
HAL Id: hal-02189977
https://hal.science/hal-02189977

Submitted on 20 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MASK : An AEIO Toolbox to Design and Build
Multi-Agent Systems

Michel Occello, Christof Baeijs, Yves Demazeau, Jean-Luc Koning

To cite this version:
Michel Occello, Christof Baeijs, Yves Demazeau, Jean-Luc Koning. MASK : An AEIO Toolbox to
Design and Build Multi-Agent Systems. Knowledge Engineering and Agent Technology, IOS, 2004.
�hal-02189977�

https://hal.science/hal-02189977
https://hal.archives-ouvertes.fr

MASK: An AEIO Toolbox to Design
and Build Multi-Agent Systems

 Michel OCCELLO, Christof BAEIJS, Yves DEMAZEAU, Jean-Luc KONING

 LEIBNIZ-IMAG-CNRS,

46 Avenue Félix Viallet, 38031 Grenoble, France
http://www-leibniz.imag.fr/MAGMA/

Abstract. This article presents a development platform for designing and building
multi-agent systems called MASK. The platform is organised along a set of four
toolboxes, each of them covering one aspect of the AEIO (or “VOWELS”)
approach. This approach decomposes a multi-agent system into four different
bricks: the agents (A), the environments (E), the interactions (I) and the
organisations (O). The MASK platform offers for each of these basic entities the
possibility to reuse existing models and software components, as well as the
possibility to design and build new ones. Throughout this article we present the
existing models for the AEIO bricks, we show how they have been integrated in the
MASK development platform, and we partly illustrate our AEIO toolbox approach
with a concrete example in collective robotics.

1. Designing and Building Multi-Agent Systems

1.1. A MAS platform

MASK (Multi-Agent System Kernel) is a software package to design and build multi-agent
systems. This toolbox is used after the analysis stage in which the conceiver works out a
detailed solution without taking into consideration the resources eventually required. Multi-
agent analysis consists in breaking up a problem into a multi-agent solution. It attempts to
specify conceptual agents and determines their skills and knowledge. The analysis phase
can be tackled starting from the agents, the interactions, the organisations or the
environment. The design stage's purpose is then to lead to an implementation of the
envisioned application and to choose how to make the chosen models operational. Multi-
agent-oriented design aims at building a Multi-Agent System (MAS) once what the agents
have to do is known. A design approach is meant for leading to an operational MAS, i.e.,
integrating the agents, environment, interactions, and organisation within a MAS starting
from the global specification drawn from the analysis stage. The main goal of the MASK
platform is to provide the multi-agent system designer with a number of utilities packages
embedded in a single software environment.

1.2. An AEIO kernel

MASK (Multi-Agent System Kernel) is the first software package associated to the AEIO
(or VOWELS) [1] [2] approach. The MASK platform (cf. figure 1) is composed of
packages covering different aspects of the multi-agent paradigm:

• The Agent package provides the user pre-defined agent models or allows the definition

of new ones.
• The Environment package provides the user functions to define and to work with a new

(simulated) environment, or allows the user to use pre-defined ones,
• The Interaction package is responsible for providing functions to use interaction

mechanisms.
• The Organisation package provides the user functions to establish the whole

organisation of a multi-agent system.

Figure 1: MASK general structure

For each of the MAS notions, the specification can be separated into declarative and
operational parts. Declarative parts consist of static knowledge about the agents, the
environment, the interactions, and the organisations; it is specified according to the nature
of each concept. Dynamic features, such as exploitation of knowledge processes or

MAS Instance

Designer

Declarative Design Part (Interactive Tool)

AGENT
TOOLBOX

Agent

Internal
Software

Architecture

ENVIRONMENT
TOOLBOX

Environment

Perception and
Manipulation

Primitives

INTERACTION
TOOLBOX

Protocol

Operating
Primitives

ORGANISATION
TOOLBOX

Organisational

Knowledge
Operating
Primitives

Operational Design Part
(Code Writing)

Local Level
Communication

Remote Level
Communication

Internal Agent Communication

Protocols and
Organisation
Exploitation

Inter-Agent
Communication

Perception and Action
Communication

decision-making processes, are defined as primitives manipulating declarative data. Each
of the four packages supply the following features:

• Editors to define new models of the agents, environment, interactions and

organisations,
• Editors to create declarative parts of interactions and organisations,
• Editors to create declarative parts of agents and to integrate interactions, environment

and organisation capabilities,
• Libraries to support operational parts of the agents’ capabilities

MASK allows building independently each of the basic elements contributing to the
operational MAS, according to the different types of approach adapted to the MAS nature.
(reactive or cognitive, situated or not ...).

1.3. An open toolbox

A diversity of domains and problems can be addressed using MAS. This diversity does not
allow to reasonably think that a single model will satisfy every single requirement. This
diversity implies to use a big variety of models for agents, environments, interactions, and
organisations:

• Libraries to support operational parts of the agents’ capabilities
• BDI, reactive, cognitive or hybrid agents,
• Signals, stimuli, forces, messages with or without protocols or conversational

interaction,
• Social or functional organisations,
• Spatialised or not, symbolic or numeric environments.

In each category, we can find several architectures especially suited to solve particular
problems. Models can be combined in a variety of ways; the same agent model, being able
to involve a set of interaction models, may be necessary for a given application. Choosing a
toolbox approach seems thus a better alternative to build systems where components are
seen as active cohabiting entities. Our approach is an alternative to a unique customisable
multi-function model: it privileges a “multiple unique paradigm models” versus a “unique
multiple paradigm model”. In terms of the development tool, this idea leads to a very open
software environment with which a user can define models developed on demand for a
particular problem. The platform is thus in perpetual evolution, and each toolbox is
enriched regularly by the integration of new models. For each additional model, the
designer must specify with which models of other toolboxes it can be combined. The
designer builds the different elements in the order he prefers. The agent (society) window
proposes, through the building process of the agents, the integration of the other boxes. In
some cases (for example, in a reactive approach when agents are very numerous) the agent
building task can be automated. The MASK concept is very powerful as it is completely
open and constantly evolving. Up to now a quite reduced set of the available and existing
models is installed in the platform:

• (A) : an hybrid agent model ASTRO, a reactive agent model PACORG

• (I): an interaction by message model ILAPI, a force model PACO
• (O): a meta-model of organisation RESO.

New models are currently developed and are going to be integrated, such as a
conversational interaction model (I), SMAM a minimal multi-agent model (O), or MID a
dynamic interaction model (I).

2. Environments Interactions Organisation Agents

In the following sections, we describe the different toolboxes embedded in the current
MASK platform. For each of them we introduce the models behind these basic bricks as
well as the operational entity that has been included in our multi-agent system development
platform.

2.1. The Environments Toolbox

The environment toolbox is currently certainly the most poorly populated and furnished
part of the toolbox of the MASK development platform. The fact that in its actual shape
this toolbox is left empty, can be explained by several reasons. First of all, the MAGMA
group has not yet conducted any theoretical research on the environmental aspects of multi-
agent systems. Furthermore, we do believe that the modelling of the environment highly
depends on the application domain. Therefore, as we do not believe in some kind of
universal multi-agent system independently from an application and problem domain, the
environment can often be considered as the carrier of the data expressing the problem to be
solved. This implies that the environment can have its own dynamics and its proper
(passive – from a multi-agent perspective) entities. Although there is no environmental
model explicitly present in the MASK platform, the instantiated and used environmental
model is always present in the resulting multi-agent system but entirely conceived by the
designer of the system. The resulting and instantiated model of the environment, in the
current set of our applications, spatialised (or spatially grounded in a referential system)
and provided with a (most often Euclidean) metrics.

2.2. The Interactions Toolbox

2.2.1. Interactions between Cognitive Agents

2.2.1.1 The IL Interaction Language

As pointed out in [3], if communication is solely described in terms of sending and
receiving messages, each agent must be able to infer what the sender intended when
uttering a message. If the messages are not structured, this inference could be inefficient.
Thus, formal restrictions bind messages that should be structured for the ease of
interpretation. As an example, one may employ message types in order that the intention of
the sender could be immediately recognised from the message itself. This naturally leads to
distinguish between the Communication Language and the Knowledge Representation
Language. The former mainly translates the message from the point of view of distributed
systems. The latter surely carries at least the multi-agent domain knowledge (Multi-agent
Language) which encompasses, as much as possible, the intention of the sender, but also

includes the Application Domain Language (e.g., an Application Language for Computer
Vision [4]). Our common Interaction Language introduced in [1] defines the common
vocabulary and its semantics within the system. Its purpose is to support the information
exchanges, called interactions between the agents. The interactions are exchanges of
actions, plans, goals or hypotheses corresponding to the type of information handled within
the individual control model. Interactions comply with the following syntax:

<interaction> ::= <communication> <multi-agent> <application>

The Communication Language. The Communication Language consists of different
fields used by the communication layer of the system.

<communication> ::= <from> <to> <id> <via> <mode>

The fields are the receiver (from) and the sender (to – the content of this field is an agent’s
identity or the keyword broadcast) of the message, the identity of the message (id), the type
of communication channel to use (via – in some communication systems, several kinds of
communication channels are available: one for the emission of a large amount of data, and
another one for message passing), and the mode of communication (mode – that is
synchronous or asynchronous). This layer of the system is usual. It enables to specify the
communication medium.

The Multi-agent Language. It appears quite clearly that, at a given level of meaning, the
complexity degree of the interaction protocol – and thus, the complexity of the Multi-agent
Language – is inversely dependent on the development degree of the Application Language
that is used by the agents to interact within the Multi-Agent System. As we want to adopt a
simple Application Language, like a first-order one, that will be adequate for particular
domain like the robot cooperation one. We will focus here on a quite complex Multi-agent
Language that will lead to complex interaction protocols. Our multi-agent language,
gathers all the information related to the multi-agent system. It is used by the dialog
functions of the agents. There are three kinds of information : the type, the strength, and the
nature of the interaction.

<multi-agent> ::= <type> <nature> <force>

 As for the type of interaction, we have adopted the primitives proposed by G. Gaspar [5] to
define the message. They consist of the four possibilities: (present, request, answer or
inform, the first one enabling an agent to enter a society and to present to the others), which
ensures the openness of the system. The last three ones have a quite trivial meaning and
will not be detailed here. The nature defines on which agent control layer the content of
the interaction has to be taken in account by the receiver, and forecasts three alternatives:
decision layer (e.g. goals), command layer (e.g. actions) and observation layer (e.g. facts or
hypotheses) [4]. According to us, such a nature field has to be defined independently from
the agent model as much as possible. However, it is obviously necessary to know the
structure of all agents in order to adequately fill out this field. The strength defines the
priority of this information. We borrow its possible values from the Speech Act Theory [6]
: going from commanding (highest priority) to mere informing (lowest priority). This
grading can be refined, and in fact, we have adopted the sets of labels described by

Campbell and d’Inverno [7] as a basis. From their set of tones, we have extracted a subset
that is suited for the different kinds of exchanges we are considering. They allow
expressing the following intentions: information seeking, informing, warning, advising,
bargaining, persuading, commanding and expressing. This information enables the agent to
be informed of the intention the other agent had while sending the message. In this way,
one can associate a confidence factor to the received information. These tones also allow
explicit control of the information exchanges. This is illustrated for example with the
bargaining tone, forcing an agent to answer and to close the communication. Let us point
out that one can guarantee the receiving and handling of any message sent by restricting the
communication language possibilities, which is very important. As a matter of fact, it
amounts to position the strength of a message to its maximal priority, depending on the
relative agents’ roles within the society. If the sending agent dominates the receiving one,
the interaction will be interpreted as an order to obey by the receiver. In order for a
message to get interpreted as an order it is necessary that the sending agent be in power to
give such order, from a social standpoint. In other words, the strength associated to a
message ought to present no antinomy with the role of the agent assembling the message.

The Interaction Protocols. The usage of the multi-agent language enables each agent to
extract explicitly from the meaning of the message some information that is useful for the
control of the information exchange and for the control of the whole society. Decoupling
the intention of the sender from the message itself is a first step but is not enough, since the
agents also ought to know how to react to a message, or what to expect after sending a
message. All these requirements should be met collectively by a unique framework. We
call such a framework for structuring interactions among agents “Interaction Protocols”.
Each type of message in a multi-agent language is in fact associated with a distinct “basic
protocol” that could be chosen by the receiver from the type of message, as presented in
Burmeister’s paper [8]. When talking about “Interaction Protocols”, we mean that we add a
set of protocols that comes to restrict the different interactions an agent can link with other
agents with regards to some problem to solve.

An Interaction Protocol Example. As an illustration let us exemplify this with a learning
protocol taken from [9] where tentative hypotheses are inferred by individual agents
through the use of some induction on examples of events occurring in their environment.
These tentative hypotheses are treated as opinions of individual agents, and interactions
among them aim at finding the most consistent form of the hypotheses.

Details of the principle components of Sian's model are left out for brevity. We only
rapidly detail the cooperation part that leads to implementing an original and simple
negotiation formalisation. Sian defines nine operators available to agents and limits their
use by imposing a possible sequencing among the message types

An interaction either begins with the proposition of a new hypothesis to all other relevant
agent ("propose") or a non-modifiable assertion ("assert") imposing the agent's viewpoint.
In this latter case there's no other choice for the concerned agents than to accept the current
hypothesis ("accept"). To the "propose" operator the responding agents can enter in a
"modify"-"propose" loop or either "confirm", "disagree" or have "noopinion" about the
current hypothesis. A confidence factor is computed for each use of an operator.
Depending on this factor the hypothesis is "agreed" on or "withdrawn" from the agents

databases. To become fully accepted such a hypothesis should be accepted by any single
agent.

The corresponding interaction protocols could be written in the following manner:

Protocol proposal {
 state init {
 [inform(broadcast) (Information_seeking) (matter=propose, rule) ->
state opinion]; }
 state opinion {
 [inform(broadcast) (Information_checking) (matter=modify_into, rule,
new_rule) -> state init] |
 [inform(broadcast) (Expressing) (matter=confirm,rule) -> state
decision] |
 [inform(broadcast) (Expressing) (matter=disagree,rule) -> state
decision] |
 [inform(broadcast) (Informing) (matter=noopinion,rule) -> state
decision]; }
 state decision {
 [inform(broadcast) (Warning) (matter=withdraw, rule) -> state end] |
 [inform(broadcast) (Expressing) (matter=agree, rule) -> state
agreement]; }
 state agreement {
 [inform(broadcast) (Expressing) (matter=accept, rule) -> state
agreement]; }
 state end {
 [end]; }
 }

Protocol assertion {
 state init {
 [inform(broadcast) (Commanding) (matter=assert, rule) -> protocol
proposal state agreement];
 }
 }

2.2.1.2 The IL Interaction Toolbox

The previous section has showed how communication among agents can be structured. The
present section presents an application-programming interface for IL called ILAPI. ILAPI’s
first goal is to contribute in the development of the multi-agent system design platform
MASK by providing its interaction toolbox that will then be used in the implementation of
numerous applications. The next section will show a concrete application with the contract
net protocol. ILAPI satisfies various criteria such as portability, extensibility, generic and
simplicity. First, it allows for the development of heterogeneous agents without the taking
into account of this communication medium. One needs to be able to change the
communication medium without having to change the agent’s code systematically. Second,
since the IL message structure is not fully stable, ILAPI must be adaptable to a future
evolution. Third, ILAPI must allow for the observation of how interactions are handled in
any multi-agent system making use of this toolbox. Fourth, it stay as simple as possible.
One does not thrive for performance whether it is on the communication speed level of the
robustness in case of hardware or software failures. ILAPI is geared at multi-agent system
developers. It offers a standard interface for operating interactions among agents according

to the IL specifications. Functions this interface offer may be gathered into two categories:

• Communication functions: enter a society of agents, send or receive messages, exit the

society of agents.
• Dialog functions: create an IL formatted message, structure message passing through

interaction protocols.

A third category of functions is forecasted in order to trace the interactions of the system,
which would enable to analyse the interaction protocols as well as study the dependencies
between the agents. In order to implement these various functions categories, ILAPI is
structured into three layers. The ILAPI communication layer handles communication
functions. The ILAPI dialog layer handles dialog functions. The third category is handled
by ILAPI-demonstration. Depending on their needs, agents make use of any of ILAPI’s
layers. In case of porting a multi-agent application to another communication medium such
a structure has the advantage of having to rewrite only the communication layer. This
complies with ILAPI’s first criteria.

The ILAPI-communication Layer. An agent needs four basic primitives in order to
communicate:

• Connect: declare its presence to the other agents.
• Disconnect: declare its absence to the other agents.
• Send: send a message to a given agent.
• Receive: receive a message from an agent.

The communication layer consists in the implementation of these four primitives along
with the services offered by the layer supporting the communication . In the present case, it
is based on TCP/IP, whose services can be accessed via the socket interface. We chose to
use Java sockets to support the communication with applets to send and receive messages.
Sockets allow the exchange of information assuming that the various processes addresses
are known. However, agents in a multi-agent system can enter and exit the system at any
time. Therefore, a name server is necessary in order to act as an entry point and centralise
the addresses of all the agents present in the system. In order to enter the system an agent
will have to know this name server’s address.

The ILAPI-dialog Layer. The ILAPI-dialog layer corresponds to the set of functions
allowing an agent to format messages and conversations according to the IL specifications.
The extensibility criterion has consequences on the message structure, since such a
structure may vary depending on the application. Handling and operating interaction
protocols has been based on a protocol description language introduced in [10] and
extended in [11]. Such language expounds a universal language that can be used to describe
a set of protocols. It has been shown it is generic enough to describe a number of protocols
that have been presented in the literature. PDL allows for the coexistence of different
versions of the same protocol. This introduces dynamics to the protocols used in the
society, since they can be improved. This language provides a textual representation of the
various transitions accessible from a state of a protocol. Each transition determines the
values to be given to the fields’ type, strength and application of the associated message.
Let us note that this language cannot convey which behaviour to adopt in case of an

absence of answers, or at what time one should consider there is no answer. This behaviour
depends on the agent. Agents refer to files holding the protocols’ textual descriptions in
order to adapt their behaviour. In order to handle these protocols an agent needs the
following primitives: getting a protocol, getting protocol states, getting state transitions.

The ILAPI-demonstrator Layer. The demonstrator layer consists in providing a tool
for graphically handling interaction protocols. Such a tool can also be used for developing
functions such as displaying used interaction protocols as well as dependencies among
agents. This graphical tool enables a user to choose a protocol and to get its diagram
displayed (see section “Monitoring the Information Exchange”). Pieces of information
attached to a transition such as its condition of application, the speech act type, the applied
strength, the content and the ending state.

2.2.2. Interactions between Reactive Agents

Instead of considering the search for a solution for a given problem as some kind of
optimisation – minimisation – of a global energy function, the PACO paradigm [12]
proposes to model this search as the co-evolution of a finite set of agents. Each agent
represents an entity that takes part to a partial solution of the global problem to be solved,
although none of them knows when this global solution has been reached as only an
external observer is able to detect this overall solution – or stability state – at the MAS
level. Usually, interactions between PACO agents are modelled as forces determining the
displacements of the agents in the environment, the schema for combining these forces
being defined a priori by the conceiver of the multi-agent system. Within the PACO
paradigm, the agents do not hold a representation of themselves nor from the other agents
or the environment, although the agents are able to distinguish other agents form objects
within the environment. A simple modification of the input data (the local environment of
the agents) provokes an immediate reactivation of the agents searching for a new stable
position, first at the local agent level and by propagation through the interactions at the
society level. This means that the search for an equilibrium state can be considered as being
adaptive. The behaviour of the agents, compliant with the PACO paradigm, is characterised
by a combination of elementary interactions defined a priori. Each type of interaction is
therefore linked to the agent’s capability of perceiving a type of agent or a given object
within the environment. Based on the notion of potential fields, the PACO paradigm
introduces three types of scopes: a perception scope, a communication scope and an action
scope. The perception scope is a reference to what is visible within the environment for the
agent (his local environment). The communication scope determines with which other
agents the agent may eventually start interacting, while the action scope defines the space
in which the agent may move. The explicit and local control of the different scopes by the
agent itself, allows it to constrain the set of possible interactions with the other agents
(communication scope), the environment (the perception scope) or his displacement actions
within the environment (actions scope). The intensity of the perceived information together
with the desire to interact with an other agent or object within the environment (which is
translated by the explicit control of the perception and/or communication scope), fires off,
if permitted by the action scope of the agent, either an interaction with the other agents of
the society or an action in the environment. Typically, the force models instantiated within
the PACO paradigm correspond to models inherited and instantiated from the physics
domain, such as spring forces or attraction/repulsion forces [13].

2.3. The Organisation Toolbox

The organisation toolbox is currently limited to the RESO (Representations of Structures
for Organisations) model [14]. RESO is a generic model and design framework allowing
expressing organisational structures based on the notions of groups and the corresponding
relationships between the entities participating in the organisation. This model integrates
the structural aspects of an organisation, the “organic structure”, linked to the notion of
recursion as expressed in [15], and the relational aspects, expressed in the “interactional
structure”. We define the organic structure of an organisation as the set of relationships that
allow describing the decomposition of an agent (or group) into more elementary agents (at
a lower level of granularity). In order to do so, we have to take into account the recursive
aspect of the structure of the multi-agent system. We recall that for a given level of
granularity, every single entity (agent, group of agents or the multi-agent system itself) of
the multi-agent system can be considered as being a single entity or as a complete multi-
agent system. When creating the organic structure for such a kind of static organisation, the
conceiver of the multi-agent system must have a complete a priori knowledge of the kinds
of agents that are present in the system, as well as the relationships that bind them
(recursion and decomposition mechanisms between the levels). The interactional structure
then corresponds to the set of relationships that enables the designer to set out the
framework within which the agents may interact. This interactional structure is defined by
three kinds of relationships: the acquaintance relation (who do I know), the communication
relation (whom can I communicate with), and the subordination relation (who am I
controlling). In order to link both structures expressing an instantiated organisation, we
combine the interactional and organic structure through the different agent types (or kinds /
roles to be fulfilled within the system). This leads to a two-step process for the designer of
an organisational model using the RESO model and toolbox: first he has to specify the
organic structure (which are the elementary agents, how are they combined into groups),
and then he has to complete his organisational model by instantiating the interactional
structure (who knows who, who can communicate with who, who is controlling who). This
process then leads to an instantiated organisational structure (populated with the actual
agents), as normally called “an organisation”. The RESO toolbox proposes a graphical
interface to specify relationships, and primitives for the exploitation of the organisation
knowledge.

2.4. The Agent Toolbox

2.4.1. Integrating Deliberative and Reactive Capabilities

2.4.1.1. The ASTRO Model

The integration of deliberative and reactive capabilities is possible using parallelism in the
structure of the agents. Separating Reasoning/Adaptation and Perception/Communication
tasks allows a continuous supervision of the evolution of the environment. The reasoning
model of our agent is based on the Perception / Decision / Reasoning / Action paradigm.
The cognitive reasoning is thus preserved, and predicted events contribute to the normal
progress of the reasoning process. ASTRO can be presented as a disintegrated agent [16],
where a functional decomposition in terms of capabilities provides a modular approach to
the model. Decision modules evaluate the importance of the unpredicted events and have

the obligation to place new actions or new goals in the internal state of the agent's
reasoning. New goals imply the activation of the reasoning modules in order to partially or
totally re-plan according to the importance of the event. New actions are placed on the
agenda of actions directly in order to be executed in the specified delay. We now describe
the different modules needed by such a deliberative/reactive agent .

Representation of the World. The central part of the agent is its world model. This model
comprises its knowledge about the environment, the internal states of other agents, and its
own internal state. In particular, the proper internal state includes the plans to be executed
or which the agent takes into consideration. An interpretation process of the sensory data
maintains the model.

Perception and Communication Modules. Evolving in a real world, each agent has to
integrate perception capabilities realised through sensor devices. The perception modules
assemble the knowledge about the environment. Other agents are perceived through
communication modules. Agents can send information about their knowledge of the
environment, their plans, their goals or their current state. Communication modules are
probe loop events waiting for messages from agents. Emitters are considered as actions.

Control Modules. To ensure the reactivity of the agent, an evaluator continuously
examines the world model. Agent control modules detect situations to which the agent
needs to react, evaluate them, and decide to take the appropriate actions which may be to
create, suspend, or kill goals, i.e. to change the context of the planning and executing
process. The continuous supervision of the agent's situation ensures that the agent can react
to unpredicted events at any time. The role of the perception evaluator is rather similar to
the Perceptual Schema Controllers of the AuRa architecture of Arkin [17]. But
additionally, we introduce similar mechanisms to take into account the interactions with
other agents using the interaction protocols proposed by [1]. Triggers and guards can be
control loops observing the world representation or an evaluation function launched by the
occurrence of perception or communication events.

Reasoning Modules. The reasoning process consists of planning, scheduling and
sequencing modules. Whenever a goal is created (or modified) a plan is searched that
realises the goal, this task is realised by planning modules.

We first describe the structure of the agent plans. Each plan has an identifier and an
associated deadline. Execution of the plan requires the execution of several local goals.
Each local goal has an identifier and an associated priority. The execution of each local
goal may be accomplished by executing one of the several alternative actions. Each action
has a duration (the execution time) and a satisfaction value associated to it. Plans related to
a given goal are stored in the part of the architecture concerning the internal state of the
agent. The planner details the action in the order according to which they will be executed.
This process may be guided by hierarchical planning trying to infer the sequence of actions
in a top-down fashion. In simple applications, we may assume that the agent has plans for
every possibly encountered goal and possesses all the necessary actions; the planning
process is in this case reduced to a fast pattern-matching algorithm. For complex
applications, involving more social organisations, agents can negotiate with other agents
about the actions they are not capable of, according to [18]. The purpose of the scheduling

algorithm is to schedule the actions in the first place, to meet the deadline and obtain a
maximal utility value and a maximal satisfaction value. To achieve this, we have
established an algorithm informally described below.

(1) For each plan, make a schedule of all the local goals taking minimal duration. If a deadline is violated at

any stage, abort the plan and exit.
(2) For a local goal with maximal priority from the remaining local goals:

(a) if (action has already started) then go to step (b) else find the action with maximal satisfaction from
the remaining actions

(b) if the deadline is violated due to some new action go to step (a) else replace action with minimal
duration by action with maximal satisfaction

Assuming that actions with higher satisfaction values require more execution time, this
algorithm ensures that a schedule (if it exists) for meeting the deadline with a maximal
satisfaction is made. The actions start executing according to the schedule. Then the highest
priority local goal is taken and a higher satisfaction action is put in the schedule provided
that the action has not already started and that it does not violate the deadline. This process
is continued for the remaining local goals. Therefore, we provide to the agent an immediate
schedule to start actions. Then try to improve it by further iterations, allocating more
resources to actions having more value. At anytime the algorithm has a current valid
schedule. We thus have used a hybrid any time / design to time approach to the scheduling
mechanism. Actions are placed in an agenda. Furthermore, the scheduler has the possibility
to include internal actions, such as replanning or the setting of guard and trigger modules,
in order to be more adaptive at run time. Guards and triggers supply information about the
current situation during the execution phase of the actions. Due to this technique, if the
agent has to act fast, the scheduling and the execution of an incomplete plan can start
before the planning process is completely finished. This ensures adaptation of the agent to
the evolution speed of his environment and is necessary if the agent pursues several goals
at the same time. The committed actions are performed at the scheduled time by the action
modules triggered by the sequencer module (executor).

2.4.1.2. The ASTRO Editor

The ASTRO agent model has been implemented using a real time blackboard architecture.
A parallel blackboard aims at expressing the inherent parallelism of the conceptual
blackboard model [19] as modules react to modifications of the blackboard, for their
activation and inhibition. They work on a local context that is a part of the blackboard data.
A domain blackboard contains domain data (used for the problem solving process). A
control mechanism is in charge of the communication between modules and of the control
of the management of the modules' activity. Control data (summary of the state of the
solution) are stored in a Control Blackboard managed by the control unit. Modules
communicate with the control mechanism through event streams. The control unit sends a
control stream to the modules. The controller manages all the communications. This
blackboard control unit ensures stimulation and inhibition of the modules following their
specifications.

Fig. 2. The ASTRO editor

The behaviour of a module is described through its interactions with the control data, i.e. a
representation of this behaviour is given. This behaviour is managed by message exchanges
with the control unit. A module is integrated in the system by the specification of its
behaviour when faced to the blackboard data. An external specification of the behaviour of
the module can be expressed by an objective, preconditions of activation and interruption
conditions. The control unit receives events from modules and emits control signals to
them. Modules that have all their conditions validated are activated by an activation flow.
Inhibition signals trigger exception processing in the modules. The control unit is
application independent. We detailed and formalised this system in [20]. The different
modules of the agent are organised according to the blackboard model described above.
The model of the world constitutes the domain blackboard. The control unit manages all
modules. This multi-module approach allows a modular and independent description of
each of the action and perception tasks in separate modules. The communication primitives
can be of two types : internal communication (between the control unit and each module)
and inter-agent communication (managed by the model of interaction). The blackboard
kernel has been written in C++ using UNIX communication libraries (cf. figure 2). A
generic tool has been developed in Tcl/Tk. The designer can specify through editors
declarative (using given languages) aspects:

• The description of actions and plans ,
• The description of knowledge on the environment (using the corresponding

Environment Toolbox Editor), on the other agents,

as well as operative aspects (using C++ or an other language supplying UNIX executable
code) :

• The perception and action modules (integrating primitives of the Environment Toolbox

Libraries)
• The interaction modules (integrating primitives of the Interaction Toolbox Libraries as

protocols operating primitives or message exchanges primitives).

2.4.2. Reactive Agents within Organisations

A multi-agent system based on the PACO paradigm complies with the VOWELS approach
as set out in [2]; we can therefore specify this model through its four elementary axes. The
core of the agent model is largely based on the PACO model (for further details we refer to
[12]) and the RESO model as described before. Every agent is denoted by an identifier, his
mass (representing its relative weight with respect to the overall solution), his position,
velocity and acceleration. Every agent controls autonomously and locally a set of scopes
for perception, communication and action. We constrain the set of scopes of the agents by
introducing organisational knowledge (both on the structural aspects and the interactional
aspects, as provided by the RESO model). We use on the one hand this organisational
knowledge to control the communication and perception scopes of the agents through the
use of the acquaintance and communication relationships, and on the other hand, we use
the subordination relationships between the agents to constrain the action of the agents. We
can therefore clearly see that the organisational knowledge within the multi-agent system
(distributed among the society of reactive agents) takes into account the input side
(constraining perception and communication scopes) as well as the output side
(constraining the action scopes). Combining PACO and RESO allows us to model,
conceive and build reactive multi-agent systems with static organisational structure that are
conceived in advance. Using the organisational knowledge is then done through the
structural aspect of the instantiated organisation by using it as a legal framework within
which the interactions between the agents take place.

3. Combination of Models and Dynamics of the System

This section describes the approach we apply to build the MAS through a practical
example. The main point of interest is the way we integrate the interactional and
organisational knowledge in the reasoning process and so realise the dynamics of the MAS.
The mineral extraction collective robotics experiment concerns a simulation of robots
whose mission is to find and extract minerals from a given zone. Robots are of three types
according to their capabilities :

• Exploration robots in charge of the detection of a site containing minerals,
• Drilling robots able to dig the ground to extract minerals,
• Carrier robots moving minerals from the extraction site to the base camp.

None of the robots are able to complete alone the entire task. Co-operation is needed
between different kinds of robots in order to achieve correctly the extraction process. We
can solve the problem by exploiting organisational and interactional knowledge. We
explain how we build the multi-agent system in the following sections.

3.1. Combination of the models

3.1.1. An agent centred phase

3.1.1.1 Scheduling of tasks

The internal aspects of the agent's reasoning process, i.e. everything that the agent would
have to do if he was alone, must be first analysed. It is an agent centred phase and consists
of elaborating a set of plans. The set of actions needed to accomplish the mission has to be
defined. These actions are scheduled without taking external influences related to the work
of other agents into account. This plan expresses the normal progress of the work the robot
has to do for a given goal:

• A plan can include actions aiming to modify the environment or to acquire information

of the environment,
• A plan can include actions for information exchange between agents. It is possible to

define actions the agent will delegate during execution [18],
• A plan can include initialisation of interaction processes with other agents.

In the case of our experiment, we have simple plans to realise goals.

Exploration robots. Goals are Exploration and Request of Extraction. For exploration, the
plan consists of moving the robot until it detects some minerals. The <Perception> action
refreshes a set of indicators on the characteristics of the site. The <Analysis> action
evaluates these indicators and if necessary can create a goal called Detected, which will be
realised by the action <Ask-for-Extraction> initiating an interaction to find an extractor.

• Exploration : <Moving>// <Perception> // <Analysis>

Drilling robots. Goals are Extraction and Request of Evacuation. For Extraction, the plan
consists of moving the robot to the site and to extract the minerals. The <Drilling> can
create a goal called Extraction Failed or a goal called Extraction OK. This last case will
trigger the action <Ask-for-Evacuation> initiating an interaction to find a conveyor.

• Extraction : <Moving>; <Drilling>

Carrier robots. Goals are Evacuation. The plan consists of moving the robot to the site,
loading the mineral and moving back to the base camp.

• Evacuation : <Moving>; <Loading>; <Moving>

Representation of the environment and of the others. In most cases, actions work with
data available in the representation of the environment perceived by the agent. A definition

of perception capabilities is then needed in order to maintain the state of the perceived
environment. In our application, the environment is constituted by the zone map and by site
characteristics (list of indicators used by the <Analysis> action and refreshed by the
<Perception> action for exploration robots, co-ordinates of sites for the other types). In the
case of the delegation of tasks, agents that are able to execute these tasks have to be
specified. A representation of the capabilities of the other agents has therefore to be built.
For each known robot, we can store its type and current localisation.

3.1.2. A society oriented phase

3.1.2.1 Expression of the organisation.

Our approach considers an external representation of the organisation of the MAS. We use
the RESO model [14]. In our application, we instantiate a hierarchical organisation for the
robots and we can adopt two approaches:

• Grouping robots into fixed teams composed of an explorer, an extractor and several

conveyors (cf. figure 3),
• Grouping dynamically robots according to their types, their current localisation and

tasks, and the current needs of the explorers.

As the organisation is external, this choice has no impact on the programming of the <ask-
for-extraction> action, only the set of candidate robots will be different.

Group 1

Group 2

BASE

Explorer

Extractor

Conveyor

Explorer

Extractor

Conveyor Conveyor Conveyor

Fig. 3. The organisation for the mineral extraction example

3.1.2.2 Expression of the interaction.

The interaction mechanisms using interaction languages with protocols is without any
doubt the best adapted approach for our kind of agent model, even if other mechanisms can
be used. ASTRO agents use the IL language [1] based on speech acts as IL uses protocols.
We need two kinds of interaction processes in our application: the exchange of data (co-
ordinates of the sites) (Request/Answer Protocol), the negotiation about task allocation
(Contract Net Protocol).

Implementing the Contract Net Protocol in IL. The use of the contract net protocol [21]
in our application domain authorises the extraction system to be configured dynamically,
when taking into account factors as the number of exploration, the mining robot and the
carrier robots that are available, their locations, and the ease with which communication
can be established. The contract net is an adequate mechanism for task allocation. It is
founded on the contract procedure used in public markets. A contract is established by a
process of local mutual selection based on a two-way transfer of information between a
manager and a contractor. A manager is responsible for monitoring the execution of a task
and processing the results of its execution. A contractor is responsible for the actual
execution of the task. Agent interaction is viewed as an agreement between one agent with
a task to be performed and one agent capable of performing that task. The overall process is
realised through four phases:

• Task announcement: managers make task announcements to all contractors. With

respect to the IL language, such (broadcast) message is of type request.
• Task bid: available contractors evaluate the task announcements received and submit

bids on tasks for which they are suited. This message is of type answer.
• Task award: the managers evaluate the bids and award contracts to the agents they

determine to be most appropriate. This message is of type inform.
• Task commitment: the awarded agent becomes the contractor and commits himself to

fulfil the contract. This message is of type answer.

A negotiation process may then recur. A contractor may further partition a task and award
contracts to other nodes. It is then the manager for those contracts. That is exactly what
takes place in our application domain where the ultimate goal is to transport to the base
camp as much minerals as possible. The contract net partitions this general task into two
subtasks. The first subtask is the extraction task. It involves gathering of information about
the site and mining of ore. The managers for this task are exploration robots that do not
have mining capabilities, but do have extensive sensing capabilities. They attempt to find a
set of mining robots to extract the ore. The mining robots, on the other hand, have limited
sensing capabilities and attempt to find managers that can further find mining sites. The
second subtask is the transportation task. It deals with carrying the ore from the mining site
to the storage location. Mining robots dynamically take on a manager role during the
course of problem solving, and carriers robots contract out such tasks. Let us examine the
negotiation for the extraction task. For example, from the perspective of the extraction task
managers (i.e., exploration robots), the best set of contractors has an adequate spatial
distribution about the surrounding area. From the point of view of the extraction task
contractors (i.e., mining robots), on the other hand, the best managers are those closest to
them in order to minimise potential communication problems and travelling time. The
ability to express and deal with such disparate viewpoints is one advantage of the contract
net protocol. To see how the appropriate resolution is accomplished, consider the messages
exchanged between the extraction managers and potential extraction contractors. Each
extraction manager announces its own extraction task, using a message of the sort shown
here.

Message: task announcement
To: * // indicates a broadcast message
From: Explorer-10

Contract-id: Mining-Explorer-10-1
Task Abstraction:
Task type: Mining
Eligibility Specification:
Must-Have: mining capabilities
Must-Have: position area A
Bid Specification:
Position: latitude, longitude
Mining Features: type of soil, performance
Expiration Time:
1999-09-30 14:15:50

Each message in the contract net protocol has a set of slots for the task-specific information
in the message. The information that fills the four slots of the task is encoded in a simple
language common to all nodes. It corresponds to the application part of IL messages (see
section 2.2.1.1). The task abstraction is the type of task and the position of the manager
making the announcement. The position enables a potential contractor to determine the
manager to which it should respond. The eligibility specification indicates that the only
robots that should bid on this task are those which (1) have mining capabilities and (2) are
located in the same area as the manager that announced the task. This helps to reduce
extraneous message traffic and bid processing. The bid specification indicates the
information that a manager needs in order to select a suitable set of mining robots — the
position of the bidder and the performance and type of soil to be dealt with. Finally, the
expiration time is a deadline for receiving bids. Each potential contractor listens to the task
announcements made by extraction managers. It ranks each announcement relative to the
others thus far received, according to the distance to the manager. Just before the deadline
for the task announcement associated with the perceived nearest manager, the node submits
a bid.

Message: task bid
To: Explorer-10
From: Mining-5
Contract-id: Mining-Explorer-10-1
Bid Abstraction:
Position: 62N, 9W
Mining Features: sand .5, clay .3, schist .8

The bid message supplies the position of the bidder and a description of its mining
capabilities. A manager uses this information to select a set of bidders that covers its area
of responsibility with a suitable variety of mining capabilities, and then awards an
extraction contract on this basis.

Monitoring the Information Exchange. This interaction protocol can be modelled by a
state-transition graph representing agents going from one conversational state to another.
Such representation shows the possible message types an agent is allowed to send in any
given situation. Edges (transitions) exclusively represent sent messages. On the other hand,
nodes represent states of the agent which sends the message or messages indicated by
outgoing edges. Thus, for instance, in a two-agent interaction, the nodes alternatively
represent one agent and then the other on any path going from an initial node to a final one.
By the way, such a path represents a sequence of messages corresponding to a complete
interaction between these agents. The main difference with Petri nets is that the next state
cannot be determined by an external decision. That is, such decision is not inferred from

the agent’s current state and the general network state, but the agent evaluates by itself and
makes its own decision. The contract net protocol just described can be modelled as in
figure 4.

Figure 4.: The contract Net Protocol.

The horizontal sequence of messages corresponds to the normal course of the message
exchange, in case of a successful task award for a contractor. Transition labelled (a)
corresponds to a contractor not answering in time (before expiration) the task
announcement. Transition (b) corresponds to a contractor rejecting the task award or not
committing to the task in time. Transition (c) is traversed when a manager does not award
the task a contractor who bids.

3.2. Dynamics of the System

The evolution of the environment, the interactions between agents and the organisation of
the MAS have an effect on the progress of the mono-agent plan built at the beginning of the
design process. The influences on the initial plan have now to be analysed. These
influences are integrated in the agent decision making process by creating the capabilities
of evaluation of the protocols' messages and of the perception detailed in the agent model
as reactive elements. Consequences of these influences are diverse: reaction of adaptation,
reaction on the plan progress (suspend action, suppress action, etc), and internal reaction:
plan, new goal, etc. In our experimental context, the progress of the protocol law will be
constrained by the social status of the participant expressed in the organisation. Before
passing a transition, the reasoning process has to consider the relation between the agents
involved. The dynamics of the system is so realised. The ASTRO Toolbox allows creating
each capability of the agents by including primitives from ILAPI and RESO libraries. The
external description of protocol laws and of the organisation are built with the aid of the
associated graphical tool and exploited by the agent modules using corresponding
primitives. Figure 5 shows all the relations between the elements.

Bid
C Award

M
Commitment

C

Announce
M Fail

(time out) *
(a)

Task Bid Task Award

Task Commitment
(time out)
(c) Task Announcement

* Transition fired when the contractor is not awarded the task

Succeed
M

Reject
(time out)

(b)

MASK
ASTRO

Tool

ASTRO
Lib.

Agent Toolbox

MASK
IL Tool

ILAPI
Lib.

Interaction Toolbox

MASK
FileTool

Environment Toolbox

File
Lib.

MASK
RESO Tool

Organization Toolbox

RESO
Lib.

Actions
Modules

Communication
Modules

Reasoning and

Decision
Modules

Perception
Modules

Perceived
Environment

ASTRO Real Time Blackboard Architecture

IL protocol
laws

RESO
organization
description

Objects of the
Environment

Figure 5.: Using MASK to build ASTRO agents.

4. Comparison, Discussion, and Perspectives

More and more academic and industrial MAS tools are nowadays developed. Until now,
these tools proposed generic customisable architectures often supplied as program libraries.
Recently, the emergence of agent and multi-agent oriented programming methods has led
to consider at the same time analysis and programming aspects of a MAS. Although the
notion of MAS life cycle is not yet totally defined, the tools now evolve towards real multi-
agent software engineering environments. Their performance can be estimated not only in
terms of their technical architecture and capabilities but also with respect to their coverage
of the life cycle. We can evaluate MASK features by comparing this toolbox with related
work according to these characteristics. MASK has been built as a first software support for
the VOWELS method, to design and to build multi-agent systems. Some tools, indeed,
forget one or the other of these two life cycle phases. The Alaadin method [22], for
example, privileges the design phase but the associated Madkit tool makes the user
responsible for the entire implementation work, only supplying the user with organisational
primitives. On the other hand, tools as JACK (based on the dMars model [23]) emphasise
the programming aspects without addressing design phases. Different characteristics are
required for MAS components in order to build the appropriate MAS that will be well
suited to problem and domain specifications. One of the main features of MASK is to adopt
a multi-model approach. The environment allows choosing among different kinds of
models of Agent, Interaction or Organisation in order to instantiate an operational MAS,
whereas most of the other existing platforms are based on a unique model. Some of them
attempt to solve this problem by supplying multi-paradigm agent models able to satisfy all
requirements [24]. One of the drawbacks of MASK is its lack of embedded simulation and
validation tools, even if some work is done currently in this direction to complete the
platform, especially in the domain of executable specifications or interaction protocol
validation. At the tool level, a main advantage is the flexibility of the overall architecture
guaranteeing the possible evolution of the tool. MASK allows the user to add user-defined

models of AEIO. Even if everything is not agent as in MACE [25], the toolbox for each
entity can be seen as an assisting process coupled to a component library. Considering
AEIO as components is a rather recent and original approach, as components are used
generally to build agents only [26]. Compared to industrial products, MASK proposes a
quite poor man-machine interface, but a visual programming approach as in ABE can be
envisioned to make the tool more attractive. At the level of the execution platform, MASK
supports real distribution among workstations., but MASK does not propose any
deployment tools. In this domain, the more complete platforms are those dedicated to
mobile agents such as Voyager or Zeus, even if their objectives are rather different and do
not care much about methodological preoccupations. The MAGMA group is currently
working in revisiting the MASK platform, to include such deployment tools.

5. References

[1] Y. Demazeau, “From cognitive interactions to collective behaviour in agent-based systems”, In

Proceedings of 1st European Conference on Cognitive Science, Saint Malo, France, 1995.
[2] Y. Demazeau, “Steps towards Multi-Agent Oriented Programming”, 1st International Workshop on

Multi-Agent Systems, IWMAS '97, Boston, October 1997 (slides workshop).
[3] B. Burmeister and K. Sundermeyer, “Cooperative problem solving guided by intentions and

perception”, In Werner, E. and Demazeau, Y., editors, Decentralized AI, volume III, Amsterdam, The
Netherlands. Elsevier Science Publishers B.V., 1992.

[4] O. Boissier and Y. Demazeau, “A Multi-Agent Control Architecture for Studying the Control of an
Integrated Vision System”, IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems, MFI '94, Las Vegas, Nevada, 1994.

[5] G. Gaspar, “Communication and belief changes in a society of agents: Towards a formal model of
autonomous agent”, In Demazeau, Y. and Müller, J.-P., editors, Decentralized AI, volume II,
Amsterdam, The Netherlands. Elsevier Science Publishers B.V., 1991.

[6] J. Searle, “Speech Acts: An Essay in the Philosophy of Language”, Cambridge University Press,
Cambridge, 1969.

[7] J. Campbell and M. d'Inverno, “Knowledge interchange protocol”, In Demazeau, Y. and Müller, J-P.,
editors, Decentralized AI, volume I, pages 63--80, Amsterdam, The Netherlands. Elsevier Science
Publishers B.V., 1990.

[8] B. Burmeister, A. Haddadi and K. Sundermeyer, “Generic, configurable, cooperation protocols for
multi-agent systems”, In Castelfranchi, C. and Müller, J-P., editors, From Reaction to Cognition,
volume 957 of Lecture notes in AI, pages 157--171, Berlin, Germany. Springer Verlag, 1995 (Appeared
also in MAAMAW-93, Neûchatel)

[9] S. Sian, “Adaptation based on cooperative learning in multi-agent systems”, Decentralized AI 2, Y.
Demazeau and J.P. Muller eds, Elsevier Science Publishers, 1991

[10] P. Populaire, Y. Demazeau, O. Boissier and J. Sichman, “Description et implémentation de protocoles
de communication en univers multi-agents”, In 1ères Journées Francophones sur l'Intelligence Artificielle
Distribuée et les Systèmes Multi-Agents (JFIADSMA-93), Toulouse. Afcet &Afia, 1993.

[11] R.H. Bordini, “Contributions to an Anthropological Approach to the Cultural Adaptation of Migrant
Agents”, University College London, Department of Computer Science, 1999.

[12] Y. Demazeau, “La plate-forme PACO et ses applications”, In Proceedings 2ième Journée du GDR-PRC
IA, Montpellier 1993.

[13] J.W. Perram and Y. Demazeau, “A Multi-Agent Architecture for Distributed Constrained Optimization
and Control”, In Proceedings of SCAI’97, Scandinavian Conference on Artificial Intelligence, G.
Grahme, Ed., IOS Press, pp. 162-175, 1997.

[14] C. Baeijs, “Fonctionnalité émergente dans une société d'agents autonomes: étude des aspects
organisationnels dans les systèmes multi-agents réactifs”, PhD Thesis, Institut National Polytechnique
de Grenoble, 1998.

[15] M. Occello and Y. Demazeau, “Modelling decision making systems using agents satisfying real time
constraints”, In Proceedings 3rd IFAC Symposium on Intelligent Autonomous Vehicles, Madrid, Spain,
march 1998.

[16] D. Moffat and N.H. Frijda, “Where there's Will there's an agent”, In M. Woolridge and N. Jennings,

editors, Proceedings of ECAI-94 ATAL Workshop on Agent Theories, Architectures, and Languages,
volume LNAI 890, pages 245-260, Amsterdam, The Netherlands, Springer-Verlag, August 1995.

[17] R.C. Arkin and D. MacKenzie, “AuRA: Principles and practice in review”, Journal of Experimental and
Theoretical Artificial Intelligence, 9(2), 1997.

[18] J.S. Sichman, R. Conte, and Y. Demazeau, “A social reasoning mechanism based on dependence
networks”, In Proceedings of ECAI'94 - European Conference on Artificial Intelligence, Amsterdam,
The Netherlands, August 1994.

[19] D.D. Corkill, “Advanced Architectures: Concurrency and Parallelism”, In V. Jagannathan, R.
Dodhiawala, and L.S. Baum, editors, Blackboard Architectures and Applications, chapter II, pp. 77-83,
Academic Press, 1989.

[20] M. Occello, “Distributed and parallel blackboards: application to dynamic systems control in robotics
and computer music”, PhD Thesis, University of Nice – Sophia Antipolis, 1993 (In French).

[21] R.G. Smith, “The contract net protocol: High-level communication and control in a distributed problem
solver”, IEEE Transactions on Computers, C-29 (12): 1104—1113, 1980.

[22] J. Ferber and O. Gutknecht, A meta-model for the analysis and design of organizations in multi-agent
systems, Proceedings of 3rd International Conference on Multi-Agent Systems- ICMAS 98, pp. 128-135,
Paris, France, july, 1998.

[23] M. D'inverno, D. Kinny, M. Luck and M. Wooldridge, “A formal specification of dMars”, In M. Singh,
A. Rao and Jennings N., editors, Proceedings of ATAL Workshop on Agent Theories, Architectures,
and Languages, volume LNCS/LNAI 1365, pages 155-176, Providence, USA, August 1997. Springer-
Verlag.

[24] Z. Guessoum and J.P. Briot, “From active objects to autonomous agents”, IEEE concurrency, 7(3):68-
76, 1999.

[25] L. Gasser, C. Braganza and N. Herman. “MACE: a flexible testbed for DAI”, Distributed Artificial
Intelligence, Pitman, 1987.

[26] E. Kendall and M. Malkoun, “Design patterns for the development of multi-agent systems”, 2nd
australian workshop on DAI, Cairns, Australia, LNCS/LNAI 1286, Springer-Verlag, 1996.

