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ABSTRACT

Some historical musical instruments are still played today, and are prone to be affected by mechanical wear of
superficial varnishes in direct contact with the musicians. In a previous work, an ad-hoc monitoring plan for
historical violins, that involves the use multiple non-invasive analytic techniques, achieved good performance.
However, the high number of techniques is a limitation if we want to perform frequent checks. In this work,
our aim is to rely only on UV induced fluorescence images for performing a fast, preliminary check and then,
if a possible alteration is detected, conduct spectroscopic analyses, which are more precise but also more time
consuming. In this study, we explore the a-contrario framework in order to allow for the automatic detection of
significant changes in the superficial varnishes. The difficulty of detecting the changes is represented by the need
to define the significance of a change, in the absence of a ground truth provided by the expert. Tests performed
on samples that simulate the effect of surface alteration during time show promising results.
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1. INTRODUCTION

Preventive conservation is a field of research that focuses on reducing the risk of deterioration of artworks, with
the final goal to minimize interventions on them.1 Historical musical instruments are a very unique kind of
artifacts, since they are both preserved in museums and still played today, leading to a risk of mechanical wear of
superficial varnishes in direct contact with the musicians. A previous work2 proposed an ad-hoc monitoring plan
for historical instruments that involves the use of multiple non-invasive analytic techniques such as UV induced
fluorescence (UVIFL or UVF) photography, colorimetric measures, XRF and FTIR spectroscopic analyses. In
that study, two important violins were analyzed during a six months period: Vesuvio c.1727 (frequently played)
made by Antonio Stradivari and Carlo IX c.1566 (rarely played) made by Andrea Amati. The achieved results
were promising and allowed to monitor possible variations in the optical and chemical-physical properties of the
varnishes. However, the high number of adopted techniques is a limitation if we intend to perform frequent
checks on a larger set of instruments in order to detect the wear in the earliest possible stages. In this paper,
we propose a new approach for searching the presence of variations in violins varnishes using only UVF images.
UVF photography is a well-known non-invasive diagnostic technique, used in cultural heritage field, that allows
to see details not perceivable using visible light.3,4 This is due to the properties of different materials used in
artworks that react to UV-A light (315 - 400 nm) and re-emit radiations in the visible wavelength (400 - 700 nm),
producing characteristic fluorescence colors.5 Since the UV radiation only reaches the most superficial layers
of a surface, UVF photography alone cannot be conclusive, but can give us some hints about the presence of
color variations due to materials modifications. Our goal is to use UVF image processing as a preliminary fast
examination of the surface of a violin and then, only if a possible alteration is detected, perform spectroscopic
analyses (punctual examinations, more precise but also more time consuming, that can give information about
chemical elements presence and organic and inorganic compounds6). It is important to stress that this problem
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is different (and complementary) from monitoring the evolution of regions already worn out.7 In preventive
conservation we want to detect the very early stages of an alteration even in areas where the varnishes are still
present. Thus, we are interested in the detection of the smallest alterations that may occur on the surface of an
instrument after a period of use.

The data input for our analysis is a change map for which the domain is a sub-region of the specimen (provided
by an expert), and where change values are three-dimensional vectors defined in an adapted color space (i.e.,
HSV). The difficulty of detecting the changes is represented by the need to define the significance of a change,
in the absence of a ground truth provided by the expert. Since it is not feasible to characterize directly the
behavior of the target pixels (related to a possible alteration), the prior knowledge regarding the evolution of
their appearance is very imprecise, and it is more effective to model the background data rather than to model
accurately the category of interest.

In this study, we explored the a-contrario framework to allow for automatic detection of significant changes
in the superficial varnishes. Since the seminal articles of Desolneux et al.,8,9 detection approaches based on the
Number of False Alarms criterion (NFA) became more and more popular in the field of image processing. In
these approaches, the notion ‘a-contrario’ refers to the fact that detection is performed by contradicting a ‘naive’
model that represents the null hypothesis (H0) in statistical decision theory. By defining a measurement of
deviation relatively to the naive model, the main asset of such approaches is their independence from threshold
parameters, as they cast the detection as an optimization problem by maximizing the significance defined from
deviation.

2. DATA PREPROCESSING

It is assumed that each sample in our series of violin surface photos has been acquired months apart from the
others. Human errors in positioning the specimens lead to unavoidable differences in the appearance of the area
of interest. Furthermore, aging equipment can produce different output from before. Therefore, it is necessary
to account for these changes and to match as accurately as possible each time frame with the original image.

While the same illumination hardware setup and configuration are used during each capture, it is still possible
for global or local differences to persist. To compensate the global variation problem, a robust approach which
is effective as long as changes remain small, as in our case, is to equalize the average gray level pixel values of
each frame, i.e. subtract the difference between average of two frames from the second frame:

Ī2(p) = I2(p)− [µ(I2)− µ(I1)]

Additionally, the other components of the setup - camera, sample holder and the sample itself - may have
slight movements and introduce mismatches between frames. Therefore it is necessary to perform a spatial
registration step as well.

2.1 Spatial registration

In order to spatially match the samples, we rely on extracting and matching SIFT10 features in the original image
and also in the subsequent frames. Many approaches exist for registering deformable objects performing general
transformations,11,12 however our captures have been performed on a rigid object in a controlled environment.
Although some residual rotations may subsist, the transformation for each image pair may be approximated
using small translation and scaling components (the proper alignment of the samples with respect to the imager
is easier to perform during the capturing process). Figure 1 shows the detected SIFT features in a sample pair
of images and the result of registration. The figure also illustrates pairs of matched features which are, in our
case, very tightly coupled. These matched points are used in the next step to estimate a proper transformation
between the two frames using a robust estimation method.13

After estimating the right transformation from the matched features and applying it to the moving image we
assume that the alignment is achieved at pixel level. Although errors in registration may persist, this assumption
is sufficient for the following process given the expected scale change.



(a) (b) (c)

Figure 1: An example of spatial registration: (a) matched SIFT feature points; (b) difference of two frames
before registration; (c) difference of two frames after registration. Brighter locations indicate higher differences.

2.2 Difference map computation

The previous assumption allows us to compute a difference map between each frame and the original (at time
zero) frame. From now on, we will refer to the first frame as t0 and other subsequent frames as ti.

The difference map between t0 and ti is created by computing the color difference between the corresponding
pixels. We have utilized the CIEDE2000 formula14 after transforming the RGB values into the CIELAB color
space. Then, the resulting values have been normalized in order to fit into the [0, 1] range.

It is worth noting that other approaches may also be used to create the difference map for the rest of the
detection process, from a simple euclidean distance between RGB values to more complicated color difference
models.15 However, in our case the employed difference provides consistent results which are in agreement with
the expected wear areas.

3. WEAR DETECTION

In order to instantiate the a-contrario perception concept through a NFA criterion, two elements have to be
defined: the ‘naive’ model that represents the statistics of the model to reject (the H0 hypothesis) and the
feature on which these statistics apply. Both depend on the considered data. However, since the naive model
represents the absence of structure, we can choose it as representing the wide spreading of the samples, so that
it will be rejected once the observations appear unlikely close with respect to the naive model.

Dealing with change detection, the decision of a change is due to the observation of a surprisingly high density
of differences within local features. Such a definition can be interpreted as gathering two criteria: at pixel scale,
high differences in feature images and, at region/area scale, high density of previously detected ‘high differences’.
In other words, we propose a two-step approach that firstly detects seeds as pixels likely to belong to a change
area, and secondly detects dense areas of seeds. For each step, we use a NFA criterion to perform parameter-free
decision.

3.1 Seed detection

Starting from the color difference image ∆I (Section 2.2) defined on the pixel domain P ⊂ N2, we consider the
naive model Mcol to derive the set of seeds, called S ⊆ P, representing the pixels likely to belong to the altered
areas. Specifically, denoting by |X| the cardinality of a set X,

Definition 1 (Naive modelMcol). The image ∆I is a random field of |P| independent centered Gaussian
variables N

(
0, σ2

)
.



According to Mcol, the distribution of the sum of the squared values (SSV) on a subdomain D ⊆ P,

υD =
∑
s∈D [∆I(s)]

2
, is a χ2 law with |D| degrees of freedom. Then, the probability PMcol

(υD, σ) of observing a
SSV lower than υD by chance is given by the regularized incomplete Gamma function, and the Number of False
Alarms associated to a subdomain D having υD SSV is16,17

NFA1 (D, σ, |P|) = |P|
(|P|
|D|
)
PMcol

(υD, σ) (1)

where
(
a
b

)
is the binomial coefficient.

Then, minimizing NFA defined by Eq. (1), the result depends on the parameter σ that controls the noise
level in Mcol. In this case, similarly to prior work,16,17 it is computed by calculating the second moment of the
image: σ2 = E(x− µ)2 where µ is the statistical mean of the pixel values of the image ∆I.

Let us D̂ = argminD⊂PNFA1 (D, σ, |P|). Since the naive model represents the inconsistency in the data, D̂
is the set of pixels that are ‘surprisingly’ structured (with respect to the previous violin image) under the naive
model assumption Mcol, i.e. the pixels presenting ‘surprisingly’ low ∆I values, so that the set of seeds S is the
complementary of D̂ with respect to set P: S = P \ D̂.

3.2 Wear area detection

Then, having derived S and represented it under the form of a binary image, we aim to detect the most significant
cluster(s) of seeds. In this study, we compare two approaches: the first one assumes a parametric geometric shape
of the altered areas (e.g. rectangular tiles, strips, rings, etc. like in Le Hégarat-Mascle et al.18), while the second
approach considers a general shape clustering scheme proposed in Desolneux et al.9

In both cases, the considered naive model Mbin represents the absence of spatially consistant subset(s) of
seeds. Specifically,

Definition 2 (Naive model Mbin). The set of seeds S is a random set of |S| independent uniformly
distributed variables over the image lattice P.

Under uniform distribution model Mbin, denoting by pO, the prior probability that a seed belongs to a
parametric object O, the probability PMbin

(pO, |S| , κ) of observing κ seeds within o by chance is given by the
tail of the binomial distribution, and the Number of False Alarms9 is

NFA2 (pO, |S| , κ) = Ntest
∑|S|
i=κ

(|S|
i

)
piO (1− pO)

|S|−i
(2)

In the previous equation, pO is estimated by the ratio between the area of object O with respect to the whole
image area. Note the slight difference with a NFA like in19 derived assuming a Bernoulli distribution of parameter
p for pixel binary values, so that the probability to have a given number κ of seeds among a given number ]O
of pixels is a Binomial distribution of parameter p and NFA2 (p, ]O, κ) = Ntest

∑]O
i=κ

(
]O
i

)
pi (1− p)]O−i, with p

approximated by the ratio between the seed and the pixel numbers and ]O the pixel number of object O.

In the case of a clustering approach, instead of constraining the object in terms of parametric form, a thick
low resolution curve free of any seed and surrounding the object is required. Thus, denoting by C a cluster, its
relative area a(C) with respect to the whole image area is also the probability of a seed to belong to C under the
naive model Mbin, whereas the probability of a seed not to belong to C is 1− a(C)− a(δC), where a(δC) is the
relative area of the empty thick low resolution contour surrounding C. Transposing Desolneux’ formula9 with
our notations,

NFA2 (|C| , |S| , a(C), a(δC)) = Mtest

∑|S|
i=|C|

(|S|
i

)
[a(C)]i [1− a(C)− a(δC)]|S|−i (3)

In Eq. (2) and (3), Ntest and Mtest are the numbers of tests that controls the average number of false alarms.20

Conversely to the case of the first NFA (cf. Section 3.1), here, like in Desolneux et al.,9 we take these numbers
constant for a given image, i.e. independent of O of C, so that it is not involved in NFA minimization.



(a) A synthetic input example (b) Circular area detection (c) Rectangular area detection (d) Cluster detection

Figure 2: A test run for change area detection: (a) a noisy, synthetic image used as input; (b) shape constrained
change detection (circular area); (c) shape constrained change detection (rectangular area); (d) cluster density
based area detection.

Numerically, each cluster C is formed by traversing the minimum spanning tree created from the seed points
S. Then using Eq. 3, for each cluster we compute the meaningfulness(equation 4). Finally, the wear areas are
separate clusters with maximum meaningfulness.

S (|C| , |S| , a(C), a(δC)) = −log(NFA2 (|C| , |S| , a(C), a(δC))) (4)

Figure 2 illustrates a simple synthetic example. A noisy binary image with a patch of higher density noise is
given to the algorithm as an input. The higher density patch has been recognized as a meaningful cluster.

3.3 Implementation considerations

Assuming that each frame ti have around 250k pixels, computing and minimizing the first NFA (Eq. 1) is
a demanding process. We have used special 20 digit numbers to have enough precision for this computation.
Furthermore, for the minimization process it is more efficient to compute the log(NFA). Also, for the second
NFA (Eq. 2), we have used the Hoeffding approximation21 in order to compute the logarithm more efficiently:

−log(NFA2((|C| , |S| , a(C), a(δC))))) ≈ |S|
[
|C|
|S|

log

(
|C|

|S| ∗ a(C)

)
+

(
1− |C|
|S|

)
log

(
1− |C| / |S|

1− a(C)− a(δC)

)]
(5)

In case of unacceptable performance problems, it is possible to resize the difference map to a more manageable
size. In our case, an image of roughly 250k pixels gave us acceptable running time for the algorithm, more precisely
approximately 20 seconds for the seed detection and 30 seconds for the clustering on non-optimized MATLAB
implementations.

4. EXPERIMENTAL RESULTS

4.1 Construction of a gradual wear dataset

Since, at the moment, we have only few multi-temporal images of historical violins (further acquisitions will
require several months to be significant), we created and artificially worn out a sample in laboratory for increasing
our test dataset. First, the wooden sample was varnished by a violin maker in the same way adopted for a violin.
Then, for simulating the effect of mechanical wear and of sweat (the most common sources of alteration), we
scrubbed the sample surface using a cloth with a single drop of alcohol on it. The process was repeated twenty
times to mimic the effect of a gradual alteration during a long period of time. At each step we took a UVF photo
of the sample using the same protocol that we adopt for violins.22 Only the left side of the sample was altered,
maintaining the right side intact as reference. A series of UVF photos of the unaltered wood sample was taken
before to start the alteration to record the initial conditions.



4.2 Wear detection using constrained shape primitives

Detection with shape primitives (in our case tiles and rings) has been performed on the 20 images of the altered
sample when they are compared to the original unaltered surface. Figure 3 shows the result of the detection on
four of these frames (t1,t6,t9 and t15), selected in order to highlight the performance on various levels of wear. In
each case, significant clusters have been identified using rectangular tiles or circular disks and highlighted with
a bounding rectangle or circle respectively.

(a) t1 (b) t6

(c) t9 (d) t15
Figure 3: Result of the tile and circular detection in each frame ti when compared to t0.

4.3 Wear detection using clustering

(a) t1 (b) t6

(c) t9 (d) t15
Figure 4: Four most meaningful clusters in each frame ti when compared to t0.



We have also applied the cluster detection process discussed in Sections 3.1 and 3.2 on all 20 images in the
dataset. In each case, we have chosen four clusters based on the highest meaningfulness values (Eq. 4). Figure 4
shows the result of the algorithm for four of these frames: t1,t6,t9 and t15. In each image, the clusters have been
identified by a loose contour and the ranking of the cluster is shown by the number beside it. As it is evident,
all major cluster have been correctly detected. Also, it is clear that the detection have completely ignored the
noise and smaller artifacts appearing in the image.

As mentioned in Section 4.1, in both detection methods we are mainly interested in the left side of the sample,
as it is the area where the change in varnish should appear. All four frames show signs of change in that area and
as expected, this area keeps growing in subsequent frames. It is worth mentioning that although other relatively
big clusters have been detected, they will not be considered as a worn out area since their area is constant across
multiple frames. These change regions occur mainly due to the reflected UV light from the edges of the sample
or unvarnished areas.

4.4 Discussion

The solution we propose aims to perform in a automated fashion a low-level detection, followed by a higher-level
search for a pattern bearing evidence for the instrument wear. While the interest for the first step presented
in Section 3.1 is clear in light of the very fine difference values observed as the wear progresses, for the second
detection (Section 3.2) there is clearly a trade-off between the computational cost and the expressiveness of the
pattern. Irrespective of the target configuration to be detected, we underline the fact that one of the advantages
of this approach is to account for wear cues across a sub-domain of the image without relying necessarily on a
strong connectivity prior of the seeds creating the pattern.

In terms of computational cost, the cluster detection process treats each seed as an independent point with
respect to the others. Since in our application, the changed cluster will most likely be a dense grouping of points,
it would be beneficial to consider each connected component as an individual node in the minimum spanning
tree employed by the clustering algorithm. This way, we could decrease the number of clusters to check and
benefit overall from a more efficient process.

5. CONCLUSION

In this work we studied the problem of temporal monitoring for the presence of alterations in the superficial
varnishes of historical violins, using only UVF images. Our goal is to assess the feasibility of a quantitative
solution for an early detection of alterations in the absence of ground truth data provided by experts. Extensive
testing performed on samples that simulate the effect of surface alteration during time show that the detection
process may be automated and that it is able to pinpoint changed areas from early stages of wear.

For future work, we intend to study avenues for improving the computational cost of the seed clustering.
Besides, we aim to extend the seed detection process (Section 3.1) in order to assist as well with making a
decision between various color difference approaches for creating the difference map. The same process can also
help in finetuning the spatial and radiometric registrations.
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