦ B ◦ 8(−1. Then � : S → S ′ is an isomorphism.

Some authors, like [6], consider this unicity up to isomorphism to be part of the definition of a skeleton.
The existence of a skeleton depends on the Axiom of Choice:

IMTA-RR-2019-01-SC 37/127

5. Zoo of adjunctions

Proposition 5.9. Assuming the Axiom of Choice, every category has a skeleton.

Proof. For each equivalence class of objects (under the relation "is isomorphic to"), using a choice function,
choose one representative, and keep the same morphisms between any two objects. Then the resulting
category is a skeleton of its base category.

However:

Proposition 5.10. Every preorder category has a skeleton.

Sketch of proof. Cf. Example 5.7.

Here are two links between skeletons and equivalences of categories.

Proposition 5.11. A category is equivalent to its skeleton.

Proof. The pair consisting of the inclusion functor and a left inverse of it is an equivalence of categories.

Lemma 5.12. Two equivalent skeletal categories are isomorphic.

Proof. Let C and X be two equivalent skeletal categories; let (�,*) be the pair of functors witnessing
the equivalence. Then � ◦* � IdX and* ◦ � � IdC . However, in a skeletal category, for all � ∈ C , we
have: * ◦ � (�) � IdC (�) = � ⇒ * ◦ � (�) = �. Similarly, for all - ∈ X , � ◦* (-) = - . Of course, by
naturality, this is also true for arrows in both categories:

* ◦ � (�) �

X

* ◦ � (� ′) � ′

*◦� (2)

=

2

=

� ◦* (-) -

X

� ◦* (- ′) - ′

�◦* (G)

=

G

=

Then, we have* ◦ � = IdC and � ◦* = IdX , hence the result.

Theorem 5.13. Two categories are equivalent⇔ they have isomorphic skeletons.

Proof of⇒. By transitivity of the equivalence of categories, if C andX are equivalent, then their skeletons
are also equivalent. By Lemma 5.12, equivalent skeletons are isomorphic.

Proof of⇐. Let C and X be two categories with isomorphic skeletons. Isomorphic skeletons are also
equivalent, due to Proposition 5.3. According to Proposition 5.11, a category is equivalent to its skeleton;
by transitivity of the relation of equivalence of categories, C and X are equivalent.

Remark 5.14. An interpretation of this theorem is the following. In order to prevent confusion, we call
"isomorphism class" an equivalence class of the relation "is isomorphic to". This is a relation on objects of
a category. Two objects are in the same isomorphism class if they are isomorphic.

Isomorphic categories are categories that are "exactly the same": same number of objects, same number
of arrows. Equivalent categories are categories that have the same number of arrows but not necessarily the
same number of objects in each isomorphism class of objects.

The skeleton of a category has only one object. Given the skeleton ((C) of a category C , we can make
a coproduct of that skeleton with itself, and then add one isomorphism between objects that are the same.
Then, the resulting category ((C) × 2 would have two objects in each class of isomorphisms. This category
((C) × 2 is equivalent, but not isomorphic, to both C and ((C). This construction can be made with any
cardinal number, or even, different cardinal numbers per isomorphism class.

In pictures, the following categories are equivalent, but not isomorphic:

IMTA-RR-2019-01-SC 38/127

5. Zoo of adjunctions

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

4@. 4@.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
This chapter is still about adjunctions, but we needed these notions in order to introduce the following:

Definition 5.15 (Adjoint equivalence). Let C and X be two categories, with functors* : X → C and
� : C →X .

A pair of functors (�,*) is called an adjoint equivalence when (�,*, [, Y) is an adjunction, and the
unit [: IdC → * ◦ � and counit Y : � ◦* → IdX are natural isomorphisms.

The following properties are easy to see:

Proposition 5.16. Let (�,*, [, Y) be an adjoint equivalence. Then:

1. (�,*, [, Y) is an equivalence of categories

2.
(
*, �, Y−1, [−1) is also an adjoint equivalence

3. � a * a � (both � and* are left and right adjoints of the other)

We can now procede to three counterexamples.

Theorem 5.17 (Informal). We can find examples and counterexamples of the following statements:

1. Adjunctions may or may not be equivalences

2. Equivalences may or may not be adjunctions, but any equivalence can be turned into an adjoint
equivalence

3. If � a * a � then (�,*) may or may not be an equivalence

Proof. Of course, taking � = *−1 yields examples of the positive statements in the theorem. The goal here
is to show that this is not generally the case, by finding counterexamples.

[Proof of 1] The adjunction − × � a (−)� is obviously not an equivalence, as the counit eval� :
�� × �→ � is not invertible.

[Proof of 2] Basically, an equivalence doesn’t need to satisfy the triangle identities. The fact that an
equivalence can be turned into an adjoint equivalence will be proven in a next theorem.

[Proof of 3] This example comes from Tom Leinster’s answer on MathOverflow. Now consider the
terminal category C1 with one object 0 and one identity arrow id0.

Consider a functor* : C → C1. Its left adjoint � : C1 → C needs to verify:

HomC (� (0), �) � HomC1 (0,* (�)) � HomC1 (0, 0) = {id0} � 1

Necessarily, � (0) needs to be the initial object of C . Similarly, the right adjoint of* needs to map 0 to
the terminal object of C .

IMTA-RR-2019-01-SC 39/127

https://mathoverflow.net/questions/7911/is-a-functor-which-has-a-left-adjoint-which-is-also-its-right-adjoint-an-equival

5. Zoo of adjunctions

Note that Vect, the category of vector spaces and linear maps, has a zero object: the vector space of
dimension 0 is both initial and terminal. So, the right and left adjoints of a* : Vect→ C1 are equal. In
Vect, we have � a * a �, and Vect is trivially non-equivalent to C1 (cf. Remark 5.14 for an intuition on
why these two categories are non-equivalent).

Lemma 5.18. Let (�,*, [, Y) be an equivalence of categories. If it verifies one triangle identity (Defini-
tion 4.24), then it verifies the other.

Proof. We give the proof for one triangle identity. Suppose � and* verify the following triangle identity:

� � ◦* ◦ �

�

�[

id�
Y�

(18)

For - ∈ X , we have the following natural transformation diagram:

* (-) * ◦ � ◦* (-) * (-)

{ X

* ◦ � ◦* (-) * ◦ � ◦* ◦ � ◦* (-) * ◦ � ◦* (-)

[* (-) *◦� ([* (-))

* (Y-)

[* (-)

* (Y�◦* (-))

(19)

The composite of the left and bottom arrows are actually the composition by* (adding one* on the
left) and whiskering by* (adding one* on the right) of the assumed triangle identity:

* ◦ � (* (-)) * (-)

* ◦ � ◦* ◦ � (* (-)) * ◦ � ◦* (-)

◦� ([(-))

* (Y* (-))

id*◦�◦* (-)
[* (-)

* (Y�◦* (-))

Which gives [* (-) ◦ * (Y-) = id*◦�◦* (-) . Then, Y and [are natural isomorphisms, so are their
respective whiskerings. We deduce the second triangle identity:

[* (-) ◦* (Y-) = id*◦�◦* (-)
[* (-) ◦* (Y-) ◦* (Y-)−1 = id*◦�◦* (-) ◦* (Y-)−1

[* (-) = * (Y-)−1

* (Y-) ◦ [* (-) = id�

The proof is similar for the other triangle identity, although it requires two more natural transformation
diagrams and a more subtle, but not too subtle, argument.

Remark 5.19. This lemma is from nLab. However, I do not understand the demonstration as I cannot read
string diagrams. I prove the result differently.

Proposition 5.20. If (�,*, [, Y) is an equivalence, then there exists a unique Y0 such that (�,*, [, Y0) is
an adjoint equivalence.

IMTA-RR-2019-01-SC 40/127

https://ncatlab.org/nlab/show/adjoint+equivalence#properties

5. Zoo of adjunctions

Proof. Define Y0 to be:

�*�*� �*�

X

�*� �

�[−1*�

Y��* Y−1�

Y0�

And consider the natural transformation diagram:

� �*�

X

�*� �*�*�

Y−1�

�[

�* Y−1�

�[*�

Gluing both diagrams together, it is easy to see that the following diagram commutes, and thus proves a
triangle identity.

� �*�

�*� �*�*�

� �*�

Y−1�

�[

id�

�[*�

�* Y−1�

Y0�

�[−1*�

Y�

Which gives a triangle identity Y0� ◦ �[= id� ; by Lemma 5.18, we have an adjoint equivalence.
Finally, suppose ([, Y1) also satisfies the triangle identities. Then, we have the following natural

transformation diagram:

�*�* �*

X

�* IdX

Y0�*

�* Y1 Y1

Y0

By pre-composing by �[* and using both triangle identities, we obtain the following commutative
diagram:

�*

�*�* �*

X

�* IdX

�[*
id�*

id�*
Y0�*

�* Y1 Y1

Y0

IMTA-RR-2019-01-SC 41/127

5. Zoo of adjunctions

which yields Y0 = Y1 and hence the unicity of Y0.

This proof ends this subsection about the differences and links between adjunctions and equivalences.

5.2. An example of adjunction: inverse image of a function
Consider a function 5 : �→ �, � and � being sets. Define 5 −1 to be the following functor:

5 −1 :
{
P (�) −→ P (�)
. ↦−→ 5 −1 (.)

where P (�) and P (�) are seen as their partially-ordered counterparts.
This functor has both a left adjoint and a right adjoint.
The left adjoint ! is pretty easy to see. We are looking for an ! : P (�) → P (�) such that:

HomP(�) (! (-), .) � HomP(�)
(
-, 5 −1(.)

)
Let - ∈ P (�) and . ∈ P (�). We are looking for an ! (-) such that ! (-) ⊂ . if and only if

- ⊂ 5 −1(.). This happens when ! is the direct image of 5 : ! : - ↦→ 5 (-).
What are the unit and counit of this adjunction?
The right adjoint is less commonly seen. It is a functor ' : P (�) → P (�) such that . ⊂ '(-) if and

only if 5 −1(.) ⊂ - . That is, for a H ∈ . ⊂ '(-), we have {H}−1 ⊂ - . In fact, '(-) is defined as:

'(-) =
{
H ∈ �

�� 5 −1 ({H}) ⊂ -
}

If - ⊂ �, then '(-) is the smallest set of H’s whose fibers by 5 are in - . I don’t know if this set has a
name.

Here we have a chain of three adjoint functors. The reader might wonder if there are longer chains of
adjoints. The following sections give answers to this question.

5.3. How long can a chain of adjoints be? Part 1: a chain of five adjoints
+ Units and counits?

5.4. How long can a chain of adjoints be? Part 2: a chain of adjoints for any odd integer
These strings of adjoints depend on a few notions that we will only introduce here without too many details.

Definition 5.21 ((Augmented) simplex category). The augmented simplex category, denoted by Δ0, is the
full subcategory of Cat consisting of finite totally ordered sets together with monotonic maps between them.

The simplex category, denoted by Δ, is the full subcategory of Δ0 consisting of non-empty finite totally
ordered sets together with monotonic maps between them.

Some authors use the skeleta of Δ and Δ0. In that case, an object in (the skeleton of) Δ0 is a poset
(=, 6), where = is the ordinal {0, 1, . . . , = − 1}, including the trivial (empty) order (0, 6). An object in (the
skeleton of) Δ is also a poset (=, 6), without the trivial order (0, 6).

When we consider the skeletal versions ofΔ, morphings ofΔ can be decomposed into finite compositions
of the following elementary maps:

Definition 5.22 (Face and degeneracry maps). Let = > 0 and 8 ∈ =.
The 8-th face map for = is the following functor:

X=8 :


= − 1 −→ =

9 ↦−→
{
9 if 9 < 8
9 + 1 if 9 > 8

The 8-th degeneracy map for = is the following functor:

IMTA-RR-2019-01-SC 42/127

5. Zoo of adjunctions

f=8 :


= + 1 −→ =

9 ↦−→
{
9 if 9 < 8
9 − 1 if 9 > 8

These maps verify the simplicial identities:

Proposition 5.23 (Simplicial identities). Let = > 0. Then the maps and degeneracy maps verify the
following identities:

X=+1
9
◦ X=

8
= X=+1

8
◦ X=

9−1 for 0 6 8 < 9 6 =

f=
9
◦ f=+1

8
= f=

8
◦ f=+1

9+1 for 0 6 8 < 9 6 =

f=9 ◦ X=+18 =


X=
8
◦ f=−1

9−1 for 0 6 8 < 9 < =

Id= for 9 ∈ = and 8 ∈ { 9 , 9 + 1}
X=
8−1 ◦ f

=−1
9

for 0 6 9 < 9 + 1 < 8 6 =

Proof. This is basic arithmetic.

The simplex category has uses that are way beyond the scope of this course (see quelque chose for
more information). What matters to us is the following:

Proposition 5.24. Let = ∈ Δ, and 8 ∈ =. Then X=+1
8+1 a f

=
8
a X=+1

8
.

Proof. This is a case-by-case analysis based on the definition of the functions. We prove f=
8
a X=+1

8
; the

other proof is in the same vein.
Consider Hom=

(
f=
8
(0), 1

)
and Hom=+1

(
0, X=+1

8
(1)

)
. We have four cases:

0 6 8 0 > 8

1 < 8 Case 1 Case 2
1 > 8 Case 3 Case 4

1. If 0 6 8 and 1 < 8, thenf=
8
(0) = 0 and X=+1

8
(1) = 1. In that case, the equivalence Hom=

(
f=
8
(0), 1

)
�

Hom=+1
(
0, X=+1

8
(1)

)
is obvious.

2. If 0 > 8 and 1 < 8, then f=
8
(0) = 0 − 1 and X=+1

8
(1) = 1. In that case, we have 0 > 0 − 1 > 8 > 1

hence the equivalence Hom= (0 − 1, 1) � Hom=+1 (0, 1).

3. If 0 6 8 and 1 > 8, then f=
8
(0) = 0 and X=+1

8
(1) = 1 + 1. We have 0 6 8 6 1 < 1 + 1, hence the

equivalence: Hom= (0, 1) � Hom=+1 (0, 1 + 1).

4. If 0 > 8 and 1 > 8, then f=
8
(0) = 0−1 and X=+1

8
(1) = 1+1. Then the equivalence Hom=

(
f=
8
(0), 1

)
�

Hom=+1
(
0, X=+1

8
(1)

)
is obvious.

+ Units and counits?

Theorem 5.25 (Informal). For each odd integer < = 2: + 1, there is a chain of < adjoints:

X:+1: a f::−1 a X
:+1
:−1 a . . . a f

:
0 a X

:+1
0

We do not know of any similar result for even numbers.
Cf la première réponse à cette question.

IMTA-RR-2019-01-SC 43/127

https://math.stackexchange.com/questions/92023/adjoint-pairs-triplets-and-quadruplets

5. Zoo of adjunctions

5.5. How long can a chain of adjoints be? Part 3: an infinite chain of adjoints
There are other examples of infinite chains of adjoints (for example: this one) but we prefer this one, which
requires not much side knowledge.

5.6. A logical adjunction
L’adjonction ∃ a?? a ∀

5.7. Forgetful and free functors
5.8. Other simple examples

Of course, this section could not be exhaustive. In the preface of the first edition of [5], Mac Lane wrote
about Chapters III to V:

“The slogan is "Adjoint functors arise everywhere."”
So of course we cannot make a complete list of all things that happen to be adjoint functors, because

there are loads of them. In this subsection, we introduce less epic examples of functors, without proof.

Initial and terminal objects

Consider the terminal category C1, consisting of only one object and only one identity morphism.
Consider the functor) : C → C1 for some category C . Then,) has a left (resp. right) adjoint⇔ C has an
initial (resp. terminal) object, and that left (resp. right) adjoint is init : C1 → C (resp. term : C1 → C)
which sends the unique object of C1 to the initial (resp. terminal) object of C . The unit [: IdC → term ◦)
has components [� : � → 1 (the unique arrow from the UMP of the terminal object) and the counit
Y :) ◦ term→ IdC1 consists in the only one arrow in C1.

Sets and Rel: relations and powerset

Consider the category Rel whose objects are sets and whose arrows are the relations (not just functions).
We let the reader check that this actually defines a category. There is an obvious inclusion functor
] : Sets→ Rel. We also have the powerset functor P : Rel→ Sets that sends a set - to its powerset P (-).
Then, 8 a P.

This adjunction comes with a lot of structure. The unit of the adjunction - → P (](-)) sends an
element to its singleton G ↦→ {G}. The counit] (P (-)) → - sends a subset* ⊂ - to what? I don’t get it.

Inclusion of preorders into Cat

Let Pre the category of preorders and monotone maps between them. Consider Cat, the category of
small categories and functors between them. There is an obvious inclusion functor � : Pre ↩→ Cat, because
preorders are examples of small categories. This inclusion functor has a left adjoint % : Cat→ Pre. It is a
nice exercise to find what that left adjoint is. We give the solution in the next paragraph.

The left adjoint % takes a small category C , and turns it into a preorder with the following rule: for a
category C ∈ Cat, % (C) is the preorder defined by � 6 � ′⇔ there is an arrow � → � ′ in C .

The unit [: IdCat → � ◦ % maps a category to its preorder and the counit Y : % ◦ � → IdPre maps a
preorder-ified preorder (thus a preorder) to itself; it is the identity.

5.9. A last word on adjunctions
In the following, these are purely non-mathematical thoughts and opinions on adjunctions.

When trying to understand adjunctions, I read and heard that they were fundamental not only in category
theory, but also in mathematics, and why not, in life in general. However, many new-comers have a hard
time figuring out what adjunctions say, while regular category-theorists just throw lots of (beautiful!)
examples that prove that they arise everywhere.

Let me give an alternative opinion.

IMTA-RR-2019-01-SC 44/127

https://math.stackexchange.com/questions/1058960/sequences-or-chains-of-adjoint-functors

5. Zoo of adjunctions

Adjunctions are thought as a weak form of equivalence of categories. As such, we would expect that
adjunctions state something about the two categories that they make "weakly equivalent". They do not.
Adjunctions do say something about categories, but only on arrows, and in a hard-to-parse, hard-to-think,
hard-to-use way (think about the identity HomC (� (�), -) � HomX (�,* (-))). Otherwise, they don’t
say much about the two categories. The exception is, adjoint equivalences, which say something about
categories, but more from being equivalences than adjunctions.

What is true though, is that they say something about the functors that they (ad)join. Adjunctions are a
way to associate functors together in a unique way (left and right adjoints are unique up to isomorphism,
thanks to the Yoneda lemma). We can also use this unicity in order to define a functor in terms of another.
But that’s it. The interpretation of this association is too context-dependent for one to extract the meaning
of two functors being adjoints. They make good theorems, and it always fills one with wonder when they
discover that two known functors, functions, mathematical things, are left or right adjoints of the other (this
was the goal of this section). But that’s it.

In fact, the fact that they arise everywhere (and they do arise everywhere) is also a hint about the other
fact that they tell nothing. Otherwise, they would say much more than what currently appears in books.

The wise conclusion is that, adjunctions are beautiful flowers in the landscape of category theory (or
mathematics, or life) but apart from their omnipresence, they say nothing about the soil they grew on (even
flowers may say something about the acidity of the earth, the humidity, even wind or bugs).

Of course, this opinion is strictly personal, but this is how I would answer the questions "what is the use
of adjunctions?" or "what do adjunctions say about category theory (or mathematics, or life)?". Adjunctions
may be beautiful, but unless you really want to study them, or if you came across adjunctions while studying
category theory, just do not spend too much time on it. Category theorists think they are important, because
you encounter them everywhere, but they carry no information and almost no property other than the unique
association of two functors.

IMTA-RR-2019-01-SC 45/127

6. Objects with some universality in them

6. Objects with some universality in them
A word about the UMP.

Definition 6.1 (Product [1]). Let C be a category and let � and � be objects in C .
The product of � and � is 3-tuple (� × �, c�, c�) where � × � is an object in C , and c� : �× �→ �

and c� : � × � → � are two arrows, such that, for all object % with two arrows ?� : % → � and
?� : % → �, there exists a unique arrow D : % → � × � such that c� ◦ D = ?� and c� ◦ D = ?�, that is,
such that the following diagram commutes:

%

� � × � �

?� ?�
D

c� c�

We call c�, c� projections, and we denote D by D = (?�, ?�).

The definition of the product can be interpreted as follows. Given three objects �, �, �, the "shorter"
path from � to � and � at the same time, always passes through � × �. In a sense, � × � is an "optimised"
link to � and �.
Example 6.2. In Sets, the product is the usual cartesian product of sets, and the projections are the usual
projections (0, 1) ↦→ 0 and (0, 1) ↦→ 1.
Example 6.3. In a preorder category (%, 6), the product ? × @ of two elements ? and @ verifies ? × @ 6 ?
and ? × @ 6 @, and for all A 6 ? A 6 @, we have A 6 ? × @. In fact, ? × @ = inf (?, @).

Proposition 6.4. Let C be a category and let � and � be objects in C .
The product � × � is unique up to isomorphism.

Proof. Let (� × �, c�, c�) and
(
� ★ �, c★

�
, c★
�

)
be two products of � and �.

By definition of both products, there exists unique D, D★ such that the following diagram commutes:

� ★ �

� �

� × �

c★
�

c★
�

D★

c� c�

D

We then have: c★
�
◦ D ◦ D★ = c★

�
= c★

�
◦ id�★� and c★

�
◦ D ◦ D★ = c★

�
= c★

�
◦ id�★�. The following

diagram commutes:

� ★ �

� � ★ � �

� ★ �

c★
�

c★
�D◦D★

c★
�

c★
�

c★
�

c★
�

id�★�

By uniqueness condition, we have D ◦ D★ = id�★�. A similar reasonning yields D★ ◦ D = id�×�; then D
and D★ are isomorphisms.

IMTA-RR-2019-01-SC 46/127

6. Objects with some universality in them

Consequently, it is natural to mention "the" product of two objects, instead of "a" product.
The definition of a product can be generalized from = = 2 to any = ∈ N. When = = 1, the product of �1

is just �1 and the projection c1 : �1 → �1 is the identity. When = = 0, the empty product is an object ∗
such that for all objects %, there exists a unique arrow D : %→ ∗ (we will see later that this is the terminal
object). Note that depending on the category C , not all pairs (�1, �2) may have a product.

Definition 6.5 (Category with finite products). The category C is said to have finite products if ∀= ∈
N,∀ (�8)8∈=, the product

∏
8∈= �8 exists.

The product of categories can also be defined. However, it is not always a product in the category of
categories (if such a thing exists). It is still useful for further definitions.

Definition 6.6 (Product of categories). Let C and D be two categories. We define the category of pairs, or
the product category C ×D by:

Objects: An object in C ×D is a pair (�, �) where � ∈ ObC and � ∈ ObD

Morphisms: A morphism in C ×D is a pair (2, 3) : (�, �) → (� ′, � ′) where 2 : � → � ′ ∈ MorC
and 3 : � → � ′ ∈ MorD

Identities: An identity morphism is a pair (id� , id�)

Composition: The composition law for morphisms is pairwise: (2, 3) ◦ (2′, 3 ′) = (2 ◦ 2′, 3 ◦ 3 ′) (using
the composition laws of C and D)

Remark 6.7. We can define the category Cat of small categories, where the morphisms are the functors
between small categories. In that case, if C and D are small categories, then the product C ×D is an actual
product in this category.

Besides, any two categories give birth to a product category, however this product is not necessarily an
actual product in the categorical sense.

Before checking on the dual notion of the product, let us have a look at the behaviour of the covariant
and contravariant Hom-set functors in relation to the product.

Proposition 6.8. Let C be a category with finite products. Then there is a natural isomorphism:

HomC (�, � × �) � HomC (�, �) × HomC (�,�)

in �, � and �.

Proof. As a product, there is a unique D : HomC (�, � × �) → HomC (�, �) × HomC (�,�) such that
the following diagram commutes:

HomC (�, � × �)

HomC (�, �) HomC (�, �) × HomC (�,�) HomC (�,�)

HomC (�,c�)
D

HomC (�,c�)

cHomC (�,�) cHomC (�,�)

Conversely, given (5�, 5�) ∈ HomC (�, �) × HomC (�,�), by definition of the product � × �, there
is a unique E : �→ � × � such that the following diagram commutes:

�

� � × � �

c�◦ 5
D

c�◦ 5

c� c�

IMTA-RR-2019-01-SC 47/127

6. Objects with some universality in them

Besides, E = 〈 5�, 5�〉 : �→ � × �, so we define:

U�,�,� :
{
HomC (�, �) × HomC (�,�) −→ HomC (�, � × �)

(5�, 5�) ↦−→ 〈 5�, 5�〉

By a reasonning similar to the one in the proof of Proposition 6.4, we have U�,�,� = D−1, so U�,�,� is
a bĳection.

The naturality is easy to check; let 0 : �→ �′:

� HomC (�′, �) × HomC (�′, �) HomC (�′, � × �)

{

�′ HomC (�, �) × HomC (�,�) HomC (�, � × �)

0 HomC (0,�)×HomC (0,�)

U�′,�,�

HomC (0,�×�)

U�,�,�

We check that the diagram commutes:

U�,�,� ◦ HomC (0,�) × HomC (0,�) (5�, 5�) = U�,�,� (5� ◦ 0, 5� ◦ 0)
= 〈 5� ◦ 0, 5� ◦ 0〉

HomC (0,� × �) ◦ U�′,�,� (5�, 5�) = HomC (0,� × �) 〈 5�, 5�〉
= 〈 5�, 5�〉 ◦ 0
= 〈 5� ◦ 0, 5� ◦ 0〉

The other naturalities are as easy to check.

This property is not specific to the Hom-set functor.

Definition 6.9 (Preserving products). The functor � : C → D is said to preserve products when, for all
�, � ∈ ObC , if � × � exists, then � (� × �) � � (�) × � (�).

Proposition 6.10. The covariant Hom-set functor HomC (�,−) preserves products.

Asimilar question could be asked about the contravariant Hom-set functor: is there a natural isomorphism
HomC (� × �,�) → HomC (�,�) × HomC (�,�)? In fact, the answer is no. The right isomorphism is
this one:

Proposition 6.11. Let C be a category with finite products. Then there is a natural isomorphism:

HomC×C ((�, �), (�,�)) � HomC (�, �) × HomC (�,�)

in �, � and �.

The proof is very similar to that of the covariant Hom-set functor.
Combining Proposition 6.8 and Proposition 6.11, we have:

Proposition 6.12. Let C be a category with finite products. Then there is a natural isomorphism:

HomC ((�, �), (�,�)) � HomC (�, � × �)

in �, � and �.
In other words, the diagonal functor:

IMTA-RR-2019-01-SC 48/127

6. Objects with some universality in them

Δ2 :


C −→ C × C
� ↦−→ (�,�)
2 ↦−→ (2, 2)

is right adjoint to the product functor − × − : C × C → C .

Remark 6.13. The unit of the adjunction Δ2 a × is:

[� : � → � × �
and the counit is:

Y�,� : (� × �, � × �) → (�, �)
The dual notion of that of a product is the coproduct:

Definition 6.14 (Coproduct). Let C be a category and let � and � be objects in C .
The coproduct of � and � is 3-tuple (� + �, 8�, 8�) where � + � is an object in C , and 8� : �→ � + �

and 8� : �→ �+� are two arrows, such that, for all object - with two arrows G� : �→ - and G� : �→ - ,
there exists a unique arrow D : � + �→ - such that the following diagram commutes:

-

� � + � �
8�

G� D

8�

G�

We call 8�, 8� injections, although they do not need to be injective.

Example 6.15. In Sets, the coproduct � + � corresponds to the disjoint union of � and �, for example
defined as

� + � = {(0, 0) | 0 ∈ �} ∪ {(1, 1) | 1 ∈ �}
with injections being:

8� : 0 → (0, 0)
8� : 1 → (1, 1)

Example 6.16. In a preorder category (%, 6), the coproduct ? + @ is the supremum: ? + @ = sup (?, @).
It is easy to see that:

Proposition 6.17. Let C be a category and let � and � be objects in C .
(� + �, 8�, 8�) is a coproduct in C if and only if (� + �, 8�, 8�) is a product in C

op .

Corollary 6.18. The coproduct is unique up to isomorphism.

The proof of the following is very similar to the proof of Proposition 6.8. We will just give the natural
isomorphism to consider.

Proposition 6.19. Let C be a category such that for all �, �, the coproduct � + � exists. Then, there is a
natural isomorphism:

HomC (� + �,�) � HomC×C ((�, �), (�,�))
In other words, the diagonal functor Δ2 : � ↦→ (�,�) is left adjoint to the coproduct functor

− + − : C × C → C .

IMTA-RR-2019-01-SC 49/127

6. Objects with some universality in them

Proof. If 5 : � + � → � then by definition of the coproduct, there are two arrows 8� : � → � + � and
8� : �→ � + � such that 5 = 5 ◦ ?� + 5 ◦ ?� (5 ◦ ?� can be seen as the restriction of 5 to �). Consider
the mapping:

U�,�,� :
{
HomC (� + �,�) −→ HomC×C ((�, �), (�,�))

5 ↦−→ (5 ◦ ?�, 5 ◦ ?�)
Then it is not hard (but quite long) to prove thatU�,�,� defines a natural transformationHomC (− + −,−) →

HomC×C ((−,−),Δ(−)).
The unit is:

[�,� : (�, �) → (� + �, � + �)

and the counit is:

Y� : � + � → �

In summary:

Theorem 6.20. + a Δ2 a ×.

Definition 6.21 (Exponential [1]). Let C be a category with finite products, and let �,� be objects of C .
An exponential of � and � is a pair

(
��, Y

)
where �� is an object in C and Y : �� × �→ �, such that,

for any arrow 5 : � × �→ �, there exists a unique arrow 5 2 : �→ �� such that the following diagram
commutes:

� � × �

�� �� × � �

5 2 55 2×id�

Y

The arrow Y is called evaluation; the arrow 5 2 is the (exponential) transpose of 5 .

Remark 6.22. Let’s consider the category of sets C = Sets.
Let �,� be two sets; their exponential is �� = HomSets (�,�) (note that this is specific to Sets). Let

5 : � × � → � be a function. As a function in two variables, 5 : 0, 1 ↦→ 5 (0, 1) can also be seen as a
function 5 2 : 0 ↦→ 5 (0,−) : 1 ↦→ 5 (0, 1). The operation 5 2 : 0 ↦→ 5 (0,−) is a function � → ��, it is
called curryfication; however, the operation 6, 1 ↦→ 6(1) is a function ��, �→ � called evaluation. The
exponential of two sets � and � is the pair

(
��, Y

)
where �� = HomSets (�,�) and Y is the function:

Y :
{
�� × � −→ �

6, 1 ↦−→ 6(1)
Thus, for all 5 : � × � → �, we have Y ◦ (5 2 × id�) (0, 1) = Y (5 (0,−), 1) = 5 (0, 1). The goal of

the exponential is to generalise these notions of curryfication and evaluation to other categories.

Proposition 6.23. Let C be a category with finite products. We also suppose that -. exists for all objects
-,. ∈ C .

Let � be an object of C . Let %� and �� be the functors:

%� :


C −→ C
- ↦−→ - × �

G : - → - ′ ↦−→ G × id� : - × �→ - ′ × �
IMTA-RR-2019-01-SC 50/127

6. Objects with some universality in them

�� :


C −→ C
- ↦−→ -�

G : - → - ′ ↦−→ G� : -�→ - ′�

Then %� a ��.

Proof. We let the reader check that %� and �� actually are functors.
We want to prove that there is a natural isomorphism W with components:

W-,. : HomC

(
-,. �

)
→ HomC (- × �,.)

For fixed . and �, we consider the exponential
(
. �, Y.

)
.

Let 5 : - × �→ . ; then by definition of the exponential . �, there exists a unique 5 2 : - → . � such
that 5 = Y. ◦ 5 2 × id�. Consequently, there is a bĳection:

W-,. :
{
HomC

(
-,. �

)
−→ HomC (- × �,.)

6 ↦−→ Y. ◦ 6 × id�
As for the naturality of W, let G : - → - ′:

HomC
(
- ′, . �

)
HomC (- ′ × �,.)

?

HomC
(
-,. �

)
HomC (- × �,.)

HomC (G,. �)

W-′,.

HomC (G×�,.)

W-,.

For 5 ∈ HomC
(
- ′, . �

)
, we have:

HomC (G × �,.) ◦ W- ′,. (5) = HomC (G × �,.) ◦ Y. ◦ (5 × id�)
= Y. ◦ (5 × id�) ◦ (G × id�)
= Y. ◦ (5 ◦ G × id�)

W-,. ◦ HomC

(
G,. �

)
(5) = W-,. (5 ◦ G)

= Y. ◦ (5 ◦ G × id�)
= HomC (G × �,.) ◦ W- ′,. (5)

Thus the diagram commutes.
As for the naturality in . , let H : . → . ′:

HomC
(
-,. �

)
HomC (- × �,.)

?

HomC
(
-,. ′�

)
HomC (- × �,. ′)

HomC (-,H�)

W-,.

HomC (-×�,H)

W-,. ′

Let Y. ′ be the evaluation that comes with . ′�. For 5 ∈ HomC
(
-,. �

)
, we have:

IMTA-RR-2019-01-SC 51/127

6. Objects with some universality in them

HomC (- × �, H) ◦ W-,. (5) = H ◦ Y. ◦ (5 × id�)

W-,. ′ ◦ HomC

(
-, H�

)
(5) = W-,. ′

(
H� ◦ 5

)
= Y. ′ ◦

(
H� ◦ 5 × id�

)
Consider the following diagram:

- × �

. � × � .

?

. ′� × � . ′

5 2×id� 5
H�◦ 5 2×id�

H◦ 5

Y.

H�×id� H

Y. ′

The following subdiagrams commute:

- × �

. � × � . . ′

5 2×id�
5

H◦ 5

Y. H

- × �

. � × � . ′� × � . ′

5 2×id�
H�◦ 5 2×id�

H◦ 5

H�×id� Y. ′

We deduce that the following diagram commutes too:

- × �

. � × � . � × �

X X

. . ′� × �

. ′

5 2×id� 5 2×id�

H◦ 5Y. H�×id�

H Y. ′

which proves the equality:

Y. ′ ◦
(
H� ◦ 5 × id�

)
= H ◦ Y. ◦ (5 × id�)

⇔ W-,. ′ ◦ HomC

(
-, H�

)
(5) = HomC (- × �, H) ◦ W-,. (5)

and thus the naturality of W in . .
The inverse natural isomorphism W−1 is the adjunctor between %� and ��.

Corollary 6.24. The exponential is unique up to isomorphism.

Proof. Consequence of the unicity of the right adjoint up to isomorphism.

IMTA-RR-2019-01-SC 52/127

6. Objects with some universality in them

Remark 6.25. In Sets, the two functors %� and �� would be:

%� :


C −→ C
- ↦−→ - × �

G : - → - ′ ↦−→ G × id� :
{
- × � −→ - ′ × �
4, 0 ↦−→ (G(4), 0)

�� :


C −→ C
- ↦−→ -�

G : - → - ′ ↦−→ G� :
{
-� −→ - ′�

5 ↦−→ G ◦ 5

Remark 6.26. If the category C has all exponentials
(
. �, Y.

)
for all �,. ∈ ObC , then Y : (Y.). ∈ObC

is
the counit of the adjunction %� a ��. In fact, using the W seen in the proof of Proposition 6.23, we have
W�� (.) ,.

(
id�� (.)

)
= Y. ◦

(
id�� (.) , id�

)
= Y. .

The counit is less obvious. It is a natural transformation [=
(
[. : . → (. × �)�

)
with components

[. such that the following diagram commutes:

. × �

(. × �)� × � . × �

[.×id�
id.×�

Y.×�

Definition 6.27 (Initial and terminal object [2]). Let C be a category, and let �,) be objects of C .
The object � is called initial when, for every � ∈ ObC , there is only one arrow � → �. The initial

object is often denoted by 0.
The object) is called terminal when, for every � ∈ ObC , there is only one arrow � →) . The terminal

object is often denoted by 1.

Example 6.28. In Sets, any singleton {0} is a terminal object, because there is only one function �→ {0}
for every set � (the constant function G ↦→ 0). Besides, the empty set ∅ is the unique initial object; for
set-theoretic reasons, there is only one function ∅ → � (the empty function).
Example 6.29. If (%, 6) is a preorder, then the initial object is the minimal object min (%) (if it exists) and
the terminal object is the maximum max (%) (if it exists).

Proposition 6.30. 1. Let C be a category with initial object �. The initial object is unique up to unique
isomorphism.

2. Let C be a category with terminal object) . The terminal object is unique up to unique isomorphism.

Proof. [Proof of 1]
Let � and � ′ be two initial objects. Then there is only one arrow � → �, 8 : � → � ′, 8′ : � ′ → � and

� ′ → � ′. We have 8′ ◦ 8 : � → �, but the only arrow � → � is id� so 8′ ◦ 8 = id� . Similarly, we have
8 ◦ 8′ = id� ′, so 8 and 8′ are isomorphisms between � and � ′.

[Proof of 2]
Same as with the initial objects.

Lemma 6.31. If C has finite products, then C has a terminal object.

IMTA-RR-2019-01-SC 53/127

6. Objects with some universality in them

Proof. For any finite sequence of objects (�8)8∈= there is a product
∏
8∈= �8 together with projections

c�8 :
∏
8∈= �8 → �8 .

If = = 0, we have an object 1 with no projections, such that for all � ∈ C , there is a unique arrow
!� : � → 1 such that no diagram commutes2.

Proposition 6.32. Let C be a category.
If C has a terminal object 1, then � � �1 � � × 1.
Dually, if C has an initial object 0, then � + 0 � �.

Proof. For the equivalence � � � × 1, it suffices to show that � is also a product of � and 1. For any
? : % → �, there is a unique arrow !% : % → 1. So, there is a unique arrow D such that the following
diagram commutes:

%

� � 1
?

!%D

id�
!�

and that D is D = ?. So � and � × 1 are both products of � and 1, so they are equivalent.
The same proof, with reverse arrows, yields that � + 0 � �.
As for the exponential, consider the adjunction HomC

(
-,�1) � HomC (- × 1, �) � HomC (-,�).

By Corollary 2.17, we have � � �1.
(Proof without Yoneda? Only by diagam chase? Exponentials are not unique up to iso, apparently.)

Proposition 6.33. Let C be a category and let � : C → Sets. Then there is a natural isomorphism
HomSets (1, � (�)) � � (�), natural in both - and �.

Proof. Recall that in Sets, 1 = {0}.
Let � ∈ C , we define the mapping:

i�,� :
{
HomSets (1, � (�)) −→ � (�)

5 ↦−→ 5 (0)
Of course, i�,� is a bĳection (isomorphism between sets): H ∈ � (�) then there is exactly one function

5 : 1→ � (�) such that 5 (0) = H.
As for the naturality in �, if 2 : � → � ′ then we chekc if the following diagram commutes:

� HomSets (1, � (�)) � (�)

{ ?

� ′ HomSets (1, � (� ′)) � (� ′)

2 HomSets (1,� (2))

i�,�

� (2)

i�,�′

For 5 ∈ HomSets (1, � (�)):

2In fact I don’t really understand this proof. It comes from [1, p. 47], and is supported by
https://math.stackexchange.com/questions/1991522/terminal-objects-as-nullary-products. I don’t find the proof convincing
because I feel like we can define the product of = objects, for = > 2, or even = = 1. However, = = 0 seems like using the definition
for a borderline case. As everyone seems to agree to this lemma (probably because it can be proven from elsewhere, using other
tools), I mention it.

IMTA-RR-2019-01-SC 54/127

6. Objects with some universality in them

� (2) ◦ i�,� (5) = � (2) (5 (0))
i�,�′ ◦ HomC (1, � (2)) (5) = i�,�′ (� (2) (5))

= � (2) (5) (0)
= � (2) ◦ i�,� (5)

hence the naturality in �.
Then, for a fixed � ∈ C , if H : � → � ′ is a natural transformation, we need to check if the following

diagram commutes:

� HomC (1, � (�)) � (�)

{ ?

� ′ HomC (1, � ′(�)) � ′(�)

U HomC (1,U�)

i�,�

U�

i�′,�

For 5 ∈ HomC (1, � (�)), it does:

U� ◦ i�,� (5) = U� ◦ 5 (0)
i� ′,� ◦ HomSets (1, U�) (5) = i� ′,� (U� ◦ 5)

= U� ◦ 5 (0)
= U� ◦ i�,� (5)

Definition 6.34 (Cartesian closed category [2]). The category C is called Cartesian closed whenever the
following three conditions hold:

1. There is a terminal object 1

2. C has finite products

3. For all objects �, � ∈ ObC , the exponential �� exists

Example 6.35. The category Sets is Cartesian closed.
Recall from Section 1 the notions of epimorphisms and monomorphisms. The following notion of

equaliser gives an example of monomorphism (and its dual notion is an example of epimorphism). In fact,
it also gives a characterisation of isomorphisms.

Definition 6.36 (Equalisers [1]). Let C be a category, and let 5 , 6 : �→ � be two arrows.
An equaliser of 5 and 6 is a pair (�, 4) with � ∈ C and 4 : � → �, such that 5 ◦ 4 = 6 ◦ 4 and, for

all G : - → � such that 5 ◦ G = 6 ◦ G, there exists a unique D : - → � such that the following diagram
commutes:

-

� � �

GD

4

5

6

IMTA-RR-2019-01-SC 55/127

6. Objects with some universality in them

Example 6.37. (From [1]). In Sets, given two functions 5 , 6 : � → �, their equaliser is (�, 4) where
� = {G ∈ � | 5 (G) = 6(G)} and 4 : � → � is the canonic inclusion.
Example 6.38. In a preorder category (%, 6), there is at most one arrow ? → @. Thus, the equaliser of
5 , 6 : ? → @, with 5 = 6 is their domain together with its identity

(
?, id?

)
.

Proposition 6.39. The equaliser is unique up to isomorphism.

Proof. Let (�, 4) and (� ′, 4′) be equalisers of 5 and 6. There exist unique D : � ′→ � and D′ : � → � ′

such that 4 = D′ ◦ 4′ and 4′ = D ◦ 4, as in the following diagram:

� � �

� ′

4

D′

5

6

4′
D

Thus, we have: 4 = D′ ◦ 4′ = D′ ◦ D ◦ 4, which gives the following diagram:

� � �

�

4
5

6

D′◦D◦4
D′◦D id�

By unicity of the arrow � → � which makes the diagram commute, we have D′ ◦ D = id� . A similar
reasoning yields D ◦ D′ = id� .

Proposition 6.40. Let (�, 4) be an equaliser of 5 , 6 : �→ �.
Then 4 is monic.

Proof. Let 2, 2′ : � → � such that 4 ◦ 2 = 4 ◦ 2′.

�

� � �

22′
4◦2=4◦2′

4

5

6

By definition of an equaliser, we have 5 ◦ 4 ◦ 2 = 6 ◦ 4 ◦ 2, so there exists a unique D : � → � such that
4 ◦ D = 4 ◦ 2 = 4 ◦ 2′. By unicity of D, we have D = 2 = 2′, hence 4 is monic.

Proposition 6.41. Let (�, 4) be an equaliser of 5 , 6 : �→ �.
If 4 is an epimorphism then 4 is an isomorphism.

Proof. Suppose 4 is epic. As an equaliser, we have the following diagram:

� � �
4

5

6

and as an epimorphism, we deduce that 5 ◦ 4 = 6 ◦ 4 ⇒ 5 = 6.
Thus, the identity id� : �→ � verifies 5 ◦ id� = 6◦ id�. Consequently, there exists a unique D : �→ �

such that the following diagram commutes:

IMTA-RR-2019-01-SC 56/127

6. Objects with some universality in them

� � �

�

4
5

6

id�
D

from which we deduce 4 ◦ D = id�.
The same occurs with 4 : � → �:

� � �

�

�

4
5

6

id�

D

4=4◦D◦4
id�

4

We know that 4 = 4 ◦ id� = 4 ◦ (D ◦ 4) = (4 ◦ D) ◦ 4 = id� ◦ 4. As an equaliser, 4 is monic, so
D ◦ 4 = id� ; 4 is an isomorphism and 4−1 = D.

We deduce from this proposition what a monic epimorphism (or an epic monomorphism, or monic/epic)
lacks to be an isomorphism:

Corollary 6.42. Let 2 : � → � ′ be any arrow.
The arrow 2 is an isomorphism⇔ 2 is an epic equaliser.

Take the arrows and reverse them; you get the definition of a coequaliser:

Definition 6.43 (Coequalisers [1]). Let C be a category, and let 5 , 6 : �→ � be two arrows.
A coequaliser of 5 and 6 is a pair (&, @) with & ∈ C and @ : �→ &, such that @ ◦ 5 = @ ◦ 5 and, for

all G : � → - such that G ◦ 5 = G ◦ 6, there exists a unique D : � → - such that the following diagram
commutes:

� � &

-

5

6

@

G
D

By duality, the following proposition holds:

Proposition 6.44. The coequaliser is unique up to isomorphism.

Proposition 6.45. Let (&, @) be a coequaliser of 5 , 6 : �→ �.
Then @ is epic.

Proposition 6.46. Let (&, @) be a coequaliser of 5 , 6 : �→ �.
If @ is a monomorphism then @ is an isomorphism.

Corollary 6.47. Let 2 : � → � ′ be any arrow.
The arrow 2 is an isomorphism⇔ 2 is a monic coequaliser.

Example 6.48. In Sets, take 5 , 6 : �→ �. Let ' be the relation such that ∀0 ∈ �, (5 (0), 6(0)) ∈ ', and
let '̄ be the smallest equivalence relation containing '. Consider

(
�/', 1

)
, where �/' is the quotient of

� by the equivalence relation ', and 1 is the function that sends an element of � to its equivalence class.
Then,

(
�/', 1

)
is the coequaliser of 5 and 6.

For more details, see [2, Section 9.4.1, pp 278-279].

IMTA-RR-2019-01-SC 57/127

6. Objects with some universality in them

Example 6.49. Just as in Remark 6.38, as there is only one arrow between any two objects, the coequaliser
of 5 , 6 : ? → @ is their codomain:

(
@, id@

)
.

We finish our presentation of the constructions with some universality in them, with pullbacks, and
their dual, pushouts.

Definition 6.50 (Pullback [1]). Let C be a category. Let 5 : �→ � and 6 : �→ � be arrows with same
codomain.

The pullback of 5 and 6 is a 3-tuple (� ×� �, ?�, ?�) such that the following diagram commutes:

� ×� � �

X

� �

?�

?� 5

6

and such that, for all (-, G�, G�) such that the following diagram commutes:

- �

X

� �

G�

G� 5

6

there is a unique arrow D : - → � ×� � such that G� = ?� ◦ D and G� = ?� ◦ D, that is, such that the
triangles and squares commute:

%

� ×� � �

� �

G�

G�

D

?�

?� 5

6

Example 6.51 (Pullbacks in Sets). In Sets, let 5 : �→ � and 6 : �→ � be two functions. Their pullback
(� ×� �, c�, c�) is:

� ×� � = {I ∈ P (P (� ∪ �)) | 5 ◦ c�(I) = 6 ◦ c� (I)}
� {(G, H) ∈ � × � | 5 (G) = 6(H)}

with projections c� : � ×� �→ � and c� : � ×� �→ �.
Note that there is the idea of "equalising" two functions. As we will see in a following proposition,

there is a link between equalisers and pullbacks, and the explicit construction is based on this idea.
Consider the special case where 5 and 6 are inclusion mappings (that is: functions of the form

5 :
{
� −→ �

G ↦−→ G
for � ⊂ � and 6 :

{
� −→ �

G ↦−→ G
for � ⊂ �). The pullback of 5 and 6 is then:

IMTA-RR-2019-01-SC 58/127

6. Objects with some universality in them

� ×� � = { (0, 1) ∈ � × � | 0 = 1}
= {(0, 0) ∈ � × �}
� {0 ∈ �} 0 ∈ �
= � ∩ �

The intersection of sets consists in a pullback of inclusion mappings in Sets.
Example 6.52 (Pullbacks in a preorder). In a preorder category (%, 6), as there is at most one arrow between
two objects, we don’t need to check that any diagram commutes. In fact, the pullback is exactly the same as
a product; that is, a pullback between ? → @ and ?′→ @ is ? ×@ ?′ = ? × ?′ = inf (?, ?′).

Proposition 6.53. Pullbacks are unique up to isomorphism.

Proof. This proof is similar to the ones for products, coproducts, equalisers, coequalisers.

Let us study some more properties related to pullbacks. For example, pullbacks allow for a different
characterisation of monomorphisms in a category.

Proposition 6.54. Let 5 : �→ � be an arrow. Then the following propositions are equivalent:

1. 5 is a monomorphism

2. The pullback of 5 with itself exists and is (%, ?, ?′) with ? = ?′

3. The pullback of 5 with itself exists and is (�, id�, id�)

Proof. [(1)⇒ (3)] Suppose 5 is a monomorphism. Then for all 2, 2′ : � → � such that 5 ◦ 2 = 5 ◦ 2′, we
have 2 = 2′.

� � �
2

2′

5

Then consider the triple (�, id�, id�). Consider the following diagram:

&

� �

X

� �

D

@1

@2
id�

id� 5

5

such that 5 ◦ @1 = 5 ◦ @2. As 5 is monic, then @1 = @2 and the unique D is D = @1 = @2 and (�, id�, id�)
is the pullback of � with itself.

[(2)⇒ (1)] Suppose (%, ?, ?) is the pullback of 5 with itself. Let & be as in the following pullback
diagram:

IMTA-RR-2019-01-SC 59/127

6. Objects with some universality in them

&

% �

X

� �

D

@1

@2
?

? 5

5

such that 5 ◦ @1 = 5 ◦ @2. By definition of a pullback, the unique D verifies: @1 = ? ◦ D = @2, hence the
monicity of 5 .

[(3)⇒ (2)] Obvious.

Proposition 6.55. Consider the following diagram:

�1 �1 �1

X

�2 �2 �2

0

01

1

11

2

02 12

Suppose that (�1, 11, 1) is the pullback of 2 with 12. Then (�1, 01, 0) is the pullback of 1 with 02⇔
(�1, 11 ◦ 01, 0) is the pullback of 2 with 12 ◦ 02.

Suppose the right-hand square is a pullback; then the left-hand square is a pullback if and only if the
whole rectangle is a pullback.

Proof. By diagram chase.

This result proves sometimes to be useful, when some objects are defined in terms of pullbacks. More
properties of pullbacks will come later. For now, let us just focus on the links between pullbacks, equalisers,
products and terminal objects.

Lemma 6.56. Let C be a category with products and equalisers. Let 5 : �→ � and 6 : �→ � be arrows.
Let (� × �, c�, c�) be the product of � and �, � ∈ C , 4 : � → � × �, 4� : � → � and 4� : � → �,

as in the following diagram.

�

� × � �

� �

4�

4�

4

c�

c� 5

6

We suppose that 4� = c� ◦ 4 and 4� = c� ◦ 4. The rest of the diagram is not supposed to commute
otherwise.
(�, 4) is an equaliser of 5 ◦ c� and 6 ◦ c� ⇔ (�, 4�, 4�) is a pullback of 5 and 6.

IMTA-RR-2019-01-SC 60/127

6. Objects with some universality in them

Proof. Suppose (�, 4) is an equaliser of 5 ◦ c� and 6 ◦ c�. Let (%, ?�, ?�) such that ?� : % → �,
?� : % → � and 5 ◦ ?� = 6 ◦ ?�. By definition of the product � × �, there is a unique D : % → � × �
such that the two upper triangles commute:

%

� � × � �

�

?�?�
D

6

c�c�

5

Now, we have:

5 ◦ ?� = 6 ◦ ?�
(5 ◦ c�) ◦ D = (6 ◦ c�) ◦ D

As (�, 4) is an equaliser of 5 ◦ c� and 6 ◦ c�, there exists a unique E : % → � such that 4 ◦ E = D.
Consequently, we have:

4 ◦ E = D
c� ◦ 4 ◦ E = c� ◦ D

4� ◦ E = ?�

Similarly, for �, we have 4� ◦ E = ?�. In summary, for any (%, ?�, ?�) such that 5 ◦ ?� = 6 ◦ ?�, there
is a unique E : %→ � such that 4� ◦ E = ?� and 4� ◦ E = ?�; thence, (�, 4�, 4�) is a pullback of 5 and 6.

Conversely, suppose (�, 4�, 4�) is a pullback of 5 and 6; we have: 5 ◦ 4� = 6 ◦ 4�.
By definition of the product � × �, there is a unique D : � → � × � such that the two upper triangles

commute:

�

� � × � �

�

4�4� D

6

c�c�

5

We already have 4� = c� ◦ 4 and 4� = c� ◦ 4, so that unique D is 4.
Let (%, ?) be such that ? : %→ �×� and 5 ◦c�◦ ? = 6◦c� ◦ ?. Such a ? induces arrows ?� = c�◦ ?

and ?� = c� ◦ ?; we have:

5 ◦ ?� = 6 ◦ ?�
As (�, 4�, 4�) is a pullback of 5 and 6, there is a unique E : % → � such that ?� = 4� ◦ E and

?� = 4� ◦ E.
We deduce:

IMTA-RR-2019-01-SC 61/127

6. Objects with some universality in them

?� = 4� ◦ E ⇒ c� ◦ ? = c� ◦ 4 ◦ E
?� = 4� ◦ E ⇒ c� ◦ ? = c� ◦ 4 ◦ E

which yields:

(c� ◦ ?, c� ◦ ?) = (c� ◦ 4 ◦ E, c� ◦ 4 ◦ E)
(c�, c�) ◦ ? = (c�, c�) ◦ 4 ◦ E

id�×� ◦ ? = id�×� ◦ 4 ◦ E
? = 4 ◦ E

To be an equaliser, there is one thing missing: 5 ◦ c� ◦ 4 = 6 ◦ c� ◦ 4. This can be deduced from:

5 ◦ 4� = 6 ◦ 4�
5 ◦ c� ◦ 4 = 6 ◦ c� ◦ 4

Corollary 6.57. If a category has finite products and equalisers, then it has pullbacks.

Lemma 6.58. Let C be a category.
If C has pullbacks and a terminal object, then C has finite products.

Proof. Let �, � ∈ ObC . There are unique arrows !� : � → 1 and !� : � → 1. Let (� ×1 �, ?�, ?�) be
the pullback of !� and !�.

Let - be any object and let G� : - → � and G� : - → � be any arrows from - to � and �. By
definition of a terminal object, there is a unique arrow !- : - → 1, so !- is:

!- =!� ◦ G� =!� ◦ G�
Then - qualifies for the existence of a unique D : - → � ×1 � such that the two triangles commute, as

in the following diagram:

-

� ×1 � �

� 1

G�

G�

D

?�

?� !�

!�

Thus, � ×1 � is a product of � and �.

Lemma 6.59. Let C be a category.
If C has pullbacks and finite products, then C has equalisers.

Proof. The proof again consists in finding the right pullback that will be the equaliser. As C has products,
we define � × �. The pullback of (id�, id�) : �→ � × � and (5 , 6) : �→ � × � exists and is such that:

IMTA-RR-2019-01-SC 62/127

6. Objects with some universality in them

(id�, id�) ◦ 4′ = (5 , 6) ◦ 4
(4′, 4′) = (5 ◦ 4, 6 ◦ 4)
⇒ 5 ◦ 4 = 6 ◦ 4

as in the diagram:

-

� �

� � × �

G�

G�
D

4′

4

(5 ,6)

(id� ,id�)

The universality of the equaliser comes from that of the pullback.

Finally, the dual notion of a pullback is a pushout:

Definition 6.60 (Pushout [5]). Let C be a category. Let 5 : �→ � and 6 : �→ � be arrows with same
domain.

The pushout of 5 and 6 is a 3-tuple (� +� �, ?�, ?�) such that the following diagram commutes:

� �

X

� � +� �

5

6 ?�

?�

and such that, for all (-, G�, G�) such that the following diagram commutes:

� �

X

� -

5

6 G�

G�

there is a unique arrow D : � +� � → - such that G� = ?� ◦ D and G� = ?� ◦ D, that is, such that the
triangles and squares commute:

� �

� � +� �

-

5

6 ?�

G�?�

G�

D

The arrows ?� : �→ � +� � and ?� : � → � +� � are often called the inclusion mappings, just like
in the coproduct.

IMTA-RR-2019-01-SC 63/127

6. Objects with some universality in them

Example 6.61 (Pushout in Sets). In Sets, consider the functions 5 : � → � and 6 : � → �. Then their
pushout � +� � is identified with a subset of � + �; in fact, it is:

� +� � = (� + �) /≡

where ≡ is the smallest equivalence relation on � + � such that for all 0 ∈ �, 5 (0) ≡ 6(0).
Another interesting special case is the following. In Example 6.51, we defined the intersection � ∩ � of

two sets � and �. This intersection comes with trivial inclusion mappings 8� :
{
� ∩ � −→ �

G ↦−→ G
and

8� :
{
� ∩ � −→ �

G ↦−→ G
, so we can compute its pushout.

� ∩ � �

X

� � +�∩� �

8�

8� ?�

?�

We have � +�∩� � = (� + �) /≡ where ≡ is the smallest equivalence relation such that for all 0 ∈ �,
8�(0) ≡ 8� (0). In our case, 8�(0) = 8� (0) = 0, so ≡ is simply the equality =. This means that, in the
coproduct, which is a disjoint union in Sets, the pushout doesn’t contain duplicates of the same element 0 if
0 is in both � and �. Thus, the pushout � +�∩� � is simply the union � ∪ �.
Example 6.62 (Pushout in a preorder). Just as pointed in Example 6.52 about pullbacks, in a preorder, the
pushout is exactly the same as a coproduct.

The notions of equalisers and pullbacks will appear again in the rest of this course. The other two
(coequalisers and pushouts) are introduced for the sake of completeness (and duality).

IMTA-RR-2019-01-SC 64/127

7. Your only colimit is yourself

7. Your only colimit is yourself
Products/coproducts, initial/terminal objects, equalisers/coequalisers, pullbacks/pushouts are examples of
the broader notion of limit. There are three ways to introduce limits, as illustrated in [2, Par. 9.2.6, p270].
We choose to introduce the limits using the characterisation with diagrams.

Definition 7.1 (Diagram [7]). Let C ,I be categories. A diagram in C of shape I is a functor I → C .
The category I is called the index category and it is usually (but not always!) small. If I is finite,

then the diagram is said finite.

In the following, the objects of I will be denoted by 8, 9 , :, . . . while the values of the functor
� : I → C will be denoted by �8 , � 9 , �: ,

As explained in Section 1, a functor gives the picture of a category into another. A diagram I → C is
no more than that: just a picture of the category I into the category C , hence the name.

Definition 7.2 (Category of diagrams). Let C ,I be categories. The category of diagrams in C of shape
I is the functor category Func (I ,C) = C I .

Definition 7.3 (Diagonal functor). Let C ,I be categories.
The diagonal functor Δ is the functor C → C I such that:

1. For all object � ∈ C , Δ(�) is the diagram:

Δ :


I −→ C
8 ↦−→ �

8 → 9 ↦−→ id�

2. For all arrow 2 : � → � ′ ∈ C , Δ(2) : Δ(�) → Δ(� ′) is the natural transformation Δ(2) =(
�

2−→ � ′
)
8∈I

(each component Δ(2)8 is a copy of 2).

In summary, the functor Δ(�) "collapses" the category I into one element �. For example, if I is the
following five-element category:

0 1 �

2

3 4 � ′

Δ(�)

id�

2
Δ(2)

Δ(�′)

id�′

One can also see Δ(�) as a sequence of copies of �, indexed by the objects of I . Here, the arrows of
I don’t matter, as they always become id� . If I is a category with two objects, then Δ(�) = (�,�). A
better view of the action of Δ(�) is the following diagram:

IMTA-RR-2019-01-SC 65/127

7. Your only colimit is yourself

0 1 � �

2 �

3 4 � �

Δ(�)

where all the arrows in the right diagram are identity arrows.

Definition 7.4 (Colimit). Let C ,I be categories. Let Δ : C → C I be the diagonal functor and let
� : I → C be a diagram.

The pair (Colim (�), [�) is the colimit diagram for � when (Colim (�) , [�) is a universal arrow
from � to Δ.

Remark 7.5. We have Colim (�) ∈ ObC , [� : � → Δ (Colim (�)); that is, [� is a natural transformation
between the two diagrams � : I → C and Δ (Colim (�)) : I → C .
Example 7.6. In Sets, a diagram � : I → Sets is a functor that defines a small subcategory inside
Sets. One might say it’s a graph whose nodes are sets and whose arrows are functions such that the
composite of two function is still an arrow in the graph. Note that, for all arrow D : 8 → 9 in I , the arrow
� (D) : �8 → � 9 is a function between sets.

Define - =
⊎

8∈ObI

�8 to be the coproduct in Sets of all �8’s. For the sake of clarity, let us explicitly

define this coproduct as:

- =
⊎
8∈ObI

�8 = {(8, G) | 8 ∈ ObI , G ∈ �8 }

(You can check that this actually is a coproduct.)
Define the preorder � over - such that: (8, G) � (8′, G ′) iff there exists some D : 8 → 8′ such that

� (D) (G) = G ′. Let ∼ be the equivalence relation generated by this preorder.
Then, the colimit of the diagram � is the quotient set:

Colim (�) = -/∼=
⊎
8∈ObI

�8/∼

The natural transformation [� is composed of the inclusion maps �8 →
⊎

8∈ObI

�8/∼.

Note that the coproduct of two sets corresponds to the special case where card (ObI) = 2 and there is
no arrow between the two objects, so that the equivalence relation ∼ is only the equality.
Example 7.7. In a preorder category (%, 6), the diagram � : I → % defines a sub-order, and the colimit of
that diagram, if it exists, is the sup of all �8’s: Colim (�) = sup

8∈ObI

�8 . Note that we saw in Example 6.16

that the coproduct of a subset of a preorder was exactly its supremum. In fact, in a preorder, the arrows
between two objects do not matter at all when computing colimits. This is because there is always at most
one arrow between any two objects. Thus, in a preorder, the colimits are exactly the coproducts.
Remark 7.8. Let (Colim (�) , [�) be a colimit. By definition, it is a universal arrow from � to Δ, so for all
� ∈ ObC , for all U : � → Δ(�), there is a unique G : Colim (�) → � such that:

U = Δ(G) ◦ [� (20)

Note that U : � → Δ(�) is:

IMTA-RR-2019-01-SC 66/127

7. Your only colimit is yourself

U = (U8 : � (8) → Δ(�) (8))8∈I = (U8 : �8 → �)8∈I
and [� is:

[� = ([� (8) : �8 → Δ (Colim (�)) (8))8∈I = ([� (8) : �8 → Colim (�))8∈I
Finally, for G : Colim (�) → �, we have Δ(G) = (G : Colim (�) → �)8∈I .
Thus, Equation 20 rewrites:

(U8 : �8 → �)8∈I = (G : Colim (�) → �)8∈I ◦ ([� (8) : �8 → Colim (�))8∈I

=

(
G ◦

(
�8

[� (8)−→ Colim (�)
))
8∈I

Therefore, for all 8 ∈ I :

�8 Colim (�)

�

[� (8)

U8
G

Besides, as U : � → Δ (�) and [� : � → Δ (Colim (�)) are natural transformations, the following
diagrams commute:

8 �8 Colim (�)

�

9 � 9 Colim (�)

�

D

[� (8)

U8

� (D)

G

Δ(Colim(�)) (D)

Δ(�) (D)
[� (9)

U9
G

which simplifies to:

8 �8

Colim (�)

�

9 � 9

D

[� (8)

U8

� (D) G

[� (9)

U9

Now, using a more complex starting graph:

IMTA-RR-2019-01-SC 67/127

7. Your only colimit is yourself

0 �0

2 �2 Colim (�)

1 �1

3 �3 �

4 �4

[�

G

U

where all triangles commute.
We see some cone-like figures in red and orange, the base of which is the diagram with the �8’s. W call

these figures cocones from � to �. Definition 7.10 makes it more formal.
If follows from the previous remark that:

Proposition 7.9. Let C ,I be categories. Let Δ : C → C I be the diagonal functor and let � : I → C
be a diagram. Let �� ∈ ObC and [� : � → Δ (��).

The pair (�� , [�) is a colimit diagram for �⇔∀� ∈ ObC , ∀U : � → Δ(�), ∃!2 ∈ HomC (�� , �)
such that ∀8 ∈ ObI , U8 = 2 ◦ [� .

Proof. See Remark 7.8. Otherwise, it follows from the definition of a colimit.

The notion of cocone was introduced in Remark 7.8. Here is the formal definition:

Definition 7.10 (Category of cocones). Let C ,I be categories. Let � : I → C be a diagram.
The category Cocones (�) of cocones from � contains:

Objects: The objects are the natural transformations U : � → Δ(�) =
(
�8

U8−→ �

)
8∈ObI

for each
� ∈ ObC , called cocones from � to �

Morphisms: LetU :
(
�8

U8−→ �

)
8∈ObI

and V :
(
�8

V8−→ � ′
)
8∈ObI

be two cocones. An arrow 2 : U→ V

is an arrow 2 : � → � ′ such that the following diagram commutes:

�8 �

� ′

U8

V8
2

Identities: An identity morphism is an arrow id� : � → �

Composition: The composition law for morphisms is the composition law for morphisms in C .

Example 7.11. In a preorder category, a cocone from � to � exists if and only if � is an upper bound of the
�8’s. Note that the colimit is the least upper bound of the �8’s. This fact is made formal in the following
proposition.

Proposition 7.12. Let C ,I be categories. Let � : I → C be a diagram. Let Cocones (�) be the
category of cocones from �. Let �� ∈ C and [� : � → Δ (��).
(�� , [�) is a colimit diagram for �⇔ [� is an initial object in Cocones (�).

IMTA-RR-2019-01-SC 68/127

7. Your only colimit is yourself

Proof. Using Proposition 7.9, the proof is easy:

[� is an initial object in Cocones (�)
⇔∀� ∈ ObC ∀U : � → Δ(�), ∃!2 : [� → U

⇔∀� ∈ ObC ∀U : � → Δ(�), ∃!2 : �� → � such that ∀8 ∈ ObI U8 = 2 ◦ [� (8)
⇔∀� ∈ ObC ∀U : � → Δ(�), ∃!2 : �� → � such that U = Δ(2) ◦ [�
⇔ (�� , [�) is a universal arrow from � to Δ
⇔ (�� , [�) is a colimit diagram for �

Corollary 7.13. (�� , [�) is a colimit diagram for �⇔ [� is a cocone which is universal: for any cone
U : � → Δ(�), ∃!2 : �� → � such that U = Δ(2) ◦ [� .

We gave a characterisation of a colimit (�� , [�) based on some property of [� . There is also a
characterisation of a colimit based on the object �� .

Lemma 7.14. If 0 is the initial object of C , then the unique arrows 8- : 0→ - define the unique natural
transformation 8 : Δ(0) → IdC .

If 1 is the terminal object of C , then the unique arrows !- : - → 1 define the unique natural
transformation C : IdC → Δ(1).

Proof. Let 5 : - → . . We need to check if the following diagram commutes:

Δ(0) (-) IdC (-) 0 -

=

Δ(0) (.) IdC (-) 0 .

Δ(0) (5)

8-

IdC (5) id0

8-

5

8. 8.

We have 5 ◦ 8- : 0→ . . By definition of an initial element, there is a unique arrow 8. : 0→ . ; thus,
8. = 8. ◦ id0 = 5 ◦ 8- . Besides, this natural transformation 8 is unique due to the uniqueness of the arrows
8- .

The statement with the terminal objects has a similar proof.

Proposition 7.15. Let C be a category and let) ∈ ObC .
) is terminal in C ⇔) is the colimit of IdC .

Proof. [Proof of⇒]
Suppose) is terminal in C . By Lemma 7.14, there is a unique natural transformation 8 : IdC → Δ()).

This natural transformation is of course a cocone from) to IdC .
Let U : IdC → Δ(�) be a cocone from � to � for some object � ∈ C . We are looking for an G so that

the following diagram commutes:

-)

�

!-

U-
G

If - =) , we have:

IMTA-RR-2019-01-SC 69/127

7. Your only colimit is yourself

))

�

!)

U)
G

There is a unique arrow !) :) →) , and !) = id) . Then, we have: U) = G◦!) = G. Consequently,
U) is a morphism of cocones; but if < : �→ 1 is another morphism of cocones, the following diagram
commutes:

)

�

)

id)

U)

<

which gives < = id) ◦ U) = U) = G, hence the unicity of the G. Finally, (), C) is the colimit of IdC .
[Proof of⇐]
Let (), [) be the colimit of IdC .
The first step consists in proving that [) is id) .
For all 5 : - → . , the following diagram commutes:

-

)

.

[)

5

[.

In particular, if 5 = [- :

-

)

)

[)

[)

[-

As this is true for any - , we conclude that [) is a morphism of cocones [) : [→ [. By Proposition 7.12,
[is initial in Cocones (IdC), so the arrow [) is [) = id) .

The second step consists in showing the unicity of some arrow - →) .
Let 5 : - → !; the following diagram commutes:

IdC (-) Δ()) (-) -)

X = X

IdC ()) Δ()) ())))

[-

IdC (5) Δ()) (5)

[-

5 id)

[) id)

which gives [- = 5 , hence the unicity of [- . Note that [defines one arrow - →) for each - ∈ ObC ;
so, for each - ∈ ObC , there is only one arrow - →) , so) is terminal.

IMTA-RR-2019-01-SC 70/127

7. Your only colimit is yourself

Proposition 7.16. Let C be a category and let �, � ∈ ObC such that the coproduct (� + �, 2�, 2�) exists.

Then � + � is the colimit of the diagram � :


2 −→ C
0 ↦−→ �

1 ↦−→ �

, where 2 is the category with two objects

0, 1 and no morphism between those two.

Proof. Note that for all - ∈ C , the cocone U : � → Δ(-) has only two components U� : � → - and
U� : � → - . Besides, if � + � exists, then there is a unique D : � + � → - such that U� = D ◦ 2� and
U� = D ◦ 2�; in other words, (� + �, 2), where 2 : � → Δ(� + �) is the natural transformation with
components 2� and 2�, is the colimit of �.

We now introduce the dual notion of a colimit, namely that of a limit. We will need to introduce cones
(the dual notion of cocones) as well.

Definition 7.17 (Limit). Let C ,I be categories. Let Δ : C → C I be the diagonal functor and let
� : I → C be a diagram.

The pair (Lim (�), Y�) is the limit diagram for � when for all � ∈ ObC , for all U : Δ(�) → �, there
is a unique G : � → Lim (�) such that U = Y� ◦ Δ(G).

We say that C has finite limits if every diagram � : I → C with finite index category I has a limit.

Remark 7.18. We have Lim (�) ∈ ObC , Y� : Δ (Lim (�)) → �; that is, Y� is a natural transformation
between the two diagrams Δ (Lim (�)) : I → C and � : I → C .
Example 7.19. As stated in Example 7.6, in Sets, a diagram � : I → Sets is a functor that defines a small
subcategory inside Sets.

The limit of � can be defined explicitly as:

Lim (�) =
{
(B8)8∈ObI

∈
∏
8∈ObI

�8

����� ∀D : 8 → 9 , � (D) (B8) = B 9

}
And the natural transformation Y� is composed of each projection

∏
8∈ObI

�8 → �8 .
Again, the product is a special case of limit, when I is the category with only two objects and no arrow

between them, so that the condition ∀D : 8 → 9 , � (D) (B8) = B 9 is vacuously true.
Example 7.20. In a preorder category (%, 6), the diagram � : I → % defines a sub-order, and the limit of
that diagram, if it exists, is the inf of all �8’s: Lim (�) = inf

8∈ObI

�8. Just as colimits (see Example 7.7),

arrows between objects do not matter when computing limits. The limit of a diagram in a preorder is exactly
the same as the product of its components.
Remark 7.21. Using the same diagram as in the last example in Remark 7.8, and using the duality, a limit
illustrates this way:

�0

�2 �

�1

�3 Lim (�)

�4

U

G

Y�

Definition 7.22 (Cone). Let � : I → C be a diagram.
We define the category Cones (�) of cones to � as the following category:

IMTA-RR-2019-01-SC 71/127

7. Your only colimit is yourself

Objects: The objects are the natural transformations U : Δ(�) → � =

(
�

U8−→ �8

)
8∈ObI

for � ∈ ObC ,
called cones from � to �

Morphisms: Let U :
(
�

U8−→ �8

)
8∈ObI

and V :
(
� ′

V8−→ �8

)
8∈ObI

be two cones. An arrow 2 : U→ V

is an arrow 2 : � → � ′ such that the following diagram commutes:

�8 �

� ′

U8

2
V8

Identities: An identity morphism is an arrow id� : � → �

Composition: The composition law for morphisms is the composition law for morphisms in C .

Remark 7.23. Note that a cocone is from the diagram � to the object �, while a cone is from the object �
to the diagram �.
Example 7.24. In a preorder category, a cone from � to � exists if and only if � is a lower bound of the
�8’s. Just like in Example 7.11, note that the limit is the greatest lower bound of the �8’s. This fact is made
formal in Proposition 7.25.

As the dual notion of colimit, we have the dual characterisations of limits:

Proposition 7.25. Let C ,I be categories. Let � : I → C be a diagram. Let Cones (�) be the category
of cones to �. Let �� ∈ C and Y� : Δ (��) → �.
(�� , Y�) is a limit diagram for �⇔ Y� is a terminal object in Cones (�).

Proof. Similar to the proof of Proposition 7.12.

Proposition 7.26. Let C be a category and let � ∈ ObC .
� is initial in C ⇔ � is the limit of IdC .

Proof. Similar to the proof of Proposition 7.15.

Remark 7.27. Colimits are the initial objects of the category of cocones (Proposition 7.12), while the
terminal object of a category is the colimit of the identity functor (Proposition 7.15). Dually, limits are the
terminal objects of the category of cones (Proposition 7.25), while the initial object of a category is the
limit of the identity functor (Proposition 7.26). Try not to confuse!

In the following, wemention the other limit diagrams; the proof is essentially the same as Proposition 7.16.

Proposition 7.28. The following constructions are limits:

1. A terminal object in C is the limit of the empty diagram � : ∅ → C , with ∅ as the empty category:

-

1
D

2. A product � × � in C is the limit of the diagram � : C2 → C , with C2 being the index category with
two objects and no arrow between those two:

� -

� � × �
D

IMTA-RR-2019-01-SC 72/127

7. Your only colimit is yourself

3. A pullback of 5 : �→ � and 6 : � → � is the limit of the diagram � : C3 → C , where C3 is the
index category described below:

-

� �

� � ×� �

D

4. An equaliser of 5 , 6 : �→ � is the limit of the diagram � : C4 → C where C4 is the index category
described below:

� -

� �

65 D

The dual statement is also true:

Proposition 7.29. The following constructions are colimits:

1. An initial object in C is the colimit of the empty diagram � : ∅ → C , with ∅ as the empty category:

0

-

D

2. A coproduct � + � in C is the colimit of the diagram � : C2 → C , with C2 being the category with
two objects and no arrow between those two:

� � + �

� -

D

3. A pushout of 5 : �→ � and 6 : �→ � is the colimit of the diagram � : C3 → C , where C3 is the
category described below:

� +� �

�

� � -

D

6

5

4. A coequaliser of 5 , 6 : �→ � is the colimit of the diagram � : C4 → C where C4 is the category
described below:

IMTA-RR-2019-01-SC 73/127

7. Your only colimit is yourself

� &

� -

5 6 D

So in fact products, equalisers, terminal objects, pullbacks are special cases of limits (and their duals
are special cases of colimits). Before exploring another link between those constructions, let us give two
other instances of limits and colimits that may be useful in example-building.
Remark 7.30. Consider the category D with only one object (and the identity morphism).

A diagram � : D → C may be identified to the single object � (0) = �0. It is easy to see that �0 is its
own limit and colimit.
Remark 7.31. Consider the category D consisting in two objects and one arrow:

· ·
Consider a diagram � : D → C ; its image will be an arrow � (3) : �1 → �2. What could be the

limit and colimit of this diagram?
Let (%, (?1, ?2)) be a cone to �, and suppose � has a limit (Lim (�) , (;1, ;2)).

% �1 &

�2

Lim (�) Colim (�)

?1

?2

� (3)

@1

21

@2

22

;1

;2

The limit Lim (�) is such that there is a unique arrow G : %→ Lim (�) such that:

?8 = ;8 ◦ G (8 = 1, 2)
?2 = � (3) ◦ ?1

;2 = � (3) ◦ ;1

A cone to � defines two arrows ?1 : %→ �1 and ?2 : %→ �2 such that ?2 = � (3) ◦ ?1. So, given a
cone (%, (?1, ?2)) to �, there is a unique arrow ?1 : % → �1 such that the diagram commutes. In fact,(
�1, (id�1 , � (3))

)
is the limit of �.

With the same reasonning, it is easy to see that
(
�2, (� (3), id�2)

)
is the colimit of �.

This is a better way to state this remark (better for memory): considering an arrow � → �, � is its
limit and � is its colimit. The limit is the domain, and the colimit is the codomain of the arrow.
Remark 7.32. Categories may or may not have all limits or all colimits, maybe for some diagrams and not
others. However, diagrams from the one-object and the two-object categories always have a limit and a
colimit in any category.

There is another, stronger link between products, equalisers, terminal objects and pullbacks. A similar
link exists between their dual counterparts, see Theorem 7.35.

Lemma 7.33. Let C be any category.
If C has finite products and equalisers, then C has finite limits.

IMTA-RR-2019-01-SC 74/127

7. Your only colimit is yourself

Proof. (The proof written here is a resolution of [2, Exercise 3, Section 2.13, Chapter 9])
We will start the proof with one special case of index category. We then give a hint for a second special

case. Those two proofs generalise to any index category.
Suppose I is any finite category with only one non-identity arrow 0 : 9 → : . It will then look like this

category:

∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗
Now let � : I → C be any diagram.
As C has finite products, the product

∏
8∈=

�8 with arrows c8 :
∏
8∈I

�8 → �8 exists. As C has equalisers,

consider the equaliser (�, 4) of � (0) ◦ c 9 and c: .

�
∏
8∈I

�8 �:
4

� (0)◦c 9

c:

Define Y = (48 = c8 ◦ 4)8∈I . By definition of (�, 4), we have:

� (0) ◦ c 9 ◦ 4 = c: ◦ 4
which proves that Y is a natural transformation Δ (Lim (�)) → � (there is only one arrow to check).
We now prove that (�, Y) is the limit of the diagram � : I → C . Let U : Δ(�) → � be a cone to �;

we have � (0) ◦ U 9 = U: .
Consider the function ΠU : � → ∏

8∈I
�8 such that ∀8 ∈ I , c8 ◦ ΠU = U8 . We have:

� (0) ◦ U 9 = U:
� (0) ◦ c 9 ◦ ΠU = c 9 ◦ ΠU

As (�, 4) is an equaliser of � (0) ◦ c 9 and c 9 , there exists a unique D : � → � such that 4 ◦ D = ΠU,
from which we infer, for all 8 ∈ I :

4 ◦ D = ΠU
c8 ◦ 4 ◦ D = c8 ◦ ΠU

48 ◦ D = U8
⇒ Y ◦ Δ(D) = U

So (�, Y) is the limit of �.
Now suppose I is any finite category with only two non-identity arrow 00 : 90 → :0 and 01 : 91 → :1.

It will then look like this category:

∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗
IMTA-RR-2019-01-SC 75/127

7. Your only colimit is yourself

Note that no assumption is made about 00 and 01 being distinct; we only suppose that :0 ≠ 91 and
90 ≠ :1; otherwise they would compose and give birth to a third arrow.

For a diagram � : I → C , we also build the product
∏
8∈I

�8 with its projections c8 :
∏
8∈I

�8 → �8 .

We also define the following arrows:

A0 = � (00) ◦ c 90
A1 = � (01) ◦ c 91

B0 = c:0

B1 = c:1

A = (A0, A1)
B = (B0, B1)

As C has equalisers, consider the equaliser (�, 4) of A :
∏
8∈I

�8 → �:0 × �:1 and B :
∏
8∈I

�8 →

�:0 × �:1 . The proof is very similar to the previous one. If U : Δ(�) → � is a cone to �, then we define
ΠU to be the concatenation of the components of U: ∀8 ∈ I , U8 = c8 ◦ΠU. We check that B ◦ΠU = A ◦ΠU
using the fact that U is a natural transformation. As (�, 4) is an equaliser, there exists a unique D : � → �

such that 4 ◦ D = ΠU, and we conclude that Y ◦ Δ(D) = ΠU, with Y = (48 = c8 ◦ 4)8∈I (which is a natural
transformation Δ(�) → �). Finally, (�, Y) is the limit of �.

As the final case, let I be any finite category. Again, C has finite products, so we define
∏
8∈I

�8 and

its projections c8. As the set of arrows in I is also finite, we can consider all arrows 0 : 9 → : ∈ MorI
and define the product

∏
0: 9→:∈MorI

�: , that is, the product of all codomains of all arrows in I . For

00 : 90 → :0, the projection of index 00 will be denoted c00 :
∏

0: 9→:∈MorI
�: → �:0 .

We now define:

A, B :
∏
8∈I

�8 →
∏

0: 9→:∈MorI

�:

such that, for all 0 : 9 → : ∈ MorI , we have:

c0 ◦ A = � (0) ◦ c 9 = � (0) ◦ cdom 0

c0 ◦ B = c: = ccod 0

Let (�, 4) be an equaliser of A and B; the rest of the proof is very similar to the previous two ones.

We can now bring together all the lemmas that we disseminated throughout the last two sections, and
prove:

Theorem 7.34. Let C be any category. The following propositions are equivalent:

1. C has finite products and equalisers

2. C has pullbacks and a terminal object

3. C has finite limits

Proof. (1⇒ 2)
By Corollary 6.57, products and equalisers give pullbacks, while by Lemma 6.31, having all finite

products gives a terminal object.

IMTA-RR-2019-01-SC 76/127

7. Your only colimit is yourself

(2⇒ 1)
By Lemma 6.58, pullbacks and terminal object give products, while by Lemma 6.59, pullbacks and

products give equalisers.
(1⇒ 3)
By Lemma 7.33, products and equalisers give limits.
(3⇒ 1)
By Proposition 7.28, products and equalisers are special cases of limits.

Of course, the dual theorem is also true:

Theorem 7.35. Let C be any category. The following propositions are equivalent:

1. C has finite coproducts and coequalisers

2. C has pushouts and an initial object

3. C has finite colimits

Note that the theorems we mentionned with limits used any index category, be it small or large. Some
results we proved only for finite limits, but, for example, Proposition 7.34 generalises to any cardinality
(and thus, for any small category):

Theorem 7.36. Let ^ be a cardinal and let C be any category.
C has all products of cardinality 6 ^ and equalisers⇔ C has all limits of cardinality 6 ^.
In other words, C has all small products and equalisers⇔ C has all small limits.

Remark 7.37 (Historical interlude). Among the many ways to introduce limits and colimits, we wanted to
introduce the following version (for a source of that version, see [8, Exposé 1, section 2, page 9]).

Let � : I → C be a diagram. The limit of that diagram will be defined as the following functor:

Lim (�) :
{

C op −→ Sets
� ↦−→ HomC I (Δ(�), �)

and the colimit will be:

Colim (�) :
{

C −→ Sets
� ↦−→ HomC I (�,Δ(�))

In other words, the limit (resp. colimit) of a diagram will be the functor that sends � to the set of
cones from � to that diagram (resp. the set of cocones from that diagram to �). A diagram I → C has a
(co)limit in the form of a functor C op → Sets or C → Sets.

Now assume that Lim (�) the functor is represented by an object '(�) ∈ C (see Definition 3.6 for the
definition of representable functor). Then for a fixed �, we have:

HomC (�, '(�)) � HomC I (Δ(�), �)

That is, for a cone U : Δ(�) → �, we have a unique arrow � → '(�) that makes the right diagrams
commute... The representation '(�) is exactly the limit Lim (�) of � in the sense of Definition 7.17!
Similarly, the representative of Colim (�) will be the colimit Colim (�) of �.

IMTA-RR-2019-01-SC 77/127

8. Limits and adjunctions

8. Limits and adjunctions
We will now study some properties of adjunctions and their behaviour with regards to limits.

We start with a remark. We saw in Theorem 6.20 that + a Δ2 a ×. There is a more general statement,
that we mention but will only give a sketch of proof.

Let C be a category with finite limits, and let I be any finite category. The mappings:

Lim (−) :
{

C I −→ C
� ↦−→ Lim (�)

Colim (−) :
{

C I −→ C
� ↦−→ Colim (�)

are in fact functors. What is best, is that if ΔI : C → C I is the diagonal functor of shape I , then we
have:

Theorem 8.1. Colim (−) a ΔI a Lim (−)

Sketch of proof. This can be deduced from the definitions of a limit (resp. of a colimit), due to the
existence and unicity of the arrow � → Lim (�) (resp. Colim (�) → �) whenever we have a cone
ΔI (�) → � (resp. a cocone � → ΔI (�)). This gives the bĳectivity between HomC I (ΔI (�), �) and
HomC (�,Lim (�)) (resp. HomC (Colim (�) , �) and HomC I (�,ΔI (�))). We then have to check that
this defines a natural transformation. The (contravariant) naturality in � is easy, due to the definition of
ΔI , while the naturality in � requires a bit more attention not to confuse between cones and a natural
transformation X : � → � ′.

The main question we will tackle in this section is the following. Suppose we have a functor � : C → D .
Does it have an adjoint? How to know if it does or not? And if it does, how to find it?

A first step may be to look at some properties of adjoints.
We deduce from Definition 4.1 and Theorem 3.17 that:

Proposition 8.2. Let* : C → Sets be functors.
* has a left adjoint⇔ for all � ∈ C , HomSets (�,* (−)) has a universal element.

Another interesting property of adjoints is described right after the following definition. Just as some
functors preserve products (see Definition 6.9), some functors preserve limits:

Definition 8.3 (Preserving limits and colimits). Let I be an index category, and let C , D be categories.
We say that the functor � : C → D preserves all limits (resp. small limits; resp. finite limits) when, for

all index category (resp. small index category; resp. finite index category) I , for all diagram � : I → C ,
if the limit (Lim (�) , [�) exists, then (� (Lim (�)) , � ([�)) is the limit of the diagram � ◦ �.

Dually, we say that the functor � : C → D preserves all colimits (resp. small colimits; resp. finite
colimits) when, for all index category (resp. small index category; resp. finite index category) I , for all
diagram � : I → C , if the colimit (Colim (�) , Y�) exists, then (� (Colim (�)) , � (Y�)) is the colimit
of the diagram � ◦ �.

Proposition 8.4. Let C be a category with finite limits and let � ∈ ObC .
The covariant Hom-set functor HomC (�,−) preserves all finite limits.

Proof. By Theorem 7.34, it suffices to show that HomC (�,−) preserves finite products and equalisers.
We already know from Proposition 6.10 that HomC (�,−) preserves binary products. For it to preserve

finite products, we need to show that it preserves the terminal object. If) is the terminal object in C then
HomC (�,)) contains only one arrow (the unique arrow � →) in C). Consequently, HomC (�,)) � 1
(where 1 is the terminal object of Sets) and HomC (�,−) preserves the terminal object.

IMTA-RR-2019-01-SC 78/127

8. Limits and adjunctions

Now, let (�, 4) be the equaliser of 5 , 6 : �→ �. For all I : / → � such that 5 ◦ I = 6 ◦ I, there is a
unique D : / → � such that the following diagram commutes:

� � �

/

4
5

6

D
I

The hom-set functor preserves the diagram (this is a property of functors). We need to check
whether (HomC (�, �) ,HomC (�, 4)) is an equaliser of HomC (�, 5) and HomC (�, 6). Let ℎ : - →
HomC (�, �) such that HomC (�, 5) ◦ ℎ = HomC (�, 6) ◦ ℎ as in the diagram:

HomC (�, �) HomC (�, �) HomC (�, �)

-

HomC (�,4) HomC (�, 5)

HomC (�,6)
E?

G

We need to find a E : - → HomC (�, �) such that HomC (�, 4) ◦ E = ℎ.
Let G ∈ - . We have ℎ(G) : � → � and:

HomC (�, 5) ◦ ℎ(G) = HomC (�, 6) ◦ ℎ(G)
5 ◦ (ℎ(G)) = 6 ◦ (ℎ(G))

So, the equaliser in C applies here: there is a unique D(G) : � → � such that 4 ◦ (D(G)) = ℎ(G). Define
D to be:

D :
{
- −→ HomC (�, �)
G ↦−→ D(G)

Then, by construction, for all G ∈ - , ℎ(G) = 4 ◦ (D(G)) = (HomC (�, 4) ◦ D) (G) and D is unique.
Consequently, (HomC (�, �) ,HomC (�, 4)) is still an equaliser.

Corollary 8.5. Representable functors preserve all finite limits.

The dual version of this theorem is the following:

Proposition 8.6. The contravariant Hom-set functor HomC (−, �) sends finite colimits to finite limits.

Proof. We have to show that the contravariant sends the initial object to the terminal object, the coproduct
to the product, and the coequalisers to equalisers.

We have HomC (0, �) � 1 because there is only one arrow 0→ � (definition of an initial object).
Let 5 : �→ � and 6 : �→ � be two arrows; by definition of the coproduct � + �, there is a unique

D : � + �→ � such that the following diagram commutes:

� + �

� �

�

D

8�

5

8�

6

This exactly says that there is a bĳection (an isomorphism in Sets):

IMTA-RR-2019-01-SC 79/127

8. Limits and adjunctions

U�,� :
{
HomC (� + �,�) −→ HomC (�,�) × HomC (�,�)

D ↦−→ (D ◦ 8�, D ◦ 8�)
This isomorphism is natural in � + �:

� HomC (�′ + �,�) HomC (�′, �) × HomC (�,�)

{ ?

�′ HomC (� + �,�) HomC (�,�) × HomC (�,�)

0 HomC (0+�,�)

U�′,�

HomC (0,�)×HomC (�,�)

U�,�

Let 5 ∈ HomC (�′ + �,�):

HomC (0,�) × HomC (�,�) ◦ U�′,� (5) = HomC (0,�) × HomC (�,�) (5 ◦ 8�′, 5 ◦ 8�)
= (5 ◦ 8�′ ◦ 0, 5 ◦ 8�)

U�,� ◦ HomC (0 + �,�) (5) = U�,� (5 ◦ (0 + id�))
= (5 ◦ (0 + id�) ◦ 8�, 5 ◦ (0 + id�) ◦ 8�)

Seeing the coproduct as a colimit, we deduce that the following diagram commutes:

� + �

� �

X X

�′ + �

�′ �

0+id�

8�

0

8�

id�

8�′ 8�

(Seeing 8 = (8� : �→ � + �)�∈C as a natural transformation IdC → IdC + Δ(�))
We have:

(0 + id�) ◦ 8� = 8�′ ◦ 0
(0 + id�) ◦ 8� = 8� ◦ id�

⇒ (5 ◦ (0 + id�) ◦ 8�, 5 ◦ (0 + id�) ◦ 8�) = (5 ◦ 8�′ ◦ 0, 5 ◦ 8�)

The naturality in � is similar.
Finally, as for seeing that the contravariant Hom-set functor sends coequalisers to equalisers, the proof

is very similar to showing that the covariant Hom-set functor preserves equalisers.

In fact, these theorems are not only true for finite limits, but also for small limits. As there is something
I don’t understand here, because a product of any set of sets could be empty (without the Axiom of Choice)
(but always exists?) , we will trust Awodey [1, Chapter 5, Proposition 5.25, p107] and admit the following
proposition and corollaries:

Proposition 8.7. Let C be a category with small limits and let � ∈ ObC .
The covariant Hom-set functor HomC (�,−) preserves all small limits.

IMTA-RR-2019-01-SC 80/127

8. Limits and adjunctions

Corollary 8.8. Representable functors preserve all small limits.

Proposition 8.9. The contravariant Hom-set functor HomC (−, �) sends small colimits to small limits.

Proposition 8.10 (Right Adjoints Preserve Limits [2], [1]). Let (�,*, V) be an adjunction.
Then � preserves colimits and* preserves limits.

This proposition is commonly refered to as the the "RAPL" ("Right Adjoints Preserve Limits").

Proof. Suppose � : C →X ,* : X → C and let � : I →X be a diagram with a limit Lim (�).
For � ∈ C , we have:

HomC (�,* (Lim (�))) � HomC (� (�),Lim (�))
� Lim (HomC (� (�), � (−)))
� Lim (HomC (�,* ◦ � (−)))
� HomC (�,Lim (* ◦ �))

The first and third equations are due to the adjunction, while the second and fourth are due to the
preservation of limits by the Hom-set functor (Proposition 8.4). As a consequence of Yoneda Lemma
(Corollary 2.17), we deduce:

* (Lim (�)) � Lim (* ◦ �)

Similarly, if � : I →X has a colimit Colim (�), and for - ∈ X :

HomC (� (Colim (�)) , -) � HomC (Colim (�) ,* (-))
� Lim (HomC (� (−),* (-)))
� Lim (HomC (� ◦ � (−), -))
� HomC (Colim (� ◦ �) , -)

Which also gives (by Corollary 2.18):

� (Colim (�)) � Colim (� ◦ �) (21)

Definition 8.11 (Complete category). A category C is said complete (resp. cocomplete) when it has all
small limits (resp. all small colimits).

Example 8.12. The category Sets is complete and cocomplete. Of course Sets has all finite limits (because
it has products, equalisers, a terminal object and pullbacks) and colimits (because it has coproducts,
coequalisers, an initial object and pushouts), but in the rest of this course, we will just admit that Sets has
all small limits and colimits.

Definition 8.13 (Continuous functor). A functor � : C → D is called continuous (resp. cocontinuous) if
it preserves all small limits (resp. all small colimits).

Example 8.14. The covariant Hom-set functor is continuous but not cocontinuous.
We now move towards the next important theorem: the adjoint functor theorem. There are a few details

to expand before.

IMTA-RR-2019-01-SC 81/127

8. Limits and adjunctions

Definition 8.15 (Weakly initial [7]). Let C be any category.
A set �∗ = {�8 ∈ ObC | 8 ∈ �} of objects in C is a weakly initial set when for all � ∈ C , there is an

8 ∈ � such that there is an arrow �8 → �.

"There exists a set of objects that connects to any other object of the category" or "there is a (non-
necessarily connected) subgraph that is connected to the rest of the category", or "there is some weakly
initial subset of objects".

Lemma 8.16 ([7], [1]). Let C be a locally small, complete category.
C has an initial object⇔ There is a weakly initial set of objects in C

Proof. If C has an initial object, then any set containing that initial object is weakly initial.
Suppose that (�8)8∈� is a weakly initial set in C .
Consider the category C� defined by:

Objects: The objects of C� are the �8 for 8 ∈ �

Morphisms: If 2 ∈ MorC is an arrow �8 → � 9 for 8, 9 ∈ �, then 2 ∈ C�

Identities: An identity morphism of an object �8 is an identity morphism id�8 ∈ C

Composition: The composition law for morphisms is the usual composition in C

It is easy to see that C� is a small subcategory of C . Then, the inclusion mapping:

� :


C� −→ C
� ↦−→ �

2 ↦−→ 2

is a functor; or rather, as C� is small, � is a small diagram. As C is complete, it has a limit Lim (�).
We now show that Lim (�) is initial. Clearly, for all � ∈ C , there is an arrow 28 : �8 → �. As

Lim (�) is the limit of �, there is also an arrow [8 : Lim (�) → �8, so for all � ∈ C , there is an arrow:
Lim (�) → �, but this arrow is not necessarily unique.

Let 5 , 6 : Lim (�) → � be two arrows, and let (�, 4) be an equaliser of 5 and 6. There is an 8 ∈ � such
that:

� Lim (�) �

�8

Lim (�)

4
5

6
28

idLim(�)

[8

Besides, by unicity of the arrow Lim (�) → Lim (�), we deduce that:

4 ◦ 28 ◦ [8 = idLim(�)

which gives:

5 = 5 ◦ 4 ◦ 28 ◦ [8
= 6 ◦ 4 ◦ 28 ◦ [8
= 6

using the fact that 5 ◦ 4 = 6 ◦ 4.
Consequently, there is a unique arrow Lim (�) → � for any � ∈ C ; so Lim (�) is an initial object.

IMTA-RR-2019-01-SC 82/127

8. Limits and adjunctions

Definition 8.17 (Comma-category). Let � : C →X and � : D →X be two functors.
The comma-category (� | �) is the category described below:

Objects: The objects of (� | �) are triples (�, 5 , �) such that 5 : � (�) → � (�), � ∈ C and � ∈ D

Morphisms: A morphism (�, 5 , �) → (� ′, 5 ′, � ′) is a pair (2, 3) such that 2 : � → � ′, 3 : � → � ′

and the following square commutes:

� (�) � (� ′)

X

� (�) � (� ′)

� (2)

5 5 ′

� (3)

Identities: The identity morphism of an object (�, 5 , �) is the pair (id� , id�)

Composition: The composition law for morphisms is the usual composition (2, 3) ◦ (2′, 3 ′) = (2 ◦
2′, 3 ◦ 3 ′)

If � is the diagonal functor Δ(�) for some � ∈ C , then the comma-category is written (� | �) and
simplifies to:

Objects: The objects of (� | �) are pairs (�, 5) such that 5 : � → � (�) and � ∈ D

Morphisms: A morphism (�, 5) → (� ′, 5 ′) is an arrow 3 : � → � ′ such that the following square
commutes:

� (�)

� (�)

� (� ′)

� (3)

ℎ

ℎ′

Identities: The identity morphism of an object (�, 5) is an identity arrow id�

Composition: The composition law for morphisms is the usual composition in D

Now, we consider the comma-category (� | *) where* : X → C and � ∈ C .

Lemma 8.18. Let (� | *) where* : X → C and � ∈ C .
If X is locally small, then the comma-category (� | *) is also locally small.

Proof. Just note that, for any -, - ′ ∈ X , HomC (-, - ′) is a set. Also, note that HomC ((-, 5) , (- ′, 5 ′)) ⊂
HomC (-, - ′).

Lemma 8.19. Let (� | *) where* : X → C and � ∈ C .
If X is complete and* preserves small limits, then (� | *) is also complete.

Proof. It is easy to check that, due to the preservation of limits by *, the comma-category (� | *) has
products and equalisers.

J’ai la flemme

IMTA-RR-2019-01-SC 83/127

8. Limits and adjunctions

Lemma 8.20. Let (� | *) where* : X → C and � ∈ C .
The universal arrows from � to* are the initial objects of (� | *).

Proof. Let us recall the definition of a universal arrow from � to*: it is a pair
(
*#
�
, [�

)
such that:

� *#
�
∈ X and [� : � → *

(
*#
�

)
� for all - ∈ X , for all 2 : � → * (-), there is a unique G : *#

�
→ - such that 2 = * (G) ◦ [�

An initial object in (� | *) is a pair (�, 8) where � ∈ X and 8 : � → * (�) such that for all object
(-, 2) ∈ (� | *), there is a unique arrow G such that the following triangle commutes:

* (�)

�

* (-)

* (G)

8

2

Both definitions are equivalent, hence the result.

Lemma 8.21. Let* : X → C .
* has a left adjoint⇔ for each � ∈ C , the comma-category (� | *) has an initial object.

Proof. Combine the previous lemma (Lemma 8.20) and Definition 4.1.

We can finally prove the following version of the Adjoint Functor Theorem, as it appears in [1]:

Theorem 8.22 (Adjoint Functor Theorem - Awodey version [1]). Let X be locally small and complete.
Let C be any category and let* : X → C be a continuous functor.

* has a left adjoint⇔ for each object � ∈ C , the comma-category (� | *) has a weakly initial set.

Proof. By Lemma 8.21,* has a left adjoint iff for each � ∈ C , the comma-category (� | *) has an initial
object. As X is locally small and complete, by Lemma 8.16, for each � ∈ C , the comma-category (� | *)
has an initial object iff for each object � ∈ C , the comma-category (� | *) has a weakly initial set.

The following variant is also called Adjoint Functor Theorem:

Theorem 8.23 (Adjoint Functor Theorem - Leinster version [7]). Let X be locally small and complete. Let
C be any category and let* : X → C be a functor such that for each object - ∈ X , the comma-category
(- | *) has a weakly initial set.

* has a left adjoint⇔* preserves limits.

Proof. [Proof of⇒]
Direct consequence of Proposition 8.10.
[Proof of⇐]
By Lemma 8.18, X is locally small, so is (- | *). By Lemma 8.19, as* preserves limits and as X is

complete, (- | *) is complete. We can then use Lemma 8.16: for each object - ∈ X , (- | *) has a weakly
initial set, so for all - ∈ ObX , (- | *) has an initial object. By Lemma 8.21,* has a left adjoint.

Note that if the category X is small (instead of only locally small) then the condition on the weakly
initial set is useless. We then have the following corollary:

Corollary 8.24. Let X be small (not only locally small) and complete. Let* : X → Sets be a functor.
The following propositions are equivalent:

IMTA-RR-2019-01-SC 84/127

8. Limits and adjunctions

1. * is continuous

2. * has a left adjoint

3. * is representable

Proof. The equivalence 1⇔ 2 is obvious.
The proof of 3⇔ 1 is easy: if * is representable, then * � HomC (�* ,−) for some �* ∈ C ; and

HomC (�* ,−) is continuous (Proposition 8.4).
Je ne vois pas pour 1 ou 2 implique 3...

Remark 8.25. A word on forgetful functors: See Awodey, p243-245 for an exaplanation, and Mac Lane,
chapter V, for a proof.

The following remark is beyond the scope of this course, so we will not go into the technical details.
Chercher comment Cori et Lascar définissent les langages en théorie des modèles
An important application of the Adjoint functor theorem is the following:
If) is a finite theory, with) −Models being the category of the models of) and homomorphisms

between them (in the model-theoretic sense), then the forgetful functor) −Models → Sets has a left
adjoint.

This is powerful because it means that we can, in a sense, add some structure to a Set in order to make it
a group or a ring (not exactly because axiom of choice)

If* :) −Models→ Sets is the forgetful functor, then there is an adjoint � : Sets→) −Models such
that, for all (∈ Sets, for all " ∈) −Models, we have:

Hom) −Models (� ((), ") � HomSets ((,* ("))

The adjoint of * is called the free functor. In short, the free functor � : Sets →) −Models is the
functor that maps a set (to a structure "generated" by that set ((for example, if) is the theory of vector
spaces, then the free functor � will consider that a given set (is a basis, and will build a vector space using
this basis).

See MacLane Chapter IV, pp87-88 for a list of adjoints, some of them being between forgetful and free
functors.

According to nLab: A general way to construct free functors is with a transfinite construction of free
algebras (in set-theoretic foundations), or with an inductive type or higher inductive type (in type-theoretic
foundations).
Remark 8.26. Consider two categories SetsC and D , and a functor ! : SetsC → D . Suppose we want to
find ' : D → SetsC the right adjoint of ! (we suppose that such an adjoint exists). We will study the
behaviour of ' on objects and arrows.

Let � ∈ D ; we have '(�) ∈ SetsC : it is a contravariant functor '(�) : C → Sets. By Yoneda
Lemma, for some � ∈ C , we have:

'(�) (�) � Nat (HomC (�,−) , '(�))
� Nat (! (HomC (�,−)) , �)

where the second equation is the definition of an adjunction. The simplest choice of '(�) should be:

'(�) = Nat (! (HomC (−,−)) , �) (22)

So we have the behaviour of '(�) on objects. On arrows 2 : � → � ′, we suppose that '(�) is a
functor C → Sets; so, by Yoneda lemma, the following diagram should commute:

IMTA-RR-2019-01-SC 85/127

https://ncatlab.org/nlab/show/free+functor

8. Limits and adjunctions

� '(�) (�) Nat (HomC (�,−) , '(�))

{ X

� ′ '(�) (� ′) Nat (HomC (� ′,−) , '(�))

2 ' (�) (2)

\' (�) ,�

Nat(HomC (2,−) ,' (�))
\' (�) ,�′

b' (�) ,�′

where b' (�) ,� is the Yoneda isomorphism Nat (HomC (�,−) ,'(�)) → '(�) (�) and \' (�) ,� is its
inverse (cf. Definitions 2.4 and 2.5).

We deduce a (brutal) formula for '(�) (2):

'(�) (2) = b' (�) ,�′ ◦ Nat (HomC (2,−) ,'(�)) ◦ \' (�) ,�
Finally, we want the behaviour of '(3). For � ∈ C , we have:

'(3) (�) = Nat (! (HomC (�,−)) ,3)

So we have now described the functor ' : D → SetsC in terms of functors and natural transformations
whose expression we know.

In the same vein of the Adjoint Functor Theorem, the following proposition is sometimes useful when
we have to prove that some functor has a right adjoint.

In the special case where we only have finite limits, we have the converse to Proposition 6.23 (exponential
is right adjoint to product).

Proposition 8.27. Let C be a category with all finite limits, and � ∈ C .
Let %� be the functor:

%� :


C −→ C
- ↦−→ - × �

G : - → - ′ ↦−→ G × id� : - × � → - ′ × �

Then, there exists a right adjoint �� to %� ⇔ for all �, the exponential �� exists.

Proof. The proof falls beyond the scope of this course. See [2, Chapter 13, Section 13.3, Exercise 5, p359]
for an exercise that will guide you into the proof of⇒.

Note that Proposition 6.23 is exactly⇐.

This proposition will be useful later in order to prove that some functor in a category with finite limits,
has a right adjoint.

IMTA-RR-2019-01-SC 86/127

9. Monads

9. Monads
Monads are yet another concept of category theory; basically, it is a functor from a category to itsef,
together with two natural transformations that follow some rules. Monads have links with adjunctions and
reciprocally; however, they are not equivalent.

Definition 9.1 (Monad). A monad on C is a triple (", [, `) such that:

1. " : C → C is a functor

2. [: IdC → " is a natural transformation, called the unit

3. ` : " ◦ " → " is a natural transformation, called the multiplication

and the following diagrams commute:

" ◦ " ◦ " " ◦ "

" ◦ " "

`"

"` `

`

" " ◦ " "

"

["

=
`

"[

=

The square diagram is sometimes referred to as the "associativity" diagram, and the bi-triangle one is
sometimes called the "identity" diagram. Both names are not random. In fact, a monad is a generalisation
of the notion of monoid in the form of a functor. " is an endofunctor (a functor from C to itself) that sets a
framework for the monoid-looking structure given by the multiplication ` and the unit [, that behave as
expected from them, according to the diagrams.

If there is no ambiguity, we refer to " as monad, instead of the whole triple (", [, `).
Just like adjunctions, examples of monads are legion. We are not going to make a whole section just for

monads. We will just give a few examples. For now, the utility and context in which these monads appear
will be intentionally left unexplained, but will be revealed as we progress through the section.
Example 9.2. The functor " : Sets→ Sets defined by:

" :
{

Sets −→ Sets
- ↦−→ - + 1

where 1 is the terminal object and + denotes the coproduct, is a monad. Its unit [= ([-)- ∈Sets and
multiplication ` = (`-)- ∈Sets are:

[- :
{
- −→ - + 1
G ↦−→ G

`- :

- + 1 + 1 −→ - + 1

G ↦−→ G

0 ↦−→ 0

where 0 is the unique element of 1 (it appears twice in - + 1 + 1 and only once in - + 1).
This example may be extended by replacing 1 with any given set (∈ Sets.

Example 9.3. If - is a set, denote by -<l the set of finite sequences over - , that is, -<l =
⋃
=∈l

-=. The
following functor is a monad:

" :
{

Sets −→ Sets
- ↦−→ -<l

Its unit [= ([-)- ∈Sets is:

IMTA-RR-2019-01-SC 87/127

9. Monads

[- :
{
- −→ -<l

G ↦−→ (G)

and the components of its multiplication ` =
(
`- : (-<l)<l → -<l

)
- ∈Sets send a nested tuple to its

concatenation (we may also call this operation "flatten"):

`- :
((
G0

0, . . . , G
0
=0

)
, . . . ,

(
G:0 , . . . , G

:
=:

))
↦→

(
G0

0, . . . , G
0
=0 , . . . , G

:
0 , . . . , G

:
=:

)
Example 9.4. Let (�, 4, ∗) be a monoid.

The functor " : - → - × � , equipped with the natural transformations with components:

[- :
{
- −→ - × �
G ↦−→ (G, 4) `- :

{
- × � × � −→ - × �
(G, 41, 42) ↦−→ (G, 41 ∗ 42)

is also a monad.
Example 9.5. Fix a set (. As seen in Proposition 6.23, the exponential (−)(is right adjoint to the product
− × (, and the evaluation Y- : -(× (→ - is in fact a component of the counit of that adjunction. As
mentioned in Remark 6.26, the unit [is made of the arrows [- : - → (- × ()(that are the curryfications
of id-×(. In short, [- : G → (B ↦→ (G, B)).

For a given set (∈ Sets, define the following natural transformation ` with components:

`- :

{ (
(- × ()(× (

)(
−→ (- × ()(

5 = (51, 52) ↦−→ 51(B) (52(B))

where 5 is a function 5 : B ↦→ (51(B), 52(B)), with, for all B ∈ (, 51(B) ∈ (- × ()(and 51(B) ∈ (.
Then, the functor - ↦→ (- × ()(, equipped with the unit [of the product-exponential adjunction and

the multiplication ` defined above, is a monad.
This last example is in fact an application of the following proposition:

Proposition 9.6. Let � a * be an adjunction with unit [: IdC → * ◦ � and counit Y : � ◦* → IdX .
Then the tuple (* ◦ �, [,* ◦ Y ◦ �) is a monad.

Proof. The identity diagram derives from the triangle identities of adjoints (cf. Definition 4.24). Composing
the left-adjoint triangle with* on the left and composing the right-adjoint triangle with � on the right, we
obtain:

* ◦ � * ◦ � ◦* ◦ �

* ◦ �

*◦�◦[

id*◦�
*◦Y◦�

* ◦ � * ◦ � ◦* ◦ �

* ◦ �

[◦*◦�

id*◦�
*◦Y◦�

Gluing the two triangles on the common arrow* ◦ Y ◦ � yields the identity diagram of a monad.
Then, consider an arrow Y- : � ◦* (-) → -; as Y is a natural transformation Y : � ◦* → IdX , the

following square commutes:

� ◦* ◦ � ◦* (-) � ◦* (-)

X

� ◦* (-) -

�◦* (Y-)

Y�◦* (-)

Y-

Y-

IMTA-RR-2019-01-SC 88/127

9. Monads

which yields:

� ◦* ◦ � ◦* � ◦*

X

� ◦* IdX

�◦*◦Y

Y◦�◦*

Y

Y

and by composing the previous diagram with* on the left, and � on the right, we obtain the associativity
diagram of the monad.

Of course, monads generate categories. We will see two of these categories:

Definition 9.7 (Eilenberg-Moore category). Let (", [, `) be a monad on C .
The Eilenberg-Moore category associated with (", [, `), denoted C " , is the following category:

Objects: An object is a pair (�, 5) where � ∈ C and 5 : " (�) → � ∈ C such that the following
diagrams commute:

� " (�)

�

[�

id�
5

" ◦ " (�) " (�)

" (�) �

`�

" (5) 5

5

Morphisms: An arrow 2 : (�, 5) → (� ′, 5 ′) is an arrow 2 : � → � ′ ∈ C such that the following
diagram commutes:

" (�) " (� ′)

� � ′

" (2)

5 5 ′

2

Identities: The identity of (�, 5) is an identity id�

Composition: The composition of arrows is the composition in C

An object of the Eilenberg-Moore category C " is often called an algebra over " or "-algebra. As
stated before, monads generalise the idea of a monoid. Algebras over a monad generalise the notion of
module over a ring.
Example 9.8. Recall fromExample 9.3 themonad" : - ↦→ -<l , withmultiplication `- = "concatenation of tuples"
and unit [- : G ↦→ (G). Let us study its Eilenberg-Moore category Sets" .

Every monoid (�, ∗, 4) induces a natural function ℎ : �<l → � that sends a tuple of elements
(41, . . . , 4=) to their multiplication 41 ∗ · · · ∗ 4= (and the empty tuple () to the unit of the monoid 4). It is
easy to see that the pair (�, 5) consisting of the underlying set of the monoid, with this natural function,

IMTA-RR-2019-01-SC 89/127

9. Monads

is actually an object of Sets" (making the right diagrams commute). It is also easy to see that monoid
morphisms translate to an arrow in Sets" .

Now, each object (-, 5 : -<l → -) of Sets" can also be seen as a monoid. In fact, define ∗ as the
restriction of 5 to -2, and take 4 = 5 (()) (the image by 5 of the empty tuple); then, it is easy to see that
(-, ∗, 4) follow the axioms of monoids. Then, a morphism in Sets" is easily seen as a monoid morphism.

What this example claims is the following: Sets" � Monoids, the isomorphism being the one we
described above.

Definition 9.9 (Free and forgetful functor associated with a monad). Let (", [, `) be a monad.
The free functor associated with " , denoted by Free" , is the following functor:

Free" :


C −→ C "

� ↦−→ (" (�), `�)
2 : � → � ′ ↦−→ " (2)

The forgetful functor associated with " , denoted by Forget" , is the following functor:

Forget" :


C " −→ C
(�, 5) ↦−→ �

D : (�, 5) → (� ′, 5 ′) ↦−→ D

In a sense, the free functor "creates", or "enforces", the structure of the monad, while the forgetful
functor "forgets", or "nullifies", the structure of the monad.

The reader having read Sections 4 or 5 knows that examples of adjunctions include free/forgetful pairs.
This is the reason why:

Proposition 9.10. Let (", [, `) be a monad.
Then, Free" a Forget" .

Proof. We must compute the adjunctor:

V�, (�′, 5 ′) : HomC

(
Free" (�), (� ′, 5 ′)

)
�→ HomC

(
�, Forget" (� ′, 5 ′)

)
However, first note that Forget" ◦ Free" = ", so the unit of that adjunction will be the unit of the

monad. By Lemma 4.10, the adjunctor is written V�, (�′, 5 ′) : D ↦→ Forget" (D) ◦ [� . We have obviously
defined a natural transformation; we have to check that this defines a bĳection.

Let us give the inverse of V. Let E ∈ HomC
(
�, Forget" (� ′, 5 ′)

)
; as Forget" (� ′, 5 ′) = � ′, and

(� ′, 5 ′) ∈ C " , the following diagram commutes:

" ◦ " (�) " ◦ " (� ′) " (� ′)

X X

" (�) " (� ′) � ′

"◦" (E)

`�

" (5 ′)

`�′ 5 ′

" (E) 5 ′

(23)

This diagram shows that 5 ′ ◦ " (E) is an arrow � (�) → (� ′, 5 ′). Therefore, it suggests that for a
given E : � → Forget" (� ′, 5 ′), the corresponding arrow in C " should be 5 ′ ◦ " (E), which should be
the inverse of V�, (�′, 5 ′) . Define W�, (�′, 5 ′) : E ↦→ 5 ′ ◦ " (E).

Then let D : � (�) → (� ′, 5 ′); we have the following diagram:

IMTA-RR-2019-01-SC 90/127

9. Monads

" (�) " ◦ " (�) " (� ′)

X

" (�) � ′

" ([�)

id" (�)
`�

" (D)

5 ′

D

The square commutes because D is an arrow (" (�), `�) → (� ′, 5 ′) and the triangle commutes due to
half of the identity diagram of a monad. We thus have:

W�, (�′, 5 ′) ◦ V�, (�′, 5 ′) (D) = W�, (�′, 5 ′)
(
Forget" (D) ◦ [�

)
= 5 ′ ◦ "

(
Forget" (D) ◦ [�

)
= 5 ′ ◦ " ◦ Forget" (D) ◦ " ([�)
= 5 ′ ◦ " (D) ◦ " ([�)
= D

As for the converse, note that the image of Diagram 23 by Forget" is:

" (�) " (� ′) � ′
" (E) 5 ′ (24)

In the following diagram, the square commutes because [: IdC → " is a natural transformation, and
the triangle commutes because (� ′, 5 ′) is an object of an Eilenberg-Moore category:

� � ′

� ′

" (�) " (� ′)

E

[� [�′

id�′

" (E)

5 ′

(25)

Using this diagram, we have:

V�, (�′, 5 ′) ◦ W�, (�′, 5 ′) (E) = V�, (�′, 5 ′) (5 ′ ◦ " (E))
= Forget" (5 ′ ◦ " (E)) ◦ [�
= 5 ′ ◦ " (E) ◦ [� (cf. Diagram 24)
= E (cf. Diagram 25)

Thence, V is a natural isomorphism, and an adjunctor, and Free" a Forget" .

Definition 9.11 (Eilenberg-Moore adjunction). Let (", [, `) be a monad.
The adjunction Free" a Forget" is called the Eilenberg-Moore adjunction of ". In order to set the

notations, we denote by [" and Y" the unit and counit of that adjunction.

Remark 9.12. We can also deduce from the proof of Proposition 9.10 that the unit of the adjunction is
[" = [, that is, the unit of the monad, and the counit is defined by:

Y"(�′, 5 ′) = 5 ′ (26)

IMTA-RR-2019-01-SC 91/127

9. Monads

So, every time we have a monad, we have an adjunction, and every time we have an adjunction, we have
a monad! However, there is no bĳection between monads and adjunctions, as many adjunctions can give
the same monad, and a monad gives rise to two adjunctions.

Definition 9.13 (Category of adjunctions). Let (", [, `) be a monad on C .
The category of adjunctions associated to " , denoted by Adj ("), is the following category:

Objects: Objects are the adjunctions (� : C →X ,*, [, Y) such that

(", [, `) = (* ◦ �, [,*Y�)

Morphisms: An arrow (� : C →X ,*, [, Y) → (� ′ : C →X ′,* ′, [′, Y′) is a functor / : X →X ′

such that the following diagrams commute:

X

C

X ′

/

�

� ′

X

C

X ′

/

*

* ′

Identities: Identities are the identity functors

Composition: The composition is the usual composition of functors

Remark 9.14. In [5, section 7, chapter VI, page 99], there are two more conditions; in fact, that /Y = Y′/ ,
or equivalently, that [= [′, which is necessarily the case here, because we are considering a category of
adjunctions that generate the same given monad. In Definition 9.13, we are considering the special case
where from the book is / here, and ! from the book is IdC here.

Proposition 9.15. Let / : (�,*, [, Y) → (� ′,* ′, [′, Y′) be an arrow in Adj (") for a given (", [, `).
Denote by V : HomX (� (−),−) → HomC (−,* (−)) and V′ : HomX ′ (� ′(−),−) → HomC (−,* ′(−))
the corresponding adjunctors.

Then:

1. For all � ∈ C and - ∈ X , the following diagram commutes:

HomX (� (�) , -) HomC (�,* (-))

HomX ′ (/ ◦ � (�) , / (-))

HomX ′ (� ′ (�) , / (-)) HomC (�,* ′ ◦ / (-))

V�,-

/

=

=

V′
�,/ (-)

2. For all � ∈ C and - ∈ X , the following diagram commutes:

IMTA-RR-2019-01-SC 92/127

9. Monads

HomC (�,* (-)) HomX (� (�) , -)

HomX ′ (/ ◦ � (�) , / (-))

HomC (�,* ′ ◦ / (-)) HomX ′ (� ′ (�) , / (-))

V−1
�,-

=

/

=

V′−1
�,/ (-)

3. [= [′

4. /Y = Y′/

Proof. [Proof of Item 3] Item 3 is obvious, as we are in a category of the form Adj ("), so:

(", [, `) = (* ◦ �, [,*Y�)
= (* ′ ◦ � ′, [′,* ′Y′� ′)

from which we deduce [= [′.
[Proof of Item 1] Let G : � (�) → - be an arrow. Then, / (G) is an arrow / ◦ � (�) → / (-), and

using Lemma 4.10, we have:

V′
�,/ (-) (/ (G)) = *

′ (/ (G)) ◦ [′�
As [� = [′� (Item 3) and* = * ′ ◦ / , we have:

V�,- (G) = * (G) ◦ [� = * ′ ◦ / (G) ◦ [′� = V
′
�,/ (-) (/ (G))

hence the result.
[Proof of Item 2] It is equivalent to Item 1.
[Proof of Item 4] In the diagram of Item 2, set � = * (-), and choose id* (-) . We then have:

V′−1
* (-) ,/ (-) ◦ /

(
id* (-)

)
= / ◦ V−1

* (-) ,-
(
id* (-)

)
V′−1
* (-) ,/ (-)

(
id/◦* (-)

)
= /

(
Y- ◦ �

(
id* (-)

))
Y′
/ (-) ◦ �

(
id/◦* (-)

)
= / (Y-) ◦ (/ ◦ �)

(
id* (-)

)
Y′
/ (-) = / (Y-)

hence the result.

The Eilenberg-Moore adjunction (Definition 9.11) is a specific object in that category:

Proposition 9.16. Let " be a monad and Free" a Forget" its Eilenberg-Moore adjunction.
Then

(
Free" , Forget" , [" , Y"

)
is the terminal object of Adj (").

Proof. Let (�,*, [, Y) be an adjunction C
�

�
*

X . We are looking for a unique arrow / : X → C " such

that Forget" ◦ / = *. This gives the hint that / (-) should be of the form (* (-), I) and for G : - → - ′,
/ (G) should be * (G). As I should be an arrow I : *�* (-) → * (-) that verifies the diagrams of
Definition 9.7, and in particular, the triangle identity, a good candidate for I seems to be* (Y-).

Define:

IMTA-RR-2019-01-SC 93/127

9. Monads

/ :


X −→ C "

- ↦−→ (* (-),* (Y-))
G ↦−→ * (G)

We let the reader check that / actually is a functor, that Forget" ◦ / = * and that / ◦ � = Free" . We
have the existence; we now have to check the unicity.

Let . : X → C " be another functor such that Forget" ◦ . = * and . ◦ Free" = *. For - ∈ X ,
we have Forget" ◦ . (-) = * (-). As seen above, for - ∈ X , . (-) will be of the form (* (-), H) where
H : *�* (-) → * (-), and for G : - → - ′, . (G) needs to be* (G). The only potential difference between
/ and . lies in the comparison of the arrow in the pair (* (-), H), in that H could be different to* (Y-).

Now, we have:

. (Y-) = / (Y-)
Y′
. (-) = Y

′
/ (-) (cf. Proposition 9.15, Item 4)

Y′(* (-) ,ℎ) = Y
′
(* (-) ,* (Y-))

ℎ = * (Y-) (cf. Remark 9.12)

hence the unicity of / .

Definition 9.17 (Monadic adjunction). Let � a * be an adjunction, with associated monad " = * ◦ �.
The adjunction � a * is said monadic

Remark 9.18. Also note that all free/forgetful adjunctions are not necessarily monadic. First, note that if
" = IdC , then C " � C . Then,

TODO:

1. Explications sur les noms des monades (cf la forme des EM-categories)

2. Kleisli category

3. Kleisli adjunction

4. Exampels

IMTA-RR-2019-01-SC 94/127

10. Sets-like categories

10. Sets-like categories
Besides adjoints, elementary topoi (plural of "topos" in Greek) are the second big part of this course.
Before exploring this notion, we have to introduce some amount of notions around the following theme:
introduction of set-like elements in categories.

We start with the categorical equivalent of a subset.
In Sets, when - ⊂ . , if G : - → . is the inclusion, then (-, G) is an equaliser, and G is a monomorphism.
In several categories based on sets (for example, the category of groups, the category of graphs, the

category of rings; of "sets with structure"), when we have - ⊂ . , if G : - → . is a monic inclusion (that is,
"an inclusion that respects the structure"), then G(-) is a sub-"set with structure" (for example, a subgroup,
a subgraph, a subring...) of . .

Definition 10.1 (Category of subobjects). Let C be a category and let � be an object of C .
The category of subobjects of �, denoted by SubObjC (�) is the following category:

Objects: A subobject of � is a monomorphism < : " → �

Morphisms: A morphism between subobjects < : " → � and <′ : " ′→ � is an arrow 5 : " → " ′

such that the following diagram commutes:

"

�

" ′

5

<

<′

Identities: The identity morphism < : " → � is the identity morphism id" : " → "

Composition: The composition law for morphisms is the usual composition of morphisms in the
category C

Example 10.2. Consider R the set of real numbers; let’s study SubObjSets (R).
The subobjects of R are any injections G : - → R. Consequently, the subobjects of R are not only the

(inclusions of) subsets of R but also any injection from - to R where card (-) 6 card (R).
Note that if card (-) 6 card (R), then there are card

(
R-

)
injections from - → R, and each injection

is a different subobject. As the collection of all sets with a certain cardinality is large (not a set) we deduce
that SubObjSets (R) is a large category (but locally small, according to the next proposition).

Proposition 10.3. Let C be a category and let � be an object of C . The category SubObjC (�) is a
preorder.

Proof. As any two subobjects < : " → � and <′ : " ′→ � are monic, there is at most one arrow 5 such
that <′ ◦ 5 = <. A category where there is at most one arrow is a preorder.

Definition 10.4 (Inclusion and equivalence of subobjects). Let SubObjC (�) be a category of subobjects.
For <, <′ ∈ SubObjC (�), we define the inclusion relation as: < ⊂ <′⇔ there exists some arrow

5 : < → <.
If < ⊂ <′ and <′ ⊂ <, then we say that < and <′ are equivalent and we write < ≡ <′.

Proposition 10.5. For <, <′ ∈ SubObjC (�), < ≡ <′⇔ < � <′.
In other words: two subobjects of � are equivalent iff they are isomorphic.

IMTA-RR-2019-01-SC 95/127

10. Sets-like categories

Proof. Suppose < ≡ <′; then there are two arrows 5 : " → " ′ and 5 ′ : " ′→ " such that the following
diagram commutes:

"

" ′ �

"

5 <

<′

5 ′
<

There are two arrows 5 ′ ◦ 5 , id" : " → "; as SubObjC (�) is a preorder, there is at most one arrow
between two subobjects, so 5 ◦ 5 ′ = id" . Similarly, 5 ′ ◦ 5 = id" ′, so 5 ′ = 5 −1 and < � <′.

If < � <′, then let 5 : < → <′ be an isomorphism; we deduce that < ⊂ <′. Also, 5 −1 is an
isomorphism, so <′ ⊂ <, and < ≡ <′.

Corollary 10.6. Equivalent subobjects have isomorphic domains.

Remark 10.7. If (�, 4) is the equaliser of 5 , 6 : �→ �, then � is a subobject of � (cf. Proposition 6.40).
Remark 10.8. In SubObjSets (R), take G : - → R and G ′ : - ′ → R. If G ≡ G ′, then there is a bĳection
between both; equivalently, card (-) = card (- ′). Consequently, the equivalence classes of the subobjects
of R are the cardinals ^ 6 card (R). If you consider a category Sets with the Continuum Hypothesis, then
^ ∈ N ∪

{
ℵ0, 2ℵ0

}
.

If Sets respects the axiom of choice, then this is true for any set: the equivalence classes of the subobjects
of a set - are the cardinals ^ 6 card (-).

Proposition 10.9. Let C be a category. Let 2 : � → � ′ be an arrow, and let <′ : " ′→ � ′ be a subobject
of � ′.

Suppose that the following diagram is a pullback:

" " ′

X

� � ′

:

< <′

2

Then < : " → � is also a subobject of �.
In other words: the pullback of a subobject is a subobject (or more generally: the pullback of a

monomorphism is a monomorphism).

Proof. Suppose there are two arrows I, I′ : / → " such that < ◦ I = < ◦ I′.

/

" " ′

X

� � ′

<◦I

:◦I
I

I′ :

< <′

2

IMTA-RR-2019-01-SC 96/127

10. Sets-like categories

As (",<, :) is a pullback, we have 2 ◦ < = <′ ◦ : , which yields:

2 ◦ < ◦ I = <′ ◦ : ◦ I
= <′ ◦ : ◦ I′

= 2 ◦ < ◦ I′

By the universality of the pullback, the arrow I : / → " is unique, so I = I′. Thus, < is monic.

Proposition 10.10. LetC be a category. Let 2 : � → � ′ be an arrow, let<′ : " ′→ � ′ and<′0 : " ′0 → � ′

be subobjects of � ′.
Suppose that the two following squares are pullbacks:

" " ′ "0 " ′0

X X

� � ′ � � ′

:

< <′

:0

<0 <′0

2 2

(27)

If <′ ≡ <′0, then < ≡ <0.

Proof. Let 5 ′0 be the isomorphism 5 ′0 : <′0 → <′. Consider the following diagram:

"0 " ′0

" " ′

X

� � ′

<0

5 ′0 ◦:0

:0

5 ′0

:

< <′

2

As 5 ′0 : <′0 → <′ is an isomorphism between subobjects, we have <′ ◦ 5 ′0 = <
′
0. We then deduce from

the diagrams 27 that:

2 ◦ <0 = <
′
0 ◦ :0 = <

′ ◦ 5 ′0 ◦ :0

As " is the pullback of 2 and <′, there is a unique arrow D : "0 → " such that : ◦ D = 5 ′0 ◦ :0 and
< ◦ D = <0. With the same reasonning, we have a unique D′ : " → "0 such that :0 ◦ D = 5 ′−1

0 ◦ : and
<0 ◦ D = <′. We then have to prove that D′ = D−1; this is because there is a unique arrow id" : " → "

such that the diagram commutes; from which we deduce D ◦ D′ = id" and D′ ◦ D = id" ′.

As stated in Remark 10.8, in Sets, subobjects can be grouped into equivalence classes, the representative
of a given equivalence class being the cardinal of the subobjects. The collection of cardinals lower than a
certain other cardinal is a set, while the collection of all subobjects generally is not. This is then easier, and
more practical, not to refer to the collection of all subobjects SubObj- (Sets), but rather, to the set of the
equivalence classes of the subobjects:

IMTA-RR-2019-01-SC 97/127

10. Sets-like categories

Definition 10.11 (Set of subobjects). Let C be a category.
For � ∈ ObC , we define SubObjC (�) to be the set of all equivalence classes3of subobjects of �; more

explicitly:

SubObjC (�) = ObSubObj� (C)/≡
where ≡ is the equivalence of subobjects (Definition 10.4).

In the rest of this course, we will refer to equivalence classes of subobjects, instead of bare subobjects.
So, a set of subobjects is to be understood as the set of equivalence classes of subobjects.
Remark 10.12. As noticed in Proposition 10.10, the pullbacks of equivalent subobjects are equivalent. So,
in a category with pullbacks, given an arrow 2 : � → � ′, for any subobject <′ : " ′→ � ′ of � ′, there is a
subobject < : " → � of � such that the following square is a pullback:

" " ′

X

� � ′

:

< <′

2

For an arrow 2 : � → � ′, there is some function that sends any subobject of� ′ to one subobject of� in a
way that gives the above pullback. This function is denoted as SubObjC (2) : SubObjC (� ′) → SubObjC (�)
(beware of the inversion!).

Definition 10.13 (Subobject functor). Let C be a category with pullbacks.
The subobject functor SubObjC (simply written SubObj when there is no doubt about the category) is

the contravariant functor:

SubObjC :


C −→ Sets
� ↦−→ SubObjC (�)

2 : � → � ′ ↦−→ SubObjC (2)
where SubObjC (�) is the set of subobjects (Definition 10.11) and SubObjC (2) : SubObjC (� ′) →

SubObjC (�) is the function introduced in Remark 10.12.

We now generalise the notion of characteristic function with the following definition.

Definition 10.14 (Subobject classifier). Let C be a category with all finite limits.
A subobject classifier in C is a pair (Ω, C) where Ω ∈ ObC and C : 1→ Ω such that, for all � ∈ C , and

for any < : " → � subobject of �, there is a unique arrow D : � → Ω such that the following diagram is a
pullback:

" 1

X

� Ω

< C

D

The arrow D : � → Ω is called the classifying arrow for < and is generally written j" .

3In fact, an equivalence class in this case, might not be a set. For example, in Sets, the collection of all subobjects of R of
cardinality ℵ0 is not a set. As a consequence, the collection of equivalence classes is not a set, as a set can only contain sets, at
least in the set-theoretic sense (hereditarily: sets contain sets that contain sets and so on; there should not be any proper class in
between). However, each representative is a cardinal, and there is only a set of cardinals below some cardinal. It is then more
correct to refer to SubObjC (�) as the set of representatives.

IMTA-RR-2019-01-SC 98/127

10. Sets-like categories

In a sense, the subobject classifier is a "universal subobject".

Proposition 10.15. Let C be a category with a subobject classifier (Ω, C).
The subobject classifier is unique up to isomorphism.

Proof. Let (Ω, C) and (Ω′, C ′) be two subobjects classifiers.
Note that an arrow 1→ - is necessarily monic (since there is only one arrow to the terminal object).

So, C : 1→ Ω is a subobject of Ω. By definition of a subobject classifier, there exist unique j1 : Ω→ Ω′

and j′1 : Ω′→ Ω such that following diagram commutes:

1 1 1

X X

Ω Ω′ Ω

id1

C C′

id1

C

j1 j′1

As there is a unique arrow Ω→ Ω, which already is idΩ (same for Ω′), we deduce that j′1 = j1
−1.

Example 10.16. What could the subobject classifier be in Sets? For now, let us justify the notation j" .
Suppose the simplest case. Consider a set - , a subset of . (an actual subset, not only a subobject), and

its canonical inclusion morphism 8 : . → - .
The terminal object in Sets is any one-element set; take the set-theoretic 1 = {0}. Besides, there is a

unique arrow !. : . → 1. We are looking for Ω and C : 1→ Ω. Let’s be explicit: !. and C are the functions:

!. :
{
. −→ 1
H ↦−→ 0 C :

{
1 −→ Ω

0 ↦−→ l

where l is some element in Ω.
As a subobject classifier, the following square is a pullback:

. 1

X

- Ω

!.

8 C

D

Let us observe the diagram in explicit terms. The function D is such that, for all H ∈ . :

D ◦ 8(H) = C◦!. (H)
D(H) = C (0)
D(H) = l

That is, for each H ∈ . , the function D gives the same constant l.
Now take another subset / ⊂ - with its inclusion mapping 8′ : / → - and its terminal arrow

!/ : / → 1. We also suppose that D ◦ 8′ = C◦!/ . As . is a pullback, there is a unique 4 : / → . such that
the following diagram commutes:

IMTA-RR-2019-01-SC 99/127

10. Sets-like categories

/

. 1

X

- Ω

8′

!/4

!.

8 C

D

For all I ∈ / , we have:

8′(I) = 8 ◦ 4(I)
I = 4(I)

so 4 does not "alter" I; it is an inclusion mapping: / ⊂ . . So, for all / ⊂ - such that, for all I ∈ / ,
we have D(I) = l, we deduce that / ⊂ . . Such a behaviour indicates that D should be the characteristic
function j. of . , Ω = 2 = {0, 1} and C : 0 ↦→ 1 (the constant function that assigns 1 to its unique element
0).

In fact, we can check that (2, 0 ↦→ 1) is the subobject classifier of Sets. In fact, the subobject classifier is
designed to generate classifying arrows, which are the categorical generalisation of characteristic functions.

Proposition 10.17. Let C be a category with all finite limits.
C has a subobject classifier (Ω, C) ⇔ the subobject functor SubObjC is representable.

Proof. By definition of a subobject classifier, for all �, for all < : " → � ∈ SubObjC (�) subobject of �,
there is a unique arrow j" : � → Ω such that the following diagram is a pullback:

" 1

X

� Ω

!"

< C

j"

By definition of the subobject functor, < = SubObj(j") (C). By Proposition 3.4, (Ω, C) is a universal
element of SubObj, and by Theorem 3.17,

(
Ω, \SubObj,Ω(C)

)
is a representation of SubObj.

Corollary 10.18. If the subobject functor SubObjC is representable, then its universal element is (Ω, C).
Corollary 10.19. SubObjC (−) � HomC (−,Ω).

We finish the section with the notion of a power object.

Definition 10.20 (Power object). Let C be a category with finite limits. Let � ∈ C .
The power object of � is a pair (P (�) , ?) where P (�) is an object of C and ? : n� → � × P (�) is

a subobject of � × P (�), such that, for all � ∈ C , for all subobject ℎ : � → � × � of � × �, there is a
unique D : � → P (�) such that the following diagram is a pullback:

� n�

X

� × � � × P (�)

4

ℎ ?

id�×D

IMTA-RR-2019-01-SC 100/127

10. Sets-like categories

Remark 10.21. In terms of sets, the power object P (�) is the powerset of � (the set of all subsets of
�). The object � is interpreted to be a family of subsets of � (a subset of P (�)). The interpretation of
? : n� → � × P (�) will come later.

Proposition 10.22. Let C be a category with finite limits. Let � ∈ C .
The power object of � is unique up to isomorphism.

Proof. Let (P (�) , ?) and (%′, ?′) be two power objects of �.

n� n ′
�

n� n ′
�

X X X

� × P (�) � × %′ � × P (�) � × %′

? ?′ ? ?′

id�×D′

id�×idP(�)

id�×D

id�×id%′

id�×D′

Considering the unicity of D, D′, idP(�) and id%′, and noticing that each adjacent two pullbacks are
pullbacks, we have D′ = D−1.

Proposition 10.23. Let C be a category with finite limits. Let � ∈ C with a power object P (�).
For all - ∈ C , HomC (-,P (�)) � SubObjC (- × �) naturally in - .

Proof. By definition of a power object, there is a bĳection i- : HomC (-,P (�)) → SubObjC (- × �).
Let G : - → - ′ be an arrow; we check wether the following diagram commutes:

- HomC (- ′,P (�)) SubObjC (- ′ × �)

{ ?

- ′ HomC (-,P (�)) SubObjC (- × �)

HomC (G,P(�))

i-′

SubObjC (G×�)

i-

We want:

SubObjC (G × �) ◦ i- ′ = i- ◦ HomC (G,P (�))

Let D : - ′→ P (�); there is a unique subobject ℎ′ : � ′→ � × - ′ such that the following is a pullback:

� ′ n�

X

� × - ′ � × P (�)

ℎ′ ?

id�×D

Besides, SubObjC (G × �) (ℎ′) is defined as the unique ℎ that makes the following diagram a pullback:

� � ′

X

� × - � × - ′

ℎ ℎ′

id�×G

(28)

IMTA-RR-2019-01-SC 101/127

10. Sets-like categories

We deduce:

SubObjC (G × �) ◦ i- ′ (D) = SubObjC (G × �) (ℎ′)
= ℎ

Then:

i- ◦ HomC (G,P (�)) (D) = i- (D ◦ G) = ℎ′′

where ℎ′′ is the unique arrow such that the following diagram is a pullback:

� ′′ n�

X

� × - � × P (�)

ℎ′′ ?

id�×(D◦G)

(29)

Note that the above diagram decomposes into this:

� ′′ � ′ n�

X X

� × - � × - ′ � × P (�)

ℎ′′ ℎ′ ?

id�×G id�×D

(The arrow � ′′→ � ′ can be obtained knowing that the right square is a pullback.)
By Proposition 6.55, if the right square � ′n� (� × P (�)) (� × - ′) and the outer rectangle � ′′n� (� ×

P (�)) (� × -) are pullbacks, then the left square � ′′� ′(� × - ′) (� × -) is also a pullback; by unicity of
ℎ′′ (from Diagram 29) and ℎ (from Diagram 28), we deduce that ℎ = ℎ′′, which let us conclude:

ℎ = ℎ′′

SubObjC (G × �) ◦ i- ′ (D) = i- ◦ HomC (G,P (�)) (D)

In Sets, we know that P (-) � 2- (because each characteristic function - → 2 defines a subset of -
and conversely). There is a similar result with the categorical equivalents of a subobject classifier and the
power object.

Proposition 10.24. Let C be a category with finite limits and with a subobject classifier (Ω, C). Let � ∈ C .
Then, P (�) � Ω� .

Proof. By Proposition 10.23, we have:

HomC (−,P (�)) � SubObjC (− × �)

By Corollary 10.18:

SubObjC (−) � HomC (−,Ω)

By Theorem 6.23:

IMTA-RR-2019-01-SC 102/127

10. Sets-like categories

HomC (− × �,−) � HomC

(
−, (−)�

)
Combining those three results:

HomC (−,P (�)) � SubObjC (− × �)
� HomC (− × �,Ω)

� HomC

(
−,Ω�

)
By Corollary 2.18, we deduce that P (�) � Ω� .

Corollary 10.25. If a category has all power objects, then P (1) is the subobject classifier.

Proof. Just write the definition of the power object of 1.

IMTA-RR-2019-01-SC 103/127

11. Elementary topoi

11. Elementary topoi
We can now introduce topoi. We will first see the general notion of elementary topoi (which we will simply
call topoi) and we will then study the notion of a Grothendieck topos.

Definition 11.1 (Elementary topos (1) [1]). An elementary topos (or topos for short) is a category E that
has finite limits, all exponentials, and a subobject classifier.

Definition 11.2 (Elementary topos (2) [2]). An elementary topos (or topos for short) is a category E that is
cartesian closed, has finite limits, and a representable subobject functor.

Definition 11.3 (Elementary topos (3) [9]). An elementary topos (or topos for short) is a category E that
has finite limits and such that every object has a power object.

Of course:

Proposition 11.4. The three definitions of a topos are equivalent.

In fact, it is easy to see that (2)⇔ (1)⇒ (3); however (3)⇒ (1) requires some more work. Let us just
admit this proposition.
Example 11.5. As we have seen through this course, Sets has finite limits, all exponentials, a subobject
classifier, every set has a powerset: Sets is an elementary topos. In fact, topoi are thought as categories that
"roughly" behave like Sets.

As a first property of elementary topoi, we give the following theorem, but will not prove it as it is far
from the scope of this course.

Proposition 11.6. A topos has finite colimits.

Proof. According to [2, Theorem 15.2.8, p389], this is very hard to prove, and the demonstration requires
many notions that are beyond the scope of this course. We will just admit this theorem.

Proposition 11.7. Let E be a topos. A monomorphism in E is an equaliser.

Proof. According to the definition of a subobject classifier (Ω, C), a monomorphism < : " → � is indeed
the equaliser of j" : � → Ω and !� ◦ C.

Proposition 11.8. Let E be a topos. The isomorphisms in E are exactly the monic/epic.

Proof. By Corollary 1.16, every isomorphism is both monic and epic; this is true in any category.
The converse comes from the topos-ness of E . In a topos, all monomorphisms are equalisers, thus all

monic/epic are epic equalisers, and by Proposition 6.42, all epic equalisers are isomorphisms.

Definition 11.9 (Image of an arrow [10]). Let 5 : �→ � be an arrow.
We say that 5 factors through < : �→ � when there exists 4 : �→ � such that 5 = < ◦ 4.
The image of 5 is a monomorphism< : �→ � such that 5 factors through<, and for all monomorphism

<′, if 5 factors through <′, then so does <.

Remark 11.10 (Explicit definition). The image of 5 is a monomorphism < : �→ � such that there exists
4 : �→ � such that 5 = < ◦ 4, and for all monomorphism <′ : �′→ �, if there exists 4′ : �→ �′ such
that 5 = <′ ◦ 4′, then there exists 4′′ : �→ �′ such that < = <′ ◦ 4′′.

In a sense, the image of 5 is the "smallest" subobject of � through which 5 can factor.
In Sets, the image of a function 5 : - → . is the inclusion mapping 5 (-) → . .

Definition 11.11 (Epi-mono factorisation). Let 5 : �→ � be an arrow in a category C .
An epi-mono factorisation of 5 is a pair (<, 4) where < : �→ � is a monomorphism and 4 : �→ �

is an epimorphism such that 5 = < ◦ 4.
A category C is said to have epi-mono factorisations when every arrow 5 has an epi-mono factorisation.

IMTA-RR-2019-01-SC 104/127

11. Elementary topoi

In Sets, this property is very easy to see. Let 5 : - → . ; then we can define 4 : - → 5 (-) (the
restriction of 5 to its image) and then < : 5 (-) → . as the inclusion function. Then 4 is epic (i.e. a
surjection) and < is monic (i.e. an injection). As said before, topoi generalise in a sense the category of
sets; and the following proposition holds:

Proposition 11.12. Let E be a topos. Then E has epi-mono factorisations.

Proof. We need the fact that a topos has colimits. Let 5 : �→ � be a function; the pushout of 5 with 5
exists:

� �

X

� &

5

5 G

H

and G ◦ 5 = H ◦ 5 .
Let (",<) be the equaliser of G and H; there exists a unique 4 such that 5 = < ◦ 4:

" � &

�

< G

H

5
4

We now show that < is the image of 5 . Suppose 5 = <′ ◦ 4′ for some monic <′ : " ′→ �. As we are
in a topos, the monic <′ is an equaliser of some G ′, H′ : �→ & ′, as in the diagram:

" ′ � & ′

�

<′ G′

H′

5
4′

As G ′ ◦ 5 = H′ ◦ 5 , and using the fact that & is a pushout of 5 with itself, there is a unique arrow
@ : & → & ′ such that G ′ = @ ◦ G and H′ = @ ◦ H, as in the following diagram:

� �

X

� &

& ′

5

5 G

G′
H

H′

@

Now, we have:

G ′ ◦ < = D ◦ G ◦ < = D ◦ H ◦ < = H′ ◦ <

so, <′ being the equaliser of G ′ and H′, there is a unique 4′′ : " → " ′ such that < = <′ ◦ 4′′; so < is
indeed the image of 5 .

IMTA-RR-2019-01-SC 105/127

11. Elementary topoi

The only fact to prove now is the epicness of 4. To do so, let us introduce and explain the following
diagram:

� �

" "

#

5

4
4′

=

<

4′′

<

=

We have proven that every arrow factors through some monomorphism thanks to some pushout; then
there are two arrows I, I′ : " → & such that I and I′ are the pushout of 4 with itself, and there exist
4′ : �→ # and a monomorphism = : # → " such that 4 = = ◦ 4′, and = is the equaliser of I and I′.

First, let us focus on 4′ and =. We have 5 = < ◦ 4 = < ◦ = ◦ 4′; so 5 factors through < ◦ =, which is
monic (composition of monomorphisms is monic). As < is the image of 5 , < also does: there exists a
4′′ : " → # such that < = < ◦ = ◦ 4′′; as < is monic, we deduce:

id" = = ◦ 4′′⇒ = = = ◦ 4′′ ◦ =⇒ 4′′ ◦ = = id#

as = is also monic; but as 4′′ ◦ = = id# and = ◦ 4′′ = id" , we deduce that = is an isomorphism.
Now, consider I and I′, the pushout of 4 with itself, with = being the equaliser of I and I′. As = is an

isomorphism, we have I = I′. Now let 2, 2′ : " → � be such that 2 ◦ 4 = 2′ ◦ 4; as I and I′ are a pushout
of 4 with itself, there exists a unique D such that:

� "

X

" /

�

4

4 I

2
I′

2′

D

and 2 = D ◦ I = D ◦ I′ = 2′. Thus, 4 is epic.

For the following property of a topos, let us get back to slice categories. We did not introduce slice
categories as such, but rather, comma-categories (Definition 8.17).

Definition 11.13 (Slice category). Let C be a category, and let � ∈ C be an object.
The slice category of C over �, simply written C /�, is the following category:

Objects: The objects are the arrows G : - → � ∈ MorC

Morphisms: For G : - → � and G ′ : - ′ → �, a morphism 5 : G → G ′ is defined as an arrow
5 : - → - ′ ∈ MorC such that the following triangle commutes:

-

�

- ′

5

G

G′

IMTA-RR-2019-01-SC 106/127

11. Elementary topoi

Identities: The identity morphism of G : - → � is simply id-

Composition: The composition law for morphisms is the usual composition law in C

Confronting Definition 8.17 with Definition 11.13, it is easy to see that:

Proposition 11.14. Let C be a category and � ∈ C be an object.
The slice category C /� is the comma-category (IdC | Δ(�)).

Proposition 11.15. Let C be a category with a terminal object 1. Then C /1 � C .

Proof. The proof is quite easy. Define the functors:

� :


C −→ C /1
� ↦−→ !� : � → 1

2 : � → � ′ ↦−→ 2

* :


C /1 −→ C
!� : � → 1 ↦−→ �

2 :!� →!′
�
↦−→ 2

Then* clearly is the inverse of �; thus � defines an isomorphism between C and C /1.

Another obvious fact is that any slice category has a terminal object:

Proposition 11.16. In the slice category C /�, id� is the terminal object.

Proposition 11.17. Let C be a category and � be an object in C .
Consider the following diagram:

% -2

-1 �

?2

?1
@

22

21

The previous diagram is a pullback in C ⇔ @ = 21 ◦ ?1 = 22 ◦ ?2 is a product in C /�.

Proof. Just compare the universal properties of % (as a pullback) and @ (as a product).

Let us spend some time studying examples of slice categories, as they will turn crucial in our
understanding of some properties of topoi.
Example 11.18 (Slice category in a preorder). Consider the preorder (%, 6). Let ? ∈ %; what does slice
category %/? look like? It is the following category:

Objects: The objects are the arrows q : @ → ?; that is, the objects are the pairs q = (@, ?) such that
@ 6 ?.

Morphisms: The arrows x : q→ q′ are such that the following diagram commutes:

@

?

@′

x

q

q′

That is, arrows x : q→ q′ are simply pairs (@, @′) such that @ 6 @′ 6 ?.

IMTA-RR-2019-01-SC 107/127

11. Elementary topoi

Identities: The identity morphism of q : @ → ? is simply the reflexivity rule of a partial order.

Composition: The composition law for morphisms is the transitivity of the preorder.

In summary, the slice category of a preorder %/? is a truncated version of the preorder %, made with
only the objects that are below ? (which have arrows that target ?) (in red in the following diagram).

.

∗

∗

∗ ?

. . . ∗

∗

. . .

.

Example 11.19 (Slice category in Sets). In Sets, a slice category is less obvious. Let � be a set.
If � = 1 then by Proposition 11.15, we have Sets/1 � Sets. If � = 0 = ∅ then Sets/0 � C1, where C1

is the category with only one object and one identity morphism.
Now suppose � is not a trivial set: � ≠ 0 and � ≠ 1.
Let us start from the easy questions. What is the size of Sets/�?
The objects of Sets/� are all the functions 0 : - → �. As there are always card (�)card(-) > card (-)

functions between - and �, for each set - , there are card (�)card(-) arrows - → �. Thus, Sets/� is a
large category.

As for themorphisms; an arrow G : 0 → 0′ between 0 : - → � and 0′ : - ′→ � is an arrow G : - → - ′

with some additional properties (the commutative triangle). We deduce that Hom (0, 0′) ⊂ Hom (-, - ′).
Therefore, Sets/� is locally small, because Sets is.

Another question one may ask is: can we have two arrows 0 : - → � and 0′ : - → � and 0 ≠ 0′, that
is, two different arrows from the same source? Consider the following functions:

mod2 :
{
N −→ 2
= ↦−→ = mod 2

dom2 :
{
N −→ 2
= ↦−→ (= + 1) mod 2

where 2 = {0, 1} (the set-theoretic natural number 2). They are different functions and thus, different
objects in Sets/2.

There is also an arrow between them. The successor function:

succ :
{
N −→ N

= ↦−→ = + 1

is an arrow succ : mod2 → dom2 in Sets/2.

IMTA-RR-2019-01-SC 108/127

11. Elementary topoi

Intuitively, the slice category Sets/� is a kind of "zoom" on how � "sees" Sets. This zoom somehow
individualises the arrows that target �; in fact, mod2 and dom2 are indiscernible in Sets (they are arrows
from the same source N) while in Sets/2, they are different objects.

Now consider the functions:

mod3 :
{
N −→ 3
= ↦−→ = mod 3

mod2 :
{
N −→ 3
= ↦−→ = mod 2

where mod2 is the obvious extension of mod2 : N→ 2 to N→ 3 (we could have used different symbols
but it was only making the notations inconvenient).

Is there an arrow 5 : mod2 → mod3? That is, a function such that = mod 2 = 5 (=) mod 3. The
function mod2 : N→ N (extension of mod2) does the job, but there are an infinity of functions that would
do the job as well, for example: 

N −→ N

= ↦−→
{

3: if = = 2:
3: + 1 if = = 2: + 1

What about an arrow 5 : mod3 → mod2? That is, a function such that = mod 3 = 5 (=) mod 2. Such
a function does not exist, because there is no < such that < mod 2 = 2 mod 3 = 2 (note that we are
not considering Z/(2Z), so the modulo operation only applies once). We conclude that there is no arrow
mod3 → mod2.

What condition makes it possible to have an arrow between two functions 0 : - → � and 0′ : - ′→ �?
The previous example becomes obvious once we see that mod2 (N) (mod3 (N). Consequently, there

cannot be arrows mod3 → mod2. This seems to be the condition we are looking for. In fact, we can
show that, in Sets/�, there is an arrow G : 0 → 0′ between 0 : - → � and 0′ : - ′ → � if and only if
0(-) ⊂ 0′(- ′). As a corollary, there are arrows G : 0 → 0′ and G ′ : 0′→ 0 if and only if 0(-) = 0′(- ′).

In other words, the slice category induces a preorder . on the functions that target �: for 0 : - → �

and 0′ : - ′→ �, we have 0 . 0′⇔ 0(-) ⊂ 0′(- ′). This preorder gives the general structure of a slice
category Sets/�. We will see in another example (Example 11.32) another interpretation of a slice category
in Sets.
Remark 11.20 (Slice of slice). Let C be a category and 5 : � → � be an arrow in C .

Consider the category C /�. The arrow 5 : � → � is an object in C /�. We can keep "slicing" the
category. Let’s have a closer look at (C /�) / 5 .

An object in (C /�) / 5 is an arrow G : 3 → 5 ∈ MorC /� , that is, such that the following triangle
commutes:

-

�

�

G

3

5

For G : 3 → 5 and G ′ : 3 ′→ 5 , an arrow D : G → G ′ in (C /�) / 5 is an arrow D : 3 → 3 ′ such that the
following diagram commutes:

IMTA-RR-2019-01-SC 109/127

11. Elementary topoi

3

5

3 ′

D

G

G′

But the arrows G and G ′ also make the following diagrams commute:

-

�

�

G

3

5

- ′

�

�

G′

3′

5

Finally, D : 3 → 3 ′ is an arrow D : - → - ′ such that the following diagram commutes:

- - ′

� �

�

D

G

3

G′

3′

55

In summary, an object in (C /�) / 5 is an arrow G : - → �, that is, an object in C /�, and an arrow in
(C /�) / 5 is in fact an arrow in C /�.

Conversely, an arrow G : - → � (object in C /�) easily converts to an arrow G : G ◦ 5 → 5 (object in
(C /�) / 5). Besides, an arrow D : G → G ′ in C /� gives the following diagram:

-

� �

- ′

G

5 ◦G

D
5

G′

5 ◦G′

Thus, an arrow D : G → G ′ easily becomes an arrow D : 5 ◦ G → 5 ◦ G ′.
These two observations define two functors that are clearly inverses of each other. Consequently, we

have proven the following proposition.

Proposition 11.21 (Slice of a slice is a slice). Let C be a category, and let 5 : � → � be an arrow in C .
Then, (C /�) / 5 � C /�.

Proof. See Remark 11.20.

Definition 11.22 (Composition functor / dependent sum). Let C be a category with all pullbacks, and let
5 : � → � be an arrow in C .

The composition functor of 5 , or dependent sum relative to 5 , written Σ 5 , is the following functor:

Σ 5 :


C /� −→ C /�
2 ↦−→ 5 ◦ 2

G : 2 → 2′ ↦−→ G : 5 ◦ 2 → 5 ◦ 2′

IMTA-RR-2019-01-SC 110/127

11. Elementary topoi

Remark 11.23. Note that, in the definition of the composition functor, for G : 2 → 2′, we have the following
diagram:

-

�

- ′

G

2

2′

which gives, by composition by 5 :

-

� �

- ′

G

2

5

2′

Consequently, an arrow G ∈ C /� is also an arrow G ∈ C /�.

Definition 11.24 (Pullback functor). Let C be a category with all pullbacks, and let 5 : � → � be an
arrow in C .

The pullback functor 5 ∗ is the following functor:

5 ∗ :


C /� −→ C /�
3 ↦−→ 5 ∗(3)

G : 3 → 3 ′ ↦−→ 5 ∗(G)
where, for 3 : - → �, 5 ∗(3) is such that the following square is a pullback:

% -

X

� �

5 ∗ (3) 3

5

and for an arrow G : 3 → 3 ′, 5 ∗(G) is the unique arrow % → %′ between pullbacks such that the
following diagram commutes:

% -

%′ - ′

� �

5 ∗ (G)

5 ∗ (3)

G

3′

5 ∗ (3′) 3

5

Proposition 11.25. Let C be a category with pullbacks. Let 5 : �→ � be an arrow in C .
Then, Σ 5 a 5 ∗; that is, the composition functor is left adjoint to the pullback functor.

Proof. Let 2 : - → � and 3 : . → �. We have to check that there is a natural isomorphism:

HomC /�
(
Σ 5 (2), 3

)
� HomC /� (2, 5 ∗(3))

IMTA-RR-2019-01-SC 111/127

11. Elementary topoi

Let D ∈ HomC
(
Σ 5 (2), 3

)
; the following square commutes:

- .

X

� �

D

2 3

5

By definition of 5 ∗(3), the following diagram is a pullback; as a consequence, there is a unique
E : - → % such that the diagram commutes:

-

% .

X

� �

E
D

2
?

5 ∗ (3) 3

5

So, for all D ∈ HomC /�
(
Σ 5 (2), 3

)
, there is a unique E ∈ HomC /� (2, 5 ∗(3)) such that the above

diagram commutes; in other words, the mapping i2,3 : D ↦→ E is a bĳection4.
We now have to check the naturality in 2 and 3.
Let G : 2′→ 2 be an arrow in C /�; thus G makes the following diagram commute:

- ′ -

�

G

2′ 2

We have to check whether the following diagram commutes:

HomC /�
(
Σ 5 (2), 3

)
HomC /� (2, 5 ∗(3))

X

HomC /�
(
Σ 5 (2′), 3

)
HomC /� (2′, 5 ∗(3))

HomC/� (Σ 5 (G) ,3)

i2,3

HomC/� (G, 5 ∗ (3))

i2′,3

Let D ∈ HomC /�
(
Σ 5 (2), 3

)
; D makes the following diagram commute:

- .

�

D

Σ 5 (2) 3

So:
4In fact the formula establishes the reverse bĳection, but this bĳection will do.

IMTA-RR-2019-01-SC 112/127

11. Elementary topoi

HomC /� (G, 5 ∗(3)) ◦ i2,3 (D) = E ◦ G

where E is the unique arrow - → % that makes the following diagram commute:

-

% .

X

� �

E
D

2
?

5 ∗ (3) 3

5

(30)

Then:

i2′,3 ◦ HomC /�
(
Σ 5 (G),3

)
(D) = i2′,3 (D ◦ G)

= E′

where E′ is the unique arrow - ′→ % such that ? ◦ E′ = D ◦ G and 5 ∗(3) ◦ E′ = 2′, as in the following
diagram:

- ′

-

% .

X

� �

2′

D◦GG E′

E

D

2
?

5 ∗ (3) 3

5

(31)

By chasing diagram 31 and using the equations given by diagram 30, we see that:

5 ◦ 2′ = 5 ◦ 2 ◦ G = 3 ◦ D ◦ G
5 ∗(3) ◦ E′ = 2′ = 5 ∗(3) ◦ E ◦ G

? ◦ E′ = D ◦ G = ? ◦ E ◦ G

By unicity of E′, we must have E′ = E ◦ G, hence the equality:

E′ = E ◦ G
i2′,3 ◦ HomC /�

(
Σ 5 (G),3

)
(D) = HomC /� (G, 5 ∗(3)) ◦ i2,3 (D)

Which gives the naturality in 2. The naturality in 3 is very similar and is left to the reader.

IMTA-RR-2019-01-SC 113/127

11. Elementary topoi

The adjunction Σ 5 a 5 ∗ may sometimes be completed with a third functor Π 5 , called the dependent
product functor, that is right adjoint to the pullback functor 5 ∗. However, this does not occur often; the
existence of this right adjoint depends on some property of the category C .

Definition 11.26 (Locally Cartesian closed). A category C is called locally Cartesian closed whenever, for
all object � ∈ C , the slice category C /� is Cartesian closed.

From the definition and Proposition 11.15, it is easy to see that:

Proposition 11.27. If C is locally Cartesian closed and has a terminal object, then C is Cartesian closed.

Another result that is easy to see is the following:

Proposition 11.28. Let C be a category.
If C is locally Cartesian closed, then so is every slice of C .

Proof. For all � ∈ C , C /� is Cartesian closed. Then keep slicing the category by 2 : - → �; we have
(C /�)/2 � (C /-) (by Proposition 11.21), and C /- is Cartesian closed, hence the result.

The property that matters to us now is the following:

Proposition 11.29. Let C be a category with all pullbacks.
Then, C is locally Cartesian closed⇔ for all arrow 5 , the pullback functor 5 ∗ has a right adjoint Π 5 .

Proof. [Proof of⇐] Let 5 : � → � be an arrow, and let Π 5 be its right adjoint.
We have to find the terminal object, the products and the exponentials in C /�. By Proposition 11.16,

we know that the terminal object in C /� is id� . By Proposition 11.17, as C has all pullbacks, we know
that C /� has all products.

Consider the following pullback:

% -

X

� �

5 ∗ (3) 3

5

By Proposition 11.25, the composition functor Σ 5 is left adjoint to the pullback functor 5 ∗. By
Proposition 11.17, the pullback of 5 and 3 in C corresponds to a product in C /�. Then:

5 × 3 = 5 ◦ 5 ∗(3) = Σ 5 (5 ∗(3))
We deduce the following equivalence of hom-sets:

HomC /� (5 × 3, D) = HomC /�
(
Σ 5 (5 ∗(3)) , D

)
� HomC /� (5 ∗(3), 5 ∗(D))
� HomC /�

(
3,Π 5 (5 ∗(D))

)
Then, in C /�, by Proposition 6.23 (exponential is right adjoint to product), the exponential D 5 can

only be D 5 = Π 5 (5 ∗(D)). As such an exponential always exists (because 5 ∗ always does, and Π 5 does by
assumption), C /� is Cartesian closed.

Thus, C is locally Cartesian closed.
[Proof of⇒] Assume that C is locally Cartesian closed. Then each slice category is Cartesian closed,

so each slice category C /� of C has products. By Proposition 11.21, a slice of a slice is a slice. By the
same reasonning, each slice category (C /�) / 5 of C /� has products.

IMTA-RR-2019-01-SC 114/127

11. Elementary topoi

By Proposition 11.17, each product in (C /�) / 5 is a pullback in C /�, so C /� has all pullbacks. By
Proposition 11.16, each slice category C /� has a terminal object id� .

Each slice category C /� has pullbacks and a terminal object, so by Proposition 7.34, it has all finite
limits. By Proposition 8.27, as every slice category has finite limits and exponentials, we deduce that the
pullback functor 5 ∗ (in C , that is the "product" functor in C /�) has a right adjoint.

Corollary 11.30. If C has all pullbacks and is locally Cartesian closed, then each slice category C /� has
finite limits.

Definition 11.31 (Dependent product). Let C be a category with all pullbacks and locally Cartesian closed.
Let 5 : � → � be an arrow in C .

The dependent product Π 5 is the right adjoint to the pullback functor 5 ∗.

Before studying more properties, maybe we should take a break and look at how this functor behaves.
Example 11.32 (Slice category in Sets, again). Consider Sets and some function 5 : � → �.

Let 2 : - → � be an object in Sets/�. It is a function, indeed, but the point of view that makes more
sense in this context is the following. For all H ∈ �, we can define the set 2−1(H) = {G ∈ - | 2(G) = H}.
In this case, the function 2 : - → � becomes an �-indexed set

(
2−1(H)

)
H∈� where - =

∑
H∈�

2−1(H)

(coproduct). Then, a morphism ℎ : 2 → 2′ in Sets/� is a function between �-indexed sets, such that
ℎ =

∑
H∈�

ℎH : 2−1(H) → 2′−1(H).

Note that this point of view explains why there cannot be any arrow from 2 : - → � to 2′ : - ′→ �

whenever 2′(- ′) (2(-). In fact, take H ∈ 2(-)\2′(- ′); we have 2′−1(H) = ∅, so the function
ℎH : 2−1(H) → 2′−1(H) is a function to the empty set, what does not exist unless 2−1(H) = ∅ too.

What about Σ 5 ? If 2 : - → � ∈ C /�, then Σ 5 (2) = 5 ◦ 2 : - → �; that is, Σ 5 (2) can be seen as
the �-indexed set

(
(5 ◦ 2)−1(H)

)
H∈�

. The function between �-indexed sets ℎ : 2 → 2′ ' ℎ :
∑
H∈�

ℎH :

2−1(H) → 2′−1(H) (morphism in C /�) is sent to Σ 5 (ℎ) : 5 ◦ 2 → 5 ◦ 2′ ' Σ 5 (ℎ) :
∑
H∈�
(5 ◦ ℎ)H :

(5 ◦ 2)−1(H) → (5 ◦ 2′)−1(H). Beware of the notation: ∑
H∈�

is a coproduct symbol.

As for Π 5 . Let H ∈ � and 2 : - → � be an object in C /�. We call partial section of 5 for H along 2
any function B : 5 −1(H) → - such that the following diagram commutes:

5 −1(H) -

�

⊆

B

2

that is, for all G ∈ 5 −1(H), 2 ◦ B(G) = G. Note that B is essentially a right inverse of 2 on the reverse
image of H ∈ � by 5 , and such an B may not be unique. Also, a partial section along 2 : - → � requires
that 5 −1(H) ⊂ 2(-); so 5 may not have partial sections for all H along 2, for example if 5 −1(H)\2(-) ≠ ∅.

Awodey [1, p233, below Proposition 9.18] states that Π 5 (2) : (→ � where (is:

(=
{
B : 5 −1(H) → - | H ∈ � and B is a partial section of 5 for H along 2

}
(⊂

⋃
H∈�

Hom
(
5 −1(H), -

)
and for all B : 5 −1(H) → - ∈ (, Π 5 (2) (B) = H (that is, Π 5 (2) "projects" a partial section B : 5 −1(H) →

- to the base of the inverse image on which the section takes place).

IMTA-RR-2019-01-SC 115/127

11. Elementary topoi

Finally, the pullback functor is easier to see. Remember that, in Sets, the pullback between 5 : � → �

and 3 : - → � is the set � ×� - = {(2, G) ∈ � × - | 5 (2) = 3 (G)} (cf. Example 6.51). The pullback
functor 5 ∗ sends 3 : - → � to the projection of � ×� - to �:

5 ∗(3) :
{
� ×� - −→ �

(2, G) ↦−→ 2

One may wonder where 3 appears in the construction of 5 ∗(3); just remember the above definition of
� ×� - in Sets.

Proposition 11.33. Let E be a topos. Then every slice of E is a topos as well.

Proof. Let � ∈ ObE . By Corollary 11.30, the slice category E /� has finite limits. We now have to show
that every object has a power object.

So, the proof can be found in [10, Chapter IV, Section 7, Theorem 1, p190] and in [9, Chapter 5, Section
2, Theorem 2.1, p149], but I don’t want to spend too much time on it. The proofs are very long. We will
just admit this proposition.

Corollary 11.34. A topos is locally Cartesian closed.

Proof. In fact, as every slice of a topos is a topos, then in particular, each slice of a topos is Cartesian
closed.

The fact that a topos is locally Cartesian closed is crucial in theoretical computer science and logic,
because it means that any topos has an internal type theory.

Let us sum up the properties of a topos that we have seen:

Theorem 11.35 (Properties of a topos). Let E be a topos. Then E has all the following properties:

� It has all finite limits

� It has all finite colimits

� It has all exponentials

� Every object has a power object

� It has a subobject classifier

� It is Cartesian closed

� It is locally Cartesian closed

� Its slices are Cartesian closed

� Its slices are locally Cartesian closed

� Its slices are topoi

� Its isomorphisms are exactly the monic/epic

� It has all epi-mono factorisations

IMTA-RR-2019-01-SC 116/127

12. Presheaves, sheaves, sheaf topoi

12. Presheaves, sheaves, sheaf topoi
Incomplete section. We introduce the category of presheaves and prove it’s a topos, but the Crash Course
stops here for now (2019-01-18).

For now we have only see one example of topos. Let us introduce another example.

Definition 12.1 (Presheaf). Let C be a small category. A presheaf on C is a functor C
op → Sets.

The presheaf category, written
[
C

op
, Sets

]
, SetsC

op
or simply PSh (C), is the functor category

Func
(
C

op
, Sets

)
.

The following propositions will aim at proving that the presheaf category PSh (C) is a topos.

Lemma 12.2. LetC be a small category. Then for all diagram � : I → PSh (C), we have Lim (�) (�) �
Lim (� (−)(�)); in other words, limits in a presheaf category are computed objectwise.

Proof. Let � : I → PSh (C) be a diagram in PSh (C). The proof lies on the (admitted) fact that Sets
has all small limits (admitted in Example 8.12).

Note that there is a canonical equivalence of categories: Func
(
I ,Func

(
C

op
, Sets

))
� Func

(
I × C

op
, Sets

)
.

Call �̂ the equivalent diagram �̂ : I × C
op → Sets.

For a given � ∈ C
op , �̂ (−, �) is a diagram from I → Sets, and as Sets has all small limits, it has a

limit
(
Lim

(
�̂ (−, �)

)
, Y�,�

)
. Then, if 2 : � → � ′ ∈ C , then, as �̂ is a (contravariant) functor, there is an

arrow: �̂ (−, 2) : �̂ (−, � ′) → �̂ (−, �) between cones to � and by property of limits, there is a unique
arrow Lim

(
�̂ (−, 2)

)
: Lim

(
�̂ (−, � ′)

)
→ Lim

(
�̂ (−, �)

)
, such that the following diagram commutes:

� � ′ Lim
(
�̂ (−, � ′)

)
{ X

� ′ � Lim
(
�̂ (−, �)

)
2 2

Y�,�′

Lim
(
�̂ (−,2)

)

Y�,�

Note that we are considering the right-hand square diagram in C
op ; we have the naturality of Y�,� in �.

There remains to show that Lim
(
�̂ (−, �)

)
is indeed a limit. Let U : Δ(%) → � be a cone to �. Here,

the diagonal functor is: Δ : PSh (C) → PSh (C)I . We are looking for a unique W : %→ Lim
(
�̂ (−,−)

)
such that, for all objects 8 ∈ I and � ∈ C , the following diagram commutes: U8 (�) = Y�,�,8 ◦ W(�).

� (8) (�)

Δ(%) (8) (�)

Lim
(
�̂ (−, �)

)
W (�)

U8 (�)

Y�,�,8

Such a (unique) W(�) always exists due to the universal property of limits in Sets. We only have to
check that this W = (W(�))�∈C is natural in �. It is due to the naturality of the other natural transformations
U and Y�,−. Finally, W is unique due to the uniqueness of each W(�).

Thus, for every diagram � : I → PSh (C), there is a limit, and for all � ∈ C , Lim (�) (�) �
Lim

(
�̂ (−, �)

)
� Lim (� (−)(�)).

IMTA-RR-2019-01-SC 117/127

12. Presheaves, sheaves, sheaf topoi

In fact, we proved something stronger:

Corollary 12.3. PSh (C) has all small limits.

Corollary 12.4. For all %,& ∈ PSh (C), % ×& is the functor:

% ×& :


C
op −→ Sets
� ↦−→ %(�) ×&(�)
2 ↦−→ %(2) ×&(2)

Corollary 12.5. The terminal object in PSh (C) is the constant presheaf Δ(1) where Δ is the diagonal
functor Δ : Sets→ PSh (C).

Proposition 12.6. Let U : %→ & be a morphism between two presheaves in PSh (C).
Then, U is monic⇔ for all - ∈ X , U- : � (-) → � (-) is monic.

Proof. The proof of⇐ has already been given in Proposition 1.38.
Conversely, suppose that U is monic. The characterisation of monics by pullbacks (Proposition 6.54

states that the pullback of U with itself is (%, id%, id%). As limits, and thus pullbacks, are computed
objectwise, we deduce that the pullback of each �-component U� : %(�) → &(�) with itself is also a
triple

(
%(�), id% (�) , id% (�)

)
, making each component monic.

Remark 12.7. We know that a presheaf category has all small limits. In particular, it has all binary products,
so maybe it has exponentials.

Let %,& ∈ PSh (C) be presheaves. Suppose their exponential &% exists; let us study it.
By adjunction product/exponential (Proposition 6.23), we know that HomPSh(C) (- × %,&) �

HomPSh(C)
(
-,&%

)
. By Yoneda lemma, we have:

HomPSh(C)
(
HomC (−, �) , &%

)
� &% (�)

which defines the functor &% as:

&% (�) � HomPSh(C) (HomC (−, �) × %,&)

We have to check that this actually defines an exponential; that is, for every 5 : - × %→ &, there is a
unique 5̂ : - → &% such that the following diagram commutes:

- % × -

&% % ×&% &

5̂ id�× 5̂
5

eval

Note that 5 : - × % → & is a natural transformation, and as limits (hence, producs) are computed
objectwise, the previous diagram becomes:

- (�) %(�) × - (�)

&% (�) %(�) ×&% (�) &(�)

5̂� id�,�× 5̂�
5�

eval�

We define the natural transformation eval� as:

eval� :
{
%(�) × Nat (HomC (−, �) × %,&) −→ &(�)

(?, U) ↦−→ U� (id� , ?)
IMTA-RR-2019-01-SC 118/127

12. Presheaves, sheaves, sheaf topoi

Note that eval is the counit of the adjunction HomPSh(C) (- × %,&) � HomPSh(C)
(
-,&%

)
.

Then, note that eval� is defined such that eval�◦
(
id% × 5̂

)
�
(G, ?) = eval�

(
?, 5̂� (G)

)
= 5̂� (G) (id� , ?) =

5� (G, ?) by commutativity of the previous diagrams.
We now have to find the expression of 5̂ . For now we focus on 5̂� (G). We already know that

5̂� (G) (id� , ?) = 5� (G, ?). For 2 : � ′→ �, the following diagram commutes:

� ′ HomC (�,�) × %(�) &(�)

{ X

� HomC (� ′, �) × %(� ′) &(� ′)

2 HomC (2,�)×% (2)

5̂� (G)�

& (2)

5̂� (G)�′

that is:

&(2) ◦ 5̂� (G)� (D, ?) = 5̂� (G)�′ ◦ (HomC (2,�) × %(2)) (D, ?)
and in particular, when D = id� :

&(2) ◦ 5̂� (G)� (id� , ?) = 5̂� (G)�′ ◦ (HomC (2,�) × %(2)) (id� , ?)
&(2) (5� (2, ?)) = 5̂� (G)�′ (2, %(2) (?))

which defines 5̂� (G)�′ (2, ?′) on pairs (2, ?′) such that ?′ = %(2) (?) (which is enough for our purposes).
The naturality of 5̂� (G) in � is immediate.
Finally, we have defined the exponential in PSh (C).

Definition 12.8 (Exponential in a presheaf category). Let %,& be two presheaves in PSh (C). Their
exponential &% is defined as:

&% :


C
op −→ Sets
� ↦−→ HomPSh(C) (HomC (−, �) × %,&)
2 ↦−→ HomPSh(C) (HomC (−, 2) × %,&)

Lemma 12.9. A presheaf category PSh (C) has all exponentials.

Proof. The construction in Remark 12.7 holds for any preasheaves % and &.

Corollary 12.10. A presheaf category is Cartesian closed.

We could have defined the exponential in a presheaf category, and then prove that the presheaf it defines
actually is an exponential, but we prefered showing how the definition naturally made sense.

So, we have all small (thus finite) limits, and all exponentials. The only thing missing is the subobject
classifier. To this extend, we define:

Definition 12.11 (Sieve [1]). Let C be a small category, and let � be an object in C .
A sieve on � is a set (∈ Sets such that:

(= { 5 : - → � | for some arrows 5 : - → �}
∪ { 5 ◦ 6 : . → � | . ∈ C , 6 : . → - and 5 ∈ (}

In other words, (is a set of (some) arrows of C with codomain � (left-hand part of the union), stable
by precomposition (right-hand part of the union), that is, for all 6 : . → - and 5 ∈ (, we have 5 ◦ 6 ∈ (.
Note that (doesn’t necessarily contain all arrows - → �.

IMTA-RR-2019-01-SC 119/127

12. Presheaves, sheaves, sheaf topoi

Definition 12.12 (Sieve presheaf). Let C be a small category.
For � ∈ C , we define Sieve(�) = {(∈ Sets | (is a sieve on �}.
For 2 : � → � ′ ∈ C , we define:

Sieve(2) :
{

Sieve(� ′) −→ Sieve(�)
(↦−→ {6 : - → � | 2 ◦ 6 ∈ (}

The sieve presheaf5, written Sieve, is the following contravariant functor:

Sieve :


C −→ Sets
� ↦−→ Sieve(�)

2 : � → � ′ ↦−→ Sieve(2)

Lemma 12.13. Let C be a small category and let Sieve : C
op → Sets be its sieve presheaf. And let Δ(1)

be the terminal object in PSh (C).
Then there exists C : Δ(1) → Sieve such that (Sieve, C) is a subobject classifier of PSh (C).

Proof. The morphism (natural transformation) C is:

C =

(
C� :

{
1 −→ Sieve(�)
G ↦−→ { 5 : - → � | - ∈ C , 5 : - → �}

)
�∈C

That is, C� is the function that selects the (unique) sieve that contains all arrows whose codomain is �
(remember that sieves need not contain all arrows). The naturality of C is quite obvious once we remember
that Δ(1) (�) = 1.

We now have to check that (Sieve, C) is a subobject classifier. Awodey describes the classifying arrow
of c : & → % as U such that:

U� :
{
%(�) −→ Sieve(�)
G ↦−→ { 5 : - → � | %(5) (G) ∈ &(-)}

but I am having trouble finding out that this defines a pullback. I leave the proof for now.

Proposition 12.14. Let C be a small category. Then PSh (C) is a topos.

Proof. By Corollary 12.3, a presheaf category has all small limits; in particular, it has all finite limits. By
Lemma 12.9, a presheaf category has all exponentials. Finally, by Lemma 12.13, it has a subobject classifier.
Consequently, PSh (C) deserves its title of topos.

5Note that this name is not standard.

IMTA-RR-2019-01-SC 120/127

13. David’s riddles

13. David’s riddles
Proposition 13.1. Consider C and its slice C /�.

The coproduct of 01 : �1 → � and 02 : �2 → � (objects of the slice) is 01 + 02 : �1 + �2 → �, where
01 + 02 is the unique arrow from the UMP of the coproduct.

Proof. The proof is mainly diagram chase.
Let �1 + �2 be the coproduct of �1 and �2, the following diagram commutes for a unique arrow D:

�

�1 �1 + �2 �281

01
D

82

02 (32)

This ensures that the inclusion maps 81 and 82 actually are arrows in C /�.
We denote this D = 01 + 02. We now have to check that this actually defines a coproduct. Let % as in

the diagram:

�1 + �2

�1 �2

%

�

01+02

E

81

01

?1

82

02

?2

?

The fact that �1 + �2 is a coproduct in C gives that unique arrow E : �1 + �2 → % such that E ◦ 81 = ?1
and E ◦ 82 = ?2. We than have to check that E actually is an arrow in C /�, that is, that ? ◦ E = 01 + 02. In
fact, 01 + 02 is the unique arrow �1 + �2 → � that makes Diagram 32 commute; ? ◦ E also does, so the
equality must hold.

Proposition 13.2 (Coproduct of pullbacks is a pullback). Let C be locally Cartesian closed.
Consider the following diagram:

�1 �1 �2 �2 �1 + �2 �1 + �2

+ ⇒

� � � � � �

11

01 31

12

02 32

11+12

01+02 31+32

2 2 2

If the left-hand squares are pullbacks, then the right-hand square is a pullback.

Proof. The category C is locally Cartesian closed. Then the pullback functor 2∗ : C /� → C /� based on
2 : � → � has a right adjoint. Thus, it is a left adjoint. By Proposition 8.10, left adjoints preserve colimits,
so in particular, coproducts. In consequence:

2∗(31 + 32) = 2∗(31) + 2∗(32) = 01 + 02 (33)

which gives the result.

IMTA-RR-2019-01-SC 121/127

14. To do

14. To do
Des sections en plus :

1. Monads and comonads (juste après les adjoints). C’est assez facile, il y a plein d’exemples.

2. Kan extensions

3. Finir le bestiaires sur les examples of adjunctions

4. Finir la section sur les sheaf topoi

5. Bestiaire de catégories ? (Lister des catégories importantes, est citer leurs propriétés: par exemple,
Sets: a les limites, les colimites, est un topos, a un subobject classifier, y’a une épi-mono factorisation,
donner des équivalences... Et donner une source pour chaque propriété)

Les exemples d’adjonctions:

1. L’adjonction ∃ a?? a ∀

2. I like this exercise

3. Infinite chain of adjoint functors : (un peu compliqué)

4. Une chaine rigolote d’adjoints : cf cahier, le 15/05/2019.

5. Encore plus d’exemples d’adjunctions

6. Beautiful examples of adjunctions

7. Adjunctions in fundamental theorems

Sur les topoi:

1. Natural numbers objects + consturction of Z, Q and R... Cf David’s draft on discrete time behaviour
type (given while at MIT): the corresponding sheaves are constant, except for reals.

2. Présenter les topoi de sheaves, sur une topologie, sur une Heyting algebra.

3. Préciser topos ⊃ presheaf topos ⊃ sheaf topos = Gorthendieck topos (+ presheaf topos is the sheaf
topos for the trivial topology)

4. Bon. J’adore les topoi, du coup peutêtre que je ne me rends pas compte si je veux en rajouter trop ou
pas. Donc voilà. Une fois qu’on a un topos (de presheaves par exemple), on peut définir une logique.
Puis on peut définir des modalities (local operators?) qui sont des arrows Ω → Ω qui vérifient
quelques propriétés. Chaque modality définit un subtopos dont la logique vérifie cette modalité (cf.
Seven sketches, chap 7) Cf aussi ce post

Autres:

1. ETCS ? Elementary Theory of the Category of Sets

Sur la forme :

1. Donner des noms aux théorèmes (dire en gros ce qu’ils disent)

2. Présentation d’une catégorie pour les enfants ?

IMTA-RR-2019-01-SC 122/127

https://math.stackexchange.com/questions/1873437/exhibit-a-chain-of-adjoints-passing-through-the-diagonal
https://math.stackexchange.com/questions/1058960/sequences-or-chains-of-adjoint-functors
https://math.stackexchange.com/questions/46708/a-bestiary-about-adjunctions?rq=1
https://math.stackexchange.com/questions/1238125/what-are-some-beautiful-examples-of-adjunctions?noredirect=1&lq=1
https://math.stackexchange.com/questions/187228/if-adjunction-arises-everywhere-where-is-it-in-the-fundamental-theorems?noredirect=1&lq=1
https://mathoverflow.net/questions/298950/example-of-non-propositional-local-operators-on-a-topos

14. To do

3. Harmoniser les notations: est-ce que la catégorie par défaut est C ou X ? Est-ce que l’object par
défaut est � ou - ? Est-ce que l’adjunction par défaut est*∗ ou � ?

4. Comment lire un diagramme commutatif

5. Mettre des exemples partout!

(a) A locally Cartesian closed category that is not Cartesian closed (LH, category of local
homeomorphismes, doesn’t have a terminal object), cf https://en.wikipedia.org/wiki/
Cartesian_closed_category#Examples

(b) Examples of topoi: FinSets, +l, +U for U limit ordinal (small topos), cf: https://math.
stackexchange.com/questions/116023/example-of-a-small-topos

(c) The category of topological spaces lacks some properties: https://ncatlab.org/nlab/
show/nice+category+of+spaces

IMTA-RR-2019-01-SC 123/127

https://en.wikipedia.org/wiki/Cartesian_closed_category#Examples
https://en.wikipedia.org/wiki/Cartesian_closed_category#Examples
https://math.stackexchange.com/questions/116023/example-of-a-small-topos
https://math.stackexchange.com/questions/116023/example-of-a-small-topos
https://ncatlab.org/nlab/show/nice+category+of+spaces
https://ncatlab.org/nlab/show/nice+category+of+spaces

Index
Adjoint

Adjoint equivalence, 39
Adjunction, 26, 36
Adjunctor, 26
Counit of an adjunction, 30
Definition (official), 26
Definition (triangle identities), 36
Definition with universal arrows, 23
Eilenberg-Moore adjunction, 91
Image and inverse image of a function (as ad-

joints), 32
Left adjoint, 23, 26
Monadic adjunction, 94
Right adjoint, 26
Unit of an adjunction, 27

Adjoint functor theorem, 84
Awodey version, 84
Leinster version, 84

Adjoints
RAPL, 81
Right adjoints preserve limits, 81

Arrow
Epi-mono factorisation, 104
Factors through, 104
Image of an arrow, 104

Category, 3
Cartesian closed, 55
Category of sets Sets, 3
Category of subobjects, 95
Comma-category, 83
complete, 81
Equivalence of categories, 37
finite products, 47
Locally Cartesian closed, 114
Opposite category, 7
presheaf category, 117
Product of categories, 47
Proset category, 3
sizes, 5
large, 5
locally small, 5
small, 5

Skeletal category, 37
Slice category, 106
In Sets (interpretation), 115
In Sets (other), 108

Cocone, 68

Category of cocones, 68
Coequalisers, 57
Colimit, 66

preserving colimits, 78
Cone, 71

Category of cones, 71
Coproduct, 49
Currification, 50

Diagonal functor, 65
Diagram, 65

Category of diagrams, 65

Eilenberg-Moore adjunction, 91
Epi-mono factorisation, 104
Epimorphisms, 4
Equalisers, 55
Equivalence of categories, 37
Exponential, 50

in a presheaf category, 119

Functor, 6
Composition functor, 110
continuous, 81
contravariant functor, 7
covariant functor, 7
Dependent product, 115
Dependent sum, 110
Diagonal functor, 65
embedding, 16
faithful, 16
Forgetful functor associated with a monad, 90
Free functor associated with a monad, 90
full, 16
Functor category, 9
Hom-set functor, 7
contravariant, 7
covariant, 7

injective on arrows, 16
injective on objects, 16
preserving
preserving colimits, 78
preserving limits, 78
preserving products, 48

Pullback functor, 111
Representable functor, 20
Subobject functor, 98
surjective on arrows, 16
surjective on objects, 16

124

Index

Hom-set, 4
Hom-set functor, 7
contravariant, 7
covariant, 7

Image
Image and inverse image of a function (as ad-

joints), 32
Initial

Weakly initial set, 82
Initial object, 53
Isomorphism, 4

Limit, 71
preserving limits, 78

Monad
Forgetful functor, 90
Free functor, 90
Monadic adjunction, 94

Monadic adjunction, 94
Monomorphisms, 4

Natural transformation, 8
composition, 8
Natural isomorphism, 9

Power object, 100
Presheaf, 117

exponential, 119
presheaf category, 117
Sieve presheaf, 120

Product, 46
preserving products, 48

Pullback, 58
Pullback functor, 111

Pushout, 63

Representation (of a functor), 20

Sieve, 119
Sieve presheaf, 120

Simplest representation lemma, 10
Simplex category, 42

Augmented simplex category, 42
Degeneracy map, 42
Face map, 42
Simplicial identities, 43

Skeleton, 37
Skeletal category, 37

Subobject
Category of subobjects, 95

equivalence of subobjects, 95
inclusion of subobjects, 95
set of subobjects, 98
Subobject classifier, 98
Subobject functor, 98

Terminal object, 53
Topos, 104

Elementary topos (Definition 1), 104
Elementary topos (Definition 2), 104
Elementary topos (Definition 3), 104
properties, 116

Triangle identities, 34

Universal arrow, 21
Universal element, 19
Universal mapping property, 19

Von Neumann hierarchy, 5

Weakly initial set, 82
Whiskering, 33

Yoneda embedding, 16
Yoneda lemma, 13

contravariant, 16

IMTA-RR-2019-01-SC 125/127

Index

Symbols
V Adjunctor of two functors � a * . 26
C /� Slice category over � . 106
(� | �) Comma-category . 82
Cones (�) Category of cones from � . 71
Cocones (�) Category of cocones from � . 68
Colim (�) Colimit of the diagram � . 66
Δ simplex category . 42
Δ0 augmented simplex category . 42
Δ Diagonal functor . 65
�� Exponential functor . 50
�� Exponential . 50
Y Counit of an adjunction � a * . 30
5 ∗ Pullback functor . 111
Func (C ,D) The functor category . 8
[Unit of an adjunction � a * . 27
Lim (�) Limit of the diagram � . 71
Nat (�, �) Set of natural transformations � → � . 8
Ω Subobject classifier . 98
1 Terminal object . 53
C

op Opposite category . 7
Π 5 Dependent product . 115
P (�) Power object of � . 100
� +� � Pushout of 5 : �→ � and 6 : �→ � . 63
� ×� � Pullback of 5 : �→ � and 6 : �→ � . 58
%� Product functor . 50
� + � Coproduct of objects . 49
� × � Product of objects . 46
Σ 5 Dependent sum (or composition functor) . 110
SubObjC Subobject functor . 98
SubObjC (�) Subobject category . 95
Sets The category of sets . 3
\�,- The Yoneda natural isomorphism � (-) → Nat (HomC (-,−) , �) . . . 12
∗ The left adjoint of a functor . 23
+_ The _-th set from the von Neumann hierarchy . 5
b�,- The Yoneda natural isomorphism Nat (HomC (-,−) , �) → � (-) . . . 12
H The Yoneda embedding . 16
0 Initial object . 53

IMTA-RR-2019-01-SC 126/127

References

References
[1] S. Awodey, Category Theory, 2nd ed., ser. Oxford Logic Guides. Oxford University Press, Oxford,

2010, vol. 52.

[2] M. Barr and C. Wells, Category Theory for Computing Science. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1998.

[3] K. Kunen, Set theory - An introduction to independence proofs, 7th ed., ser. Studies in logic and the
foundations of mathematics. North-Holland Publishing Company, 1999, vol. 102.

[4] D. E. Speyer, “What’s a reasonable category that is not locally small?” Question asked by aorq,
replied by David E. Speyer; last accessed: 08-november-2018: https://mathoverflow.net/questions/
3278/whats-a-reasonable-category-that-is-not-locally-small, 2009.

[5] S. MacLane, Categories for the Working Mathematician, 2nd ed., ser. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1998, vol. 5.

[6] E. Riehl, Category theory in context, 1st ed. Cambridge University Press, 2014.

[7] T. Leinster, Basic Category Theory, ser. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2016, vol. 143. [Online]. Available: www.arXiv.org/abs/arXiv:
1612.09375

[8] A. Grothendieck and J. L. Verdier, Théorie des Topos et Cohomologie Etale des Schémas (Séminaire
de Géométrie algébrique IV-1), 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1972, vol. 1.

[9] M. Barr and C. Wells, Topos, triples and theories, 2nd ed., ser. Reprints in Theory and Applications
of Categories. Springer-Verlag, New York, 2005, vol. 12.

[10] S.MacLane and I.Moerdĳk, Sheaves inGeometry and Logic, 1st ed., ser. Universitext. Springer-Verlag
New York, 1994.

IMTA-RR-2019-01-SC 127/127

https://mathoverflow.net/questions/3278/whats-a-reasonable-category-that-is-not-locally-small
https://mathoverflow.net/questions/3278/whats-a-reasonable-category-that-is-not-locally-small
www.arXiv.org/abs/arXiv:1612.09375
www.arXiv.org/abs/arXiv:1612.09375

OUR WORLDWIDE PARTNERS UNIVERSITIES - DOUBLE DEGREE AGREEMENTS 3 CAMPUS, 1 SITE

IMT Atlantique Bretagne–Pays de la Loire – http://www.imt-atlantique.fr/

Campus de Brest
Technopôle Brest-Iroise
CS 83818
29238 Brest Cedex 3
France
T +33 (0)2 29 00 11 11
F +33 (0)2 29 00 10 00

Campus de Nantes
4, rue Alfred Kastler
CS 20722
44307 Nantes Cedex 3
France
T +33 (0)2 51 85 81 00
F +33 (0)2 99 12 70 08

Campus de Rennes
2, rue de la Châtaigneraie
CS 17607
35576 Cesson Sévigné Cedex
France
T +33 (0)2 99 12 70 00
F +33 (0)2 51 85 81 99

Site de Toulouse
10, avenue Édouard Belin
BP 44004
31028 Toulouse Cedex 04
France
T +33 (0)5 61 33 83 65

© IMT Atlantique, 2019
Imprimé à IMT Atlantique
Dépôt légal : Juillet 2019

ISSN : 2556-5060

http://www.imt-atlantique.fr/

	Basic notions
	Yoneda lemma
	Universal elements, universal arrows, representations
	Towards adjunctions
	Zoo of adjunctions
	What is the difference between an adjunction and an equivalence of categories?
	An example of adjunction: inverse image of a function
	How long can a chain of adjoints be? Part 1: a chain of five adjoints
	How long can a chain of adjoints be? Part 2: a chain of adjoints for any odd integer
	How long can a chain of adjoints be? Part 3: an infinite chain of adjoints
	A logical adjunction
	Forgetful and free functors
	Other simple examples
	A last word on adjunctions

	Objects with some universality in them
	Your only colimit is yourself
	Limits and adjunctions
	Monads
	Sets-like categories
	Elementary topoi
	Presheaves, sheaves, sheaf topoi
	David's riddles
	To do
	Index
	Symbols
	References

