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Abstract. This article presents a development platform for designing and building 
multi-agent systems called MASK. The platform is organised along a set of four 
toolboxes, each of them covering one aspect of the AEIO (or “VOWELS”) 
approach.  This approach decomposes a multi-agent system into four different 
bricks: the agents (A), the environments (E), the interactions (I) and the 
organisations (O). The MASK platform offers for each of these basic entities the 
possibility to reuse existing models and software components, as well as the 
possibility to design and build new ones. Throughout this article we present the 
existing models for the AEIO bricks, we show how they have been integrated in the 
MASK development platform, and we partly illustrate our AEIO toolbox approach 
with a concrete example in collective robotics. 

 

1. Designing and Building Multi-Agent Systems 

1.1. A  MAS platform 
 
MASK (Multi-Agent System Kernel) is a software package to design and build multi-agent 
systems. This toolbox is used after the analysis stage in which the conceiver works out a 
detailed solution without taking into consideration the resources eventually required. Multi-
agent analysis consists in breaking up a problem into a multi-agent solution.  It attempts to 
specify conceptual agents and determines their skills and knowledge. The analysis phase 
can be tackled starting from the agents, the interactions, the organisations or the 
environment. The design stage's purpose is then to lead to an implementation of the 
envisioned application and to choose how to make the chosen models operational. Multi-
agent-oriented design aims at building a Multi-Agent System (MAS) once what the agents 
have to do is known. A design approach is meant for leading to an operational MAS, i.e., 
integrating the agents, environment, interactions, and organisation within a MAS starting 
from the global specification drawn from the analysis stage. The main goal of the MASK 
platform is to provide the multi-agent system designer with a number of utilities packages 
embedded in a single software environment.  



1.2. An AEIO kernel 
 
MASK (Multi-Agent System Kernel) is the first software package associated to the AEIO 
(or VOWELS) [1] [2] approach. The MASK platform (cf. figure 1) is composed of 
packages covering different aspects of the multi-agent paradigm: 
 
• The Agent package provides the user pre-defined agent models or allows the definition 

of new ones.  
• The Environment package provides the user functions to define and to work with a new 

(simulated) environment, or allows the user to use pre-defined ones, 
• The Interaction package is responsible for providing functions to use interaction 

mechanisms.  
• The Organisation package provides the user functions to establish the whole 

organisation of a multi-agent system. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: MASK general structure 

 
For each of the MAS notions, the specification can be separated into declarative and 
operational parts. Declarative parts consist of static knowledge about the agents, the 
environment, the interactions, and the organisations; it is specified according to the nature 
of each concept. Dynamic features, such as exploitation of knowledge processes or 
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decision-making processes, are defined as primitives manipulating declarative data. Each 
of the four packages supply the following features: 
 
• Editors to define new models of the agents, environment, interactions and 

organisations,  
• Editors to create declarative parts of interactions and organisations,  
• Editors to create declarative parts of agents and to integrate interactions, environment 

and organisation capabilities, 
• Libraries to support operational parts of the agents’ capabilities 
 
MASK allows building independently each of the basic elements contributing to the 
operational MAS, according to the different types of approach adapted to the MAS nature. 
(reactive or cognitive, situated or not ...).  

1.3. An open toolbox 
 
A diversity of domains and problems can be addressed using MAS. This diversity does not 
allow to reasonably think that a single model will satisfy every single requirement. This 
diversity implies to use a big variety of models for agents, environments, interactions, and 
organisations: 
 
• Libraries to support operational parts of the agents’ capabilities 
• BDI, reactive, cognitive or hybrid agents, 
• Signals, stimuli, forces, messages with or without protocols or conversational 

interaction, 
• Social or functional organisations, 
• Spatialised or not, symbolic or numeric environments. 
 
In each category, we can find several architectures especially suited to solve particular 
problems. Models can be combined in a variety of ways; the same agent model, being able 
to involve a set of interaction models, may be necessary for a given application. Choosing a 
toolbox approach seems thus a better alternative to build systems where components are 
seen as active cohabiting entities. Our approach is an alternative to a unique customisable 
multi-function model: it privileges a “multiple unique paradigm models” versus a “unique 
multiple paradigm model”. In terms of the development tool, this idea leads to a very open 
software environment with which a user can define models developed on demand for a 
particular problem. The platform is thus in perpetual evolution, and each toolbox is 
enriched regularly by the integration of new models. For each additional model, the 
designer must specify with which models of other toolboxes it can be combined. The 
designer builds the different elements in the order he prefers. The agent (society) window 
proposes, through the building process of the agents, the integration of the other boxes. In 
some cases (for example, in a reactive approach when agents are very numerous) the agent 
building task can be automated. The MASK concept is very powerful as it is completely 
open and constantly evolving. Up to now a quite reduced set of the available and existing 
models is installed in the platform: 
 
• (A) : an hybrid agent model ASTRO, a reactive agent model PACORG 



• (I): an interaction by message model ILAPI, a force model PACO 
• (O): a meta-model of organisation RESO. 
 
New models are currently developed and are going to be integrated, such as a 
conversational interaction model (I), SMAM a minimal multi-agent model (O), or MID a 
dynamic interaction model (I). 

2. Environments Interactions Organisation Agents 
 
In the following sections, we describe the different toolboxes embedded in the current 
MASK platform. For each of them we introduce the models behind these basic bricks as 
well as the operational entity that has been included in our multi-agent system development 
platform. 

2.1. The Environments Toolbox 
 
The environment toolbox is currently certainly the most poorly populated and furnished 
part of the toolbox of the MASK development platform. The fact that in its actual shape 
this toolbox is left empty, can be explained by several reasons. First of all, the MAGMA 
group has not yet conducted any theoretical research on the environmental aspects of multi-
agent systems. Furthermore, we do believe that the modelling of the environment highly 
depends on the application domain. Therefore, as we do not believe in some kind of 
universal multi-agent system independently from an application and problem domain, the 
environment can often be considered as the carrier of the data expressing the problem to be 
solved. This implies that the environment can have its own dynamics and its proper 
(passive – from a multi-agent perspective) entities. Although there is no environmental 
model explicitly present in the MASK platform, the instantiated and used environmental 
model is always present in the resulting multi-agent system but entirely conceived by the 
designer of the system. The resulting and instantiated model of the environment, in the 
current set of our applications, spatialised (or spatially grounded in a referential system) 
and provided with a (most often Euclidean) metrics. 

2.2. The Interactions Toolbox 

2.2.1. Interactions between Cognitive Agents  

2.2.1.1 The IL Interaction Language 
 
As pointed out in [3], if communication is solely described in terms of sending and 
receiving messages, each agent must be able to infer what the sender intended when 
uttering a message. If the messages are not structured, this inference could be inefficient. 
Thus, formal restrictions bind messages that should be structured for the ease of 
interpretation. As an example, one may employ message types in order that the intention of 
the sender could be immediately recognised from the message itself. This naturally leads to 
distinguish between the Communication Language and the Knowledge Representation 
Language. The former mainly translates the message from the point of view of distributed 
systems. The latter surely carries at least the multi-agent domain knowledge (Multi-agent 
Language) which encompasses, as much as possible, the intention of the sender, but also 



includes the Application Domain Language (e.g., an Application Language for Computer 
Vision [4]). Our common Interaction Language introduced in [1] defines the common 
vocabulary and its semantics within the system. Its purpose is to support the information 
exchanges, called interactions between the agents. The interactions are exchanges of 
actions, plans, goals or hypotheses corresponding to the type of information handled within 
the individual control model. Interactions comply with the following syntax:  
 

<interaction> ::= <communication> <multi-agent> <application> 
 
The Communication Language. The Communication Language consists of different 
fields used by the communication layer of the system.  
 

<communication> ::= <from> <to> <id> <via> <mode> 
 
The fields are the receiver (from) and the sender (to – the content of this field is an agent’s 
identity or the keyword broadcast) of the message, the identity of the message (id), the type 
of communication channel to use (via – in some communication systems, several kinds of 
communication channels are available: one for the emission of a large amount of data, and 
another one for message passing), and the mode of communication (mode – that is 
synchronous or asynchronous). This layer of the system is usual. It enables to specify the 
communication medium.  
 
The Multi-agent Language. It appears quite clearly that, at a given level of meaning, the 
complexity degree of the interaction protocol – and thus, the complexity of the Multi-agent 
Language – is inversely dependent on the development degree of the Application Language 
that is used by the agents to interact within the Multi-Agent System. As we want to adopt a 
simple Application Language, like a first-order one, that will be adequate for particular 
domain like the robot cooperation one. We will focus here on a quite complex Multi-agent 
Language that will lead to complex interaction protocols. Our multi-agent language, 
gathers all the information related to the multi-agent system. It is used by the dialog 
functions of the agents. There are three kinds of information : the type, the strength, and the 
nature of the interaction.  
 

<multi-agent> ::= <type> <nature> <force> 
 
 As for the type of interaction, we have adopted the primitives proposed by G. Gaspar [5] to 
define the message. They consist of the four possibilities: (present, request, answer or 
inform, the first one enabling an agent to enter a society and to present to the others), which 
ensures the openness of the system. The last three ones have a quite trivial meaning and 
will not be detailed here.  The nature defines on which agent control layer the content of 
the interaction has to be taken in account by the receiver, and forecasts three alternatives: 
decision layer (e.g. goals), command layer (e.g. actions) and observation layer (e.g. facts or 
hypotheses) [4]. According to us, such a nature field has to be defined independently from 
the agent model as much as possible. However, it is obviously necessary to know the 
structure of all agents in order to adequately fill out this field. The strength defines the 
priority of this information. We borrow its possible values from the Speech Act Theory [6] 
: going from commanding (highest priority) to mere informing (lowest priority). This 
grading can be refined, and in fact, we have adopted the sets of labels described by 



Campbell and d’Inverno [7] as a basis. From their set of tones, we have extracted a subset 
that is suited for the different kinds of exchanges we are considering. They allow 
expressing the following intentions: information seeking, informing, warning, advising, 
bargaining, persuading, commanding and expressing. This information enables the agent to 
be informed of the intention the other agent had while sending the message. In this way, 
one can associate a confidence factor to the received information. These tones also allow 
explicit control of the information exchanges. This is illustrated for example with the 
bargaining tone, forcing an agent to answer and to close the communication. Let us point 
out that one can guarantee the receiving and handling of any message sent by restricting the 
communication language possibilities, which is very important. As a matter of fact, it 
amounts to position the strength of a message to its maximal priority, depending on the 
relative agents’ roles within the society. If the sending agent dominates the receiving one, 
the interaction will be interpreted as an order to obey by the receiver. In order for a 
message to get interpreted as an order it is necessary that the sending agent be in power to 
give such order, from a social standpoint. In other words, the strength associated to a 
message ought to present no antinomy with the role of the agent assembling the message. 
 
The Interaction Protocols. The usage of the multi-agent language enables each agent to 
extract explicitly from the meaning of the message some information that is useful for the 
control of the information exchange and for the control of the whole society. Decoupling 
the intention of the sender from the message itself is a first step but is not enough, since the 
agents also ought to know how to react to a message, or what to expect after sending a 
message. All these requirements should be met collectively by a unique framework. We 
call such a framework for structuring interactions among agents “Interaction Protocols”. 
Each type of message in a multi-agent language is in fact associated with a distinct “basic 
protocol” that could be chosen by the receiver from the type of message, as presented in 
Burmeister’s paper [8]. When talking about “Interaction Protocols”, we mean that we add a 
set of protocols that comes to restrict the different interactions an agent can link with other 
agents with regards to some problem to solve.  
 
An Interaction Protocol Example. As an illustration let us exemplify this with a learning 
protocol taken from [9] where tentative hypotheses are inferred by individual agents 
through the use of some induction on examples of events occurring in their environment.  
These tentative hypotheses are treated as opinions of individual agents, and interactions 
among them aim at finding the most consistent form of the hypotheses. 
 
Details of the principle components of Sian's model are left out for brevity.  We only 
rapidly detail the cooperation part that leads to implementing an original and simple 
negotiation formalisation. Sian defines nine operators available to agents and limits their 
use by imposing a possible sequencing among the message types 
 
An interaction either begins with the proposition of a new hypothesis to all other relevant 
agent ("propose") or a non-modifiable assertion ("assert") imposing the agent's viewpoint.  
In this latter case there's no other choice for the concerned agents than to accept the current 
hypothesis ("accept").  To the "propose" operator the responding agents can enter in a 
"modify"-"propose" loop or either "confirm", "disagree" or have "noopinion" about the 
current hypothesis.  A confidence factor is computed for each use of an operator.  
Depending on this factor the hypothesis is "agreed" on or "withdrawn" from the agents  



databases.  To become fully accepted such a hypothesis should be accepted by any single 
agent. 
 
The corresponding interaction protocols could be written in the following manner: 
 
Protocol proposal { 
  state init { 
    [inform(broadcast) (Information_seeking) (matter=propose, rule) -> 
state opinion]; } 
  state opinion { 
    [inform(broadcast) (Information_checking) (matter=modify_into, rule, 
new_rule) -> state init] | 
    [inform(broadcast) (Expressing) (matter=confirm,rule) -> state 
decision] | 
    [inform(broadcast) (Expressing) (matter=disagree,rule) -> state 
decision] | 
    [inform(broadcast) (Informing) (matter=noopinion,rule) -> state 
decision]; } 
  state decision { 
    [inform(broadcast) (Warning) (matter=withdraw, rule) -> state end] | 
    [inform(broadcast) (Expressing) (matter=agree, rule) -> state 
agreement]; } 
  state agreement { 
    [inform(broadcast) (Expressing) (matter=accept, rule) -> state 
agreement]; } 
  state end { 
    [end]; } 
  } 
 
Protocol assertion { 
  state init { 
    [inform(broadcast) (Commanding) (matter=assert, rule) -> protocol 
proposal state agreement]; 
    } 
  } 
 

2.2.1.2 The IL Interaction Toolbox 
 
The previous section has showed how communication among agents can be structured. The 
present section presents an application-programming interface for IL called ILAPI. ILAPI’s 
first goal is to contribute in the development of the multi-agent system design platform 
MASK by providing its interaction toolbox that will then be used in the implementation of 
numerous applications. The next section will show a concrete application with the contract 
net protocol. ILAPI satisfies various criteria such as portability, extensibility, generic and 
simplicity. First, it allows for the development of heterogeneous agents without the taking 
into account of this communication medium. One needs to be able to change the 
communication medium without having to change the agent’s code systematically. Second, 
since the IL message structure is not fully stable, ILAPI must be adaptable to a future 
evolution. Third, ILAPI must allow for the observation of how interactions are handled in 
any multi-agent system making use of this toolbox. Fourth, it stay as simple as possible. 
One does not thrive for performance whether it is on the communication speed level of the 
robustness in case of hardware or software failures. ILAPI is geared at multi-agent system 
developers. It offers a standard interface for operating interactions among agents according 



to the IL specifications. Functions this interface offer may be gathered into two categories:  
 
• Communication functions:  enter a society of agents, send or receive messages, exit the 

society of agents.  
• Dialog functions:  create an IL formatted message, structure message passing through 

interaction protocols.  
 
A third category of functions is forecasted in order to trace the interactions of the system, 
which would enable to analyse the interaction protocols as well as study the dependencies 
between the agents. In order to implement these various functions categories, ILAPI is 
structured into three layers. The ILAPI communication layer handles communication 
functions. The ILAPI dialog layer handles dialog functions. The third category is handled 
by ILAPI-demonstration. Depending on their needs, agents make use of any of ILAPI’s 
layers. In case of porting a multi-agent application to another communication medium such 
a structure has the advantage of having to rewrite only the communication layer. This 
complies with ILAPI’s first criteria.  
 
The ILAPI-communication Layer. An agent needs four basic primitives in order to 
communicate:  
 
• Connect:  declare its presence to the other agents.  
• Disconnect:  declare its absence to the other agents.  
• Send:  send a message to a given agent.  
• Receive:  receive a message from an agent.  
 
The communication layer consists in the implementation of these four primitives along 
with the services offered by the layer supporting the communication . In the present case, it 
is based on TCP/IP, whose services can be accessed via the socket interface. We chose to 
use Java sockets to support the communication with applets to send and receive messages. 
Sockets allow the exchange of information assuming that the various processes addresses 
are known. However, agents in a multi-agent system can enter and exit the system at any 
time. Therefore, a name server is necessary in order to act as an entry point and centralise 
the addresses of all the agents present in the system. In order to enter the system an agent 
will have to know this name server’s address.  
 
The ILAPI-dialog Layer. The ILAPI-dialog layer corresponds to the set of functions 
allowing an agent to format messages and conversations according to the IL specifications. 
The extensibility criterion has consequences on the message structure, since such a 
structure may vary depending on the application. Handling and operating interaction 
protocols has been based on a protocol description language introduced in [10] and 
extended in [11]. Such language expounds a universal language that can be used to describe 
a set of protocols. It has been shown it is generic enough to describe a number of protocols 
that have been presented in the literature. PDL allows for the coexistence of different 
versions of the same protocol. This introduces dynamics to the protocols used in the 
society, since they can be improved. This language provides a textual representation of the 
various transitions accessible from a state of a protocol. Each transition determines the 
values to be given to the fields’ type, strength and application of the associated message. 
Let us note that this language cannot convey which behaviour to adopt in case of an 



absence of answers, or at what time one should consider there is no answer. This behaviour 
depends on the agent. Agents refer to files holding the protocols’ textual descriptions in 
order to adapt their behaviour. In order to handle these protocols an agent needs the 
following primitives: getting a protocol, getting protocol states, getting state transitions.  
 
The ILAPI-demonstrator Layer. The demonstrator layer consists in providing a tool 
for graphically handling interaction protocols. Such a tool can also be used for developing 
functions such as displaying used interaction protocols as well as dependencies among 
agents. This graphical tool enables a user to choose a protocol and to get its diagram 
displayed (see section “Monitoring the Information Exchange”). Pieces of information 
attached to a transition such as its condition of application, the speech act type, the applied 
strength, the content and the ending state.  

2.2.2. Interactions between Reactive Agents 
 
Instead of considering the search for a solution for a given problem as some kind of 
optimisation – minimisation – of a global energy function, the PACO paradigm [12] 
proposes to model this search as the co-evolution of a finite set of agents. Each agent 
represents an entity that takes part to a partial solution of the global problem to be solved, 
although none of them knows when this global solution has been reached as only an 
external observer is able to detect this overall solution – or stability state – at the MAS 
level. Usually, interactions between PACO agents are modelled as forces determining the 
displacements of the agents in the environment, the schema for combining these forces 
being defined a priori by the conceiver of the multi-agent system. Within the PACO 
paradigm, the agents do not hold a representation of themselves nor from the other agents 
or the environment, although the agents are able to distinguish other agents form objects 
within the environment. A simple modification of the input data (the local environment of 
the agents) provokes an immediate reactivation of the agents searching for a new stable 
position, first at the local agent level and by propagation through the interactions at the 
society level. This means that the search for an equilibrium state can be considered as being 
adaptive. The behaviour of the agents, compliant with the PACO paradigm, is characterised 
by a combination of elementary interactions defined a priori. Each type of interaction is 
therefore linked to the agent’s capability of perceiving a type of agent or a given object 
within the environment. Based on the notion of potential fields, the PACO paradigm 
introduces three types of scopes: a perception scope, a communication scope and an action 
scope. The perception scope is a reference to what is visible within the environment for the 
agent (his local environment). The communication scope determines with which other 
agents the agent may eventually start interacting, while the action scope defines the space 
in which the agent may move. The explicit and local control of the different scopes by the 
agent itself, allows it to constrain the set of possible interactions with the other agents 
(communication scope), the environment (the perception scope) or his displacement actions 
within the environment (actions scope). The intensity of the perceived information together 
with the desire to interact with an other agent or object within the environment (which is 
translated by the explicit control of the perception and/or communication scope), fires off, 
if permitted by the action scope of the agent, either an interaction with the other agents of 
the society or an action in the environment. Typically, the force models instantiated within 
the PACO paradigm correspond to models inherited and instantiated from the physics 
domain, such as spring forces or attraction/repulsion forces [13]. 



2.3. The Organisation Toolbox 
 
The organisation toolbox is currently limited to the RESO (Representations of Structures 
for Organisations) model [14]. RESO is a generic model and design framework allowing 
expressing organisational structures based on the notions of groups and the corresponding 
relationships between the entities participating in the organisation. This model integrates 
the structural aspects of an organisation, the “organic structure”, linked to the notion of 
recursion as expressed in [15], and the relational aspects, expressed in the “interactional 
structure”. We define the organic structure of an organisation as the set of relationships that 
allow describing the decomposition of an agent (or group) into more elementary agents (at 
a lower level of granularity). In order to do so, we have to take into account the recursive 
aspect of the structure of the multi-agent system. We recall that for a given level of 
granularity, every single entity (agent, group of agents or the multi-agent system itself) of 
the multi-agent system can be considered as being a single entity or as a complete multi-
agent system. When creating the organic structure for such a kind of static organisation, the 
conceiver of the multi-agent system must have a complete a priori knowledge of the kinds 
of agents that are present in the system, as well as the relationships that bind them 
(recursion and decomposition mechanisms between the levels). The interactional structure 
then corresponds to the set of relationships that enables the designer to set out the 
framework within which the agents may interact. This interactional structure is defined by 
three kinds of relationships: the acquaintance relation (who do I know), the communication 
relation (whom can I communicate with), and the subordination relation (who am I 
controlling). In order to link both structures expressing an instantiated organisation, we 
combine the interactional and organic structure through the different agent types (or kinds / 
roles to be fulfilled within the system). This leads to a two-step process for the designer of 
an organisational model using the RESO model and toolbox: first he has to specify the 
organic structure (which are the elementary agents, how are they combined into groups), 
and then he has to complete his organisational model by instantiating the interactional 
structure (who knows who, who can communicate with who, who is controlling who). This 
process then leads to an instantiated organisational structure (populated with the actual 
agents), as normally called “an organisation”. The RESO toolbox proposes a graphical 
interface to specify relationships, and primitives for the exploitation of the organisation 
knowledge. 

2.4. The Agent Toolbox 

2.4.1. Integrating Deliberative and Reactive Capabilities 

2.4.1.1. The ASTRO Model 
 
The integration of deliberative and reactive capabilities is possible using parallelism in the 
structure of the agents. Separating Reasoning/Adaptation and Perception/Communication 
tasks allows a continuous supervision of the evolution of the environment. The reasoning 
model of our agent is based on the Perception / Decision / Reasoning / Action paradigm. 
The cognitive reasoning is thus preserved, and predicted events contribute to the normal 
progress of the reasoning process. ASTRO can be presented as a disintegrated agent [16], 
where a functional decomposition in terms of capabilities provides a modular approach to 
the model. Decision modules evaluate the importance of the unpredicted events and have 



the obligation to place new actions or new goals in the internal state of the agent's 
reasoning. New goals imply the activation of the reasoning modules in order to partially or 
totally re-plan according to the importance of the event. New actions are placed on the 
agenda of actions directly in order to be executed in the specified delay. We now describe 
the different modules needed by such a deliberative/reactive agent . 
 
Representation of the World. The central part of the agent is its world model. This model 
comprises its knowledge about the environment, the internal states of other agents, and its 
own internal state. In particular, the proper internal state includes the plans to be executed 
or which the agent takes into consideration. An interpretation process of the sensory data 
maintains the model. 
 
Perception and Communication Modules. Evolving in a real world, each agent has to 
integrate perception capabilities realised through sensor devices. The perception modules 
assemble the knowledge about the environment. Other agents are perceived through 
communication modules. Agents can send information about their knowledge of the 
environment, their plans, their goals or their current state. Communication modules are 
probe loop events waiting for messages from agents. Emitters are considered as actions. 
 
Control Modules. To ensure the reactivity of the agent, an evaluator continuously 
examines the world model. Agent control modules detect situations to which the agent 
needs to react, evaluate them, and decide to take the appropriate actions which may be to 
create, suspend, or kill goals, i.e. to change the context of the planning and executing 
process. The continuous supervision of the agent's situation ensures that the agent can react 
to unpredicted events at any time. The role of the perception evaluator is rather similar to 
the Perceptual Schema Controllers of the AuRa architecture of Arkin [17]. But 
additionally, we introduce similar mechanisms to take into account the interactions with 
other agents using the interaction protocols proposed by [1]. Triggers and guards can be 
control loops observing the world representation or an evaluation function launched by the 
occurrence of perception or communication events. 
 
Reasoning Modules. The reasoning process consists of planning, scheduling and 
sequencing modules. Whenever a goal is created (or modified) a plan is searched that 
realises the goal, this task is realised by planning modules. 
 
We first describe the structure of the agent plans. Each plan has an identifier and an 
associated deadline. Execution of the plan requires the execution of several local goals. 
Each local goal has an identifier and an associated priority. The execution of each local 
goal may be accomplished by executing one of the several alternative actions. Each action 
has a duration (the execution time) and a satisfaction value associated to it. Plans related to 
a given goal are stored in the part of the architecture concerning the internal state of the 
agent. The planner details the action in the order according to which they will be executed. 
This process may be guided by hierarchical planning trying to infer the sequence of actions 
in a top-down fashion. In simple applications, we may assume that the agent has plans for 
every possibly encountered goal and possesses all the necessary actions; the planning 
process is in this case reduced to a fast pattern-matching algorithm. For complex 
applications, involving more social organisations, agents can negotiate with other agents 
about the actions they are not capable of, according to [18]. The purpose of the scheduling 



algorithm is to schedule the actions in the first place, to meet the deadline and obtain a 
maximal utility value and a maximal satisfaction value. To achieve this, we have 
established an algorithm informally described below. 
 
(1) For each plan, make a schedule of all the local goals taking minimal duration. If a deadline is violated at 

any stage, abort the plan and exit. 
(2) For a local goal with maximal priority from the remaining local goals:  

(a) if (action has already started) then go to step (b) else find the action with maximal satisfaction from 
the remaining actions 

(b) if the deadline is violated due to some new action go to step (a) else replace action with minimal 
duration by action with maximal satisfaction 

 
Assuming that actions with higher satisfaction values require more execution time, this 
algorithm ensures that a schedule (if it exists) for meeting the deadline with a maximal 
satisfaction is made. The actions start executing according to the schedule. Then the highest 
priority local goal is taken and a higher satisfaction action is put in the schedule provided 
that the action has not already started and that it does not violate the deadline. This process 
is continued for the remaining local goals. Therefore, we provide to the agent an immediate 
schedule to start actions. Then try to improve it by further iterations, allocating more 
resources to actions having more value. At anytime the algorithm has a current valid 
schedule. We thus have used a hybrid any time / design to time approach to the scheduling 
mechanism. Actions are placed in an agenda. Furthermore, the scheduler has the possibility 
to include internal actions, such as replanning or the setting of guard and trigger modules, 
in order to be more adaptive at run time. Guards and triggers supply information about the 
current situation during the execution phase of the actions. Due to this technique, if the 
agent has to act fast, the scheduling and the execution of an incomplete plan can start 
before the planning process is completely finished. This ensures adaptation of the agent to 
the evolution speed of his environment and is necessary if the agent pursues several goals 
at the same time. The committed actions are performed at the scheduled time by the action 
modules triggered by the sequencer module (executor). 

2.4.1.2. The ASTRO Editor 
 
The ASTRO agent model has been implemented using a real time blackboard architecture. 
A parallel blackboard aims at expressing the inherent parallelism of the conceptual 
blackboard model [19] as modules react to modifications of the blackboard, for their 
activation and inhibition. They work on a local context that is a part of the blackboard data. 
A domain blackboard contains domain data (used for the problem solving process). A 
control mechanism is in charge of the communication between modules and of the control 
of the management of the modules' activity. Control data (summary of the state of the 
solution) are stored in a Control Blackboard managed by the control unit. Modules 
communicate with the control mechanism through event streams. The control unit sends a 
control stream to the modules. The controller manages all the communications. This 
blackboard control unit ensures stimulation and inhibition of the modules following their 
specifications. 
 



 
Fig. 2. The ASTRO editor 

 
The behaviour of a module is described through its interactions with the control data, i.e. a 
representation of this behaviour is given. This behaviour is managed by message exchanges 
with the control unit. A module is integrated in the system by the specification of its 
behaviour when faced to the blackboard data. An external specification of the behaviour of 
the module can be expressed by an objective, preconditions of activation and interruption 
conditions. The control unit receives events from modules and emits control signals to 
them. Modules that have all their conditions validated are activated by an activation flow. 
Inhibition signals trigger exception processing in the modules. The control unit is 
application independent. We detailed and formalised this system in [20]. The different 
modules of the agent are organised according to the blackboard model described above. 
The model of the world constitutes the domain blackboard. The control unit manages all 
modules. This multi-module approach allows a modular and independent description of 
each of the action and perception tasks in separate modules. The communication primitives 
can be of two types : internal communication (between the control unit and each module) 
and inter-agent communication (managed by the model of interaction). The blackboard 
kernel has been written in C++ using UNIX communication libraries (cf. figure 2). A 
generic tool has been developed in Tcl/Tk. The designer can specify through editors 
declarative (using given languages) aspects: 
 



• The description of actions and plans , 
• The description of knowledge on the environment (using the corresponding 

Environment Toolbox Editor), on the other agents,  
 
as well as operative aspects (using C++ or an other language supplying UNIX executable 
code) : 
 
• The perception and action modules (integrating primitives of the Environment Toolbox 

Libraries) 
• The interaction modules (integrating primitives of the Interaction Toolbox Libraries as 

protocols operating primitives or message exchanges primitives ). 

2.4.2. Reactive Agents within Organisations 
 
A multi-agent system based on the PACO paradigm complies with the VOWELS approach 
as set out in [2]; we can therefore specify this model through its four elementary axes. The 
core of the agent model is largely based on the PACO model (for further details we refer to 
[12]) and the RESO model as described before. Every agent is denoted by an identifier, his 
mass (representing its relative weight with respect to the overall solution), his position, 
velocity and acceleration. Every agent controls autonomously and locally a set of scopes 
for perception, communication and action. We constrain the set of scopes of the agents by 
introducing organisational knowledge (both on the structural aspects and the interactional 
aspects, as provided by the RESO model). We use on the one hand this organisational 
knowledge to control the communication and perception scopes of the agents through the 
use of the acquaintance and communication relationships, and on the other hand, we use 
the subordination relationships between the agents to constrain the action of the agents. We 
can therefore clearly see that the organisational knowledge within the multi-agent system 
(distributed among the society of reactive agents) takes into account the input side 
(constraining perception and communication scopes) as well as the output side 
(constraining the action scopes). Combining PACO and RESO allows us to model, 
conceive and build reactive multi-agent systems with static organisational structure that are 
conceived in advance. Using the organisational knowledge is then done through the 
structural aspect of the instantiated organisation by using it as a legal framework within 
which the interactions between the agents take place. 

3. Combination of Models and Dynamics of the System 
 
This section describes the approach we apply to build the MAS through a practical 
example. The main point of interest is the way we integrate the interactional and 
organisational knowledge in the reasoning process and so realise the dynamics of the MAS. 
The mineral extraction collective robotics experiment concerns a simulation of robots 
whose mission is to find and extract minerals from a given zone. Robots are of three types 
according to their capabilities :  
 
• Exploration robots in charge of the detection of a site containing minerals,  
• Drilling robots able to dig the ground to extract minerals,  
• Carrier robots moving minerals from the extraction site to the base camp.  
 



None of the robots are able to complete alone the entire task. Co-operation is needed 
between different kinds of robots in order to achieve correctly the extraction process. We 
can solve the problem by exploiting organisational and interactional knowledge. We 
explain how we build the multi-agent system in the following sections. 

3.1. Combination of the models 

3.1.1. An agent centred phase  

3.1.1.1 Scheduling of tasks  
 
The internal aspects of the agent's reasoning process, i.e. everything that the agent would 
have to do if he was alone, must be first analysed. It is an agent centred phase and consists 
of elaborating a set of plans. The set of actions needed to accomplish the mission has to be 
defined. These actions are scheduled without taking external influences related to the work 
of other agents into account. This plan expresses the normal progress of the work the robot 
has to do for a given goal: 
 
• A plan can include actions aiming to modify the environment or to acquire information 

of the environment,  
• A plan can include actions for information exchange between agents. It is possible to 

define actions the agent will delegate during execution [18],  
• A plan can include initialisation of interaction processes with other agents. 
 
In the case of our experiment, we have simple plans to realise goals. 
 
Exploration robots. Goals are Exploration and Request of Extraction. For exploration, the 
plan consists of moving the robot until it detects some minerals. The <Perception> action 
refreshes a set of indicators on the characteristics of the site. The <Analysis> action 
evaluates these indicators and if necessary can create a goal called Detected, which will be 
realised by the action <Ask-for-Extraction> initiating an interaction to find an extractor. 
 
• Exploration : <Moving>// <Perception> // <Analysis>  
 
Drilling robots. Goals are Extraction and Request of Evacuation. For Extraction, the plan 
consists of moving the robot to the site and to extract the minerals. The <Drilling> can 
create a goal called Extraction Failed  or a goal called Extraction OK. This last case will 
trigger the action <Ask-for-Evacuation> initiating an interaction to find a conveyor. 
 
• Extraction : <Moving>; <Drilling>  
 
Carrier robots. Goals are Evacuation. The plan consists of moving the robot to the site, 
loading the mineral and moving back to the base camp.  
 
• Evacuation : <Moving>; <Loading>; <Moving> 
 
Representation of the environment and of the others. In most cases, actions work with 
data available in the representation of the environment perceived by the agent. A definition 



of perception capabilities is then needed in order to maintain the state of the perceived 
environment. In our application, the environment is constituted by the zone map and by site 
characteristics (list of indicators used by the <Analysis> action and refreshed by the 
<Perception> action for exploration robots, co-ordinates of sites for the other types). In the 
case of the delegation of tasks, agents that are able to execute these tasks have to be 
specified. A representation of the capabilities of the other agents has therefore to be built. 
For each known robot, we can store its type and current localisation. 

3.1.2. A society oriented phase  

3.1.2.1 Expression of the organisation.  
 
Our approach considers an external representation of the organisation of the MAS. We use 
the RESO model [14]. In our application, we instantiate a hierarchical organisation for the 
robots and we can adopt two approaches: 
 
• Grouping robots into fixed teams composed of an explorer, an extractor and several 

conveyors (cf. figure 3), 
• Grouping dynamically robots according to their types, their current localisation and 

tasks, and the current needs of the explorers. 
 
As the organisation is external, this choice has no impact on the programming of the <ask-
for-extraction> action, only the set of candidate robots will be different. 
 

Group 1

Group 2

BASE

Explorer

Extractor

Conveyor

Explorer

Extractor

Conveyor Conveyor Conveyor

 
Fig. 3. The organisation for the mineral extraction example 

3.1.2.2 Expression of the interaction.  
 
The interaction mechanisms using interaction languages with protocols is without any 
doubt the best adapted approach for our kind of agent model, even if other mechanisms can 
be used. ASTRO agents use the IL language [1] based on speech acts as IL uses protocols. 
We need two kinds of interaction processes in our application: the exchange of data (co-
ordinates of the sites) (Request/Answer Protocol), the negotiation about task allocation 
(Contract Net Protocol). 



 
Implementing the Contract Net Protocol in IL. The use of the contract net protocol [21] 
in our application domain authorises the extraction system to be configured dynamically, 
when taking into account factors as the number of exploration, the mining robot and the 
carrier robots that are available, their locations, and the ease with which communication 
can be established. The contract net is an adequate mechanism for task allocation. It is 
founded on the contract procedure used in public markets. A contract is established by a 
process of local mutual selection based on a two-way transfer of information between a 
manager and a contractor. A manager is responsible for monitoring the execution of a task 
and processing the results of its execution. A contractor is responsible for the actual 
execution of the task. Agent interaction is viewed as an agreement between one agent with 
a task to be performed and one agent capable of performing that task. The overall process is 
realised through four phases:  
 
• Task announcement:  managers make task announcements to all contractors. With 

respect to the IL language, such (broadcast) message is of type request.  
• Task bid:  available contractors evaluate the task announcements received and submit 

bids on tasks for which they are suited. This message is of type answer.  
• Task award:  the managers evaluate the bids and award contracts to the agents they 

determine to be most appropriate. This message is of type inform.  
• Task commitment:  the awarded agent becomes the contractor and commits himself to 

fulfil the contract. This message is of type answer.  
 
A negotiation process may then recur. A contractor may further partition a task and award 
contracts to other nodes. It is then the manager for those contracts. That is exactly what 
takes place in our application domain where the ultimate goal is to transport to the base 
camp as much minerals as possible. The contract net partitions this general task into two 
subtasks. The first subtask is the extraction task. It involves gathering of information about 
the site and mining of ore. The managers for this task are exploration robots that do not 
have mining capabilities, but do have extensive sensing capabilities. They attempt to find a 
set of mining robots to extract the ore. The mining robots, on the other hand, have limited 
sensing capabilities and attempt to find managers that can further find mining sites. The 
second subtask is the transportation task. It deals with carrying the ore from the mining site 
to the storage location. Mining robots dynamically take on a manager role during the 
course of problem solving, and carriers robots contract out such tasks. Let us examine the 
negotiation for the extraction task. For example, from the perspective of the extraction task 
managers (i.e., exploration robots), the best set of contractors has an adequate spatial 
distribution about the surrounding area. From the point of view of the extraction task 
contractors (i.e., mining robots), on the other hand, the best managers are those closest to 
them in order to minimise potential communication problems and travelling time. The 
ability to express and deal with such disparate viewpoints is one advantage of the contract 
net protocol. To see how the appropriate resolution is accomplished, consider the messages 
exchanged between the extraction managers and potential extraction contractors. Each 
extraction manager announces its own extraction task, using a message of the sort shown 
here.  
  
Message: task announcement 
To: *   // indicates a broadcast message 
From: Explorer-10 



Contract-id: Mining-Explorer-10-1 
Task Abstraction: 
Task type: Mining 
Eligibility Specification: 
Must-Have: mining capabilities 
Must-Have: position area A 
Bid Specification: 
Position: latitude, longitude 
Mining Features: type of soil, performance 
Expiration Time: 
1999-09-30 14:15:50 
 
Each message in the contract net protocol has a set of slots for the task-specific information 
in the message. The information that fills the four slots of the task is encoded in a simple 
language common to all nodes. It corresponds to the application part of IL messages (see 
section 2.2.1.1). The task abstraction is the type of task and the position of the manager 
making the announcement. The position enables a potential contractor to determine the 
manager to which it should respond. The eligibility specification indicates that the only 
robots that should bid on this task are those which (1) have mining capabilities and (2) are 
located in the same area as the manager that announced the task. This helps to reduce 
extraneous message traffic and bid processing. The bid specification indicates the 
information that a manager needs in order to select a suitable set of mining robots — the 
position of the bidder and the performance and type of soil to be dealt with. Finally, the 
expiration time is a deadline for receiving bids. Each potential contractor listens to the task 
announcements made by extraction managers. It ranks each announcement relative to the 
others thus far received, according to the distance to the manager. Just before the deadline 
for the task announcement associated with the perceived nearest manager, the node submits 
a bid.  
 
Message: task bid 
To: Explorer-10 
From: Mining-5 
Contract-id: Mining-Explorer-10-1 
Bid Abstraction: 
Position: 62N, 9W 
Mining Features: sand .5, clay .3, schist .8 
 
The bid message supplies the position of the bidder and a description of its mining 
capabilities. A manager uses this information to select a set of bidders that covers its area 
of responsibility with a suitable variety of mining capabilities, and then awards an 
extraction contract on this basis.   
 
Monitoring the Information Exchange. This interaction protocol can be modelled by a 
state-transition graph representing agents going from one conversational state to another. 
Such representation shows the possible message types an agent is allowed to send in any 
given situation. Edges (transitions) exclusively represent sent messages. On the other hand, 
nodes represent states of the agent which sends the message or messages indicated by 
outgoing edges. Thus, for instance, in a two-agent interaction, the nodes alternatively 
represent one agent and then the other on any path going from an initial node to a final one. 
By the way, such a path represents a sequence of messages corresponding to a complete 
interaction between these agents. The main difference with Petri nets is that the next state 
cannot be determined by an external decision. That is, such decision is not inferred from 



the agent’s current state and the general network state, but the agent evaluates by itself and 
makes its own decision. The contract net protocol just described can be modelled as in 
figure 4.  
 

 
 

Figure 4.: The contract Net Protocol. 
 
The horizontal sequence of messages corresponds to the normal course of the message 
exchange, in case of a successful task award for a contractor. Transition labelled (a) 
corresponds to a contractor not answering in time (before expiration) the task 
announcement. Transition (b) corresponds to a contractor rejecting the task award or not 
committing to the task in time. Transition (c) is traversed when a manager does not award 
the task a contractor who bids.  

3.2. Dynamics of the System 
 
The evolution of the environment, the interactions between agents and the organisation of 
the MAS have an effect on the progress of the mono-agent plan built at the beginning of the 
design process. The influences on the initial plan have now to be analysed. These 
influences are integrated in the agent decision making process by creating the capabilities 
of evaluation of the protocols' messages and of the perception detailed in the agent model 
as reactive elements. Consequences of these influences are diverse: reaction of adaptation, 
reaction on the plan progress (suspend action, suppress action, etc), and internal reaction: 
plan, new goal, etc. In our experimental context, the progress of the protocol law will be 
constrained by the social status of the participant expressed in the organisation. Before 
passing a transition, the reasoning process has to consider the relation between the agents 
involved. The dynamics of the system is so realised. The ASTRO Toolbox allows creating 
each capability of the agents by including primitives from ILAPI and RESO libraries. The 
external description of protocol laws and of the organisation are built with the aid of the 
associated graphical tool and exploited by the agent modules using corresponding 
primitives. Figure 5 shows all the relations between the elements. 
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Figure 5.: Using MASK to build ASTRO agents. 

4. Comparison, Discussion, and Perspectives 
 
More and more academic and industrial MAS tools are nowadays developed. Until now, 
these tools proposed generic customisable architectures often supplied as program libraries. 
Recently, the emergence of agent and multi-agent oriented programming methods has led 
to consider at the same time analysis and programming aspects of a MAS. Although the 
notion of MAS life cycle is not yet totally defined, the tools now evolve towards real multi-
agent software engineering environments. Their performance can be estimated not only in 
terms of their technical architecture and capabilities but also with respect to their coverage 
of the life cycle. We can evaluate MASK features by comparing this toolbox with related 
work according to these characteristics. MASK has been built as a first software support for 
the VOWELS method, to design and to build multi-agent systems. Some tools, indeed, 
forget one or the other of these two life cycle phases. The Alaadin method [22], for 
example, privileges the design phase but the associated Madkit tool makes the user 
responsible for the entire implementation work, only supplying the user with organisational 
primitives. On the other hand, tools as JACK (based on the dMars model [23]) emphasise 
the programming aspects without addressing design phases. Different characteristics are 
required for MAS components in order to build the appropriate MAS that will be well 
suited to problem and domain specifications. One of the main features of MASK is to adopt 
a multi-model approach. The environment allows choosing among different kinds of 
models of Agent, Interaction or Organisation in order to instantiate an operational MAS, 
whereas most of the other existing platforms are based on a unique model. Some of them 
attempt to solve this problem by supplying multi-paradigm agent models able to satisfy all 
requirements [24]. One of the drawbacks of MASK is its lack of embedded simulation and 
validation tools, even if some work is done currently in this direction to complete the 
platform, especially in the domain of executable specifications or interaction protocol 
validation. At the tool level, a main advantage is the flexibility of the overall architecture 
guaranteeing the possible evolution of the tool. MASK allows the user to add user-defined 



models of AEIO. Even if everything is not agent as in MACE [25], the toolbox for each 
entity can be seen as an assisting process coupled to a component library. Considering 
AEIO as components is a rather recent and original approach, as components are used 
generally to build agents only [26]. Compared to industrial products, MASK proposes a 
quite poor man-machine interface, but a visual programming approach as in ABE can be 
envisioned to make the tool more attractive. At the level of the execution platform, MASK 
supports real distribution among workstations., but MASK does not propose any 
deployment tools. In this domain, the more complete platforms are those dedicated to 
mobile agents such as Voyager or Zeus, even if their objectives are rather different and do 
not care much about methodological preoccupations. The MAGMA group is currently 
working in revisiting the MASK platform, to include such deployment tools. 
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