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Formalization and Pre-Validation for Interaction
Protocols in Multiagent Systems

Jean-Luc Koning1, Guillaume François2, Yves Demazeau3

Abstract. In this article, we take up validation techniques
used so far in the domain of communication protocols in net-
works and adapt a similar method for the validation of inter-
action protocols in multiagent systems. First of all, we rely on
Petri nets in order to model such protocols. Second, we move
to a protocol validation stage through the analysis of a Petri
net model. We also give a very brief presentation of a software
tool that enabled us on one hand to run the analysis, and on
the other hand to simulate the unfolding of typical scenarios
for sequences of exchanged messages. Finally, we extract the
global protocol properties and infer consequences on its pre-
validity. The phrase pre-validity is used in this paper instead
of validity since one is not interested in proving a complete
validity of the negotiation protocol but rather a partial one,
i.e., checking the satisfaction of some elementary properties.

1 Introduction

Multiagent Systems (MAS) are concerned with coordinating
behavior among a collection of autonomous intelligent agents.
Such software agents are designed to reconcile their own in-
terests with the constraints implied by the other agents. The
main justifications for making use of a multiagent model
comes from its distribution, openness, flexibility and robust-
ness features [10].

In this setting, a negotiation process translates into interac-
tions among agents. Interaction is more than an exchange of
messages. Issues associated with it, are: models of agents (be-
liefs, goals, representation and reasoning), interaction proto-
cols (an interaction regime that guides the agents) and inter-
action languages (languages that introduce standard message
types that all agents interpret identically). One way to struc-
ture message passing during agent communication is through
protocols.

The design of interaction protocols for multiagent systems
has already been tackled in the literature like in [1]. These
references usually discuss low level communication issues or
tools for designing interaction protocols. In the remainder of
this article, we will take up validation techniques used so far
in the domain of communication protocols in networks [5]
and prototyping of distributed systems [7]. We will adapt a
similar method for the pre-validation of interaction protocols
in multiagent systems. The phrase pre-validity is used in this
paper instead of validity since one is not interested in proving
a complete validity of the negotiation protocol but rather a
partial one, i.e., checking the satisfaction of some elementary
properties.

First of all, we will rely on Petri nets in order to model such
protocols. For lack of space we will briefly introduce related
work both in the domain of communication networks and the
domain of multiagent systems.

Second, we will move to a protocol validation stage through
the analysis of a Petri net model. We will also give a very
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brief presentation of a software tool that enabled us on one
hand to run the analysis, and on the other hand to simulate
the unfolding of typical scenarios for sequences of exchanged
messages.

Finally, we will extract the global protocol properties and
we will infer consequences on its (pre-)validity.

2 Petri Nets and their Use in DAI

Modeling an interaction between two agents of a MAS comes
down to building a per-agent Petri sub-net as well as a sub-
net for the virtual medium, i.e., modeling the overall service
that enable to rout messages between agents.

In [8], Ferber discusses a Petri net modeling of an interac-
tion between two agents. It shows how agent A can ask agent
B to provide a service. There are at least two reasons for
criticizing that approach.

• The protocol that is described only deals with two agents
that cannot play a symmetric role. Their statute is differ-
ent; one requests and the other answers the request.

• The exchanged messages modeled by tokens in the Petri
net represent hypotheses or proposals. When a hypothesis
is modified by an agent the original one is lost even though
its processing by the agents is not over. This stems from
the fact that there is a given number of tokens that cir-
culate in the net: one per agent which conveys its internal
state and one and only one for the message that is being
processed. As a consequence, this Petri net does not model
a simultaneous processing of several proposals derived from
one initial hypothesis.

A real interaction protocol provides a detailed description
of the possible interactions between n (more than two) agents.
But there is no clear approach in the DAI literature for model-
ing interactions that take place between more than two agents
at one time. This is probably due to the fact that interaction
between agents in DAI are rather grounded on Speech Acts
theory than on distributed systems, which constitutes a seri-
ous bias in our point of view. As an example, the cooperative
learning protocol given in [12] only deals with interactions
among two agents.

Other uses of Petri nets in Distributed Artificial Intelligence
include planning. In [6] a formalization of concurrent plans
is proposed based on recursive Petri nets which is a suitable
formalism for distributed planning. They also tackle there the
management of potentially shared and conflicting resources
through a recursive model.

3 Petri Nets For Representing Protocols

Modeling interactions between agents in a MAS comes down
to building a Petri sub-net per agent and a Petri sub-net that
represents the virtual medium. That is what we address in
this section.

c© 1998 J.-L. Koning, G. François, Y. Demazeau
Submitted to ECAI 98
June 2, 1998



3.1 Models of Virtual Mediums Linking
Communicating Entities

Let us first model a perfect virtual medium linking n commu-
nicating entities. In a perfect virtual medium the possible loss
of messages is not modeled and the transmission capacity is
infinite. Such medium must offer the n entities the capability
to send and receive several sorts of messages. Figure 1 exem-
plifies the modeling of such a medium for 3 entities A, B and
C that allows each of them to receive and send two different
types of messages.
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 A

send message 1
If [cond.] then

If [cond.] then
send message 2

Reception message 1

Reception message 2

If [cond.] then
send message 1

If [cond.] then
send message 2

Reception message 1

Reception message 2

send message 1
If [cond.] then

If [cond.] then
send message 2

Reception message 1

Reception message 2

Figure 1. Perfect virtual medium linking three communicating
entities, and allowing the exchange of two types of messages.

In a same medium linking n entities and capable of ex-
changing m different sorts of messages, the number of links
would be n · (n−1) ·m. Clearly this modeling technique is not
suitable for a great many entities. The virtual medium’s com-
plexity should not depend on the number of communicating
entities or at least not be proportional to its square. One could
also rely on the bus communication principle, where there is a
bus type line of transmission for any kind of message. Figure
2 shows a bus type virtual medium that links three commu-
nication entities and enables the exchange of two types of
messages.

Box (i, j) carries out the following functions:

• collect j-type messages sent by entity i and propagate them
on line j in both directions, i.e., toward box (i − 1, j) and
box (i + 1, j).

Entity (i-1) Entity (i) Entity (i+1)

Box (i+1,j)

Box (i-1,j-1) Box (i,j-1) Box (i+1,j-1)

Box (i-1,j)Line for message (j)

Line for message (j-1)

Box (i,j)

Entities

Virtual medium

Figure 2. Bus type virtual medium.

• transmit j-type messages coming from box (i−1, j) to box
(i + 1, j) and vice versa, while duplicating them for entity
i.

Figure 3 details box (i, j).

If [cond.]

message (j)
send

E1

Entity (i)
E2

E3

E4

Receive
message (j)

Box (i+1,j)Box (i,j)Box (i-1,j)

are the entity’s
E1, E2, E3 and E4

internal states

Figure 3. Inside of box (i, j).

Such a virtual medium liking n entities that is capable of
exchanging m different sorts of messages, consists of m lines
like those shown in figure 2. Hence, the medium’s complexity
does not depend on the number of communicating entities.
The drawback with such a medium is that receivers of a mes-
sage do not get it simultaneously. However, this is no problem
when modeling asynchronous interactions.

As a summary, there are two techniques for modeling com-
munication mediums that link n entities and support m dif-
ferent sorts of messages. One provides a loosely structured
model whose complexity is O(m · n2) links. The other pro-
vides a structured one whose complexity is O(m) links (or
O(m · n) boxes).

3.2 Petri Net Models for Assistant Agents

In a Petri sub-net that models a communicating entity [8],
places represent internal states of those entities, transitions
correspond to either the synchronizing of the reception of mes-
sages or actions agents perform, e.g., sending a message as a
speech act.

In our framework [4], the agents’ internal states and the
actions the agents can accomplish are gathered in a state
transition graph that describe their behavior. While Ferber’s
approach focuses on internal states we focus on behavioral
states. See [9] for a detailed approach on the designing of
interaction protocols in MAS. Figure 4 exemplifies a state
transition graph for a simple negotiation protocol.

In this graph arrows go from the sending agent’s state
prior to sending a message and end on a state the ad-
dressed agent(s) reach after receiving the message. In its
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Figure 4. State transition diagram of a negotiation protocol.

initial (“Init”) state an agent can send a proposal (“pro-
pose”) which makes the receiving agent enter state “Opin-
ion?”. When an agent receives an modification (respectively
acceptance) of proposal from another agent that is in state
“Opinion” (respectively “Agreement?”), then it enters state
“Opinion?” (respectively “Agreement?”) too. In the “Opin-
ion?” state an agent can also “refuse” a proposal which makes
the receiving agent go to state “Agreement?”. When the
agents come to an agreement or want to abort the current
negotiation they can stop negotiating (“report end”) which
makes the receiving agent enter state “End”.

Let us see now the Petri sub-net model for agents whose
behavior corresponds to the use of such a negotiation protocol.

Places are as follows:

• For internal states: P:init, P:opinion?, and P:end. We
have merged states “Init” in state “Agreement?”.

• For the receiving and storing of messages:
P:S-propose, P:S-accept, P:S-refuse, P:S-modify,
and P:S-report-end.

Transitions are:

• For the sending messages: T:propose, T:accept, T:refuse,
T:modify, and T:report-end.

• For the reading of a received message: T:R-propose,
T:R-accept, T:R-refuse, T:R-modify, and
T:R-report-end.

An agent is in state s if the place that corresponds to this
state holds a mark (token). This mark that is unique to each
agent will be called a state-mark. It can only go to places
denoting the agent’s internal state.

The other kind of mark that is present denotes the messages
sent. They are only located in places where messages can be
received. Hence, in such a place there is as many marks as
messages of that type received and not yet read by the agent.

At this point, places, transitions and marks are identified.
A Petri sub-net modeling the agent can be built. Places and
transitions need to be linked by an arc so that a change of
internal state caused by various actions matches the descrip-
tion of an agent’s behavior (figure 1). Figure 5 shows the
corresponding Petri sub-net.

T:propose
P:R-propose

P:R-modify

P:opinion?

T:R-modify

T:R-propose

P:init

T:R-accept

T:modifyT:accept T:refuse P:R-accept
P:R-refuse

T:report-end
P:R-report-end

P:end
T:R-refuse

T:R-report-end

Figure 5. Petri sub-net modeling an agent that makes use of
the negotiation protocol seen in figure 4.

There must be one token in the P:init agent’s place—the
state mark. This indicates the agent is in its initial state. From
there, the agent is able to choose which action to perform and
which transition to fire. This current Petri sub-net does not
specify the way the transition to fire is chosen. As a matter
of fact, interaction protocols do not provide this kind of in-
formation since this is the concern of the agent’s decision. It
falls within the application domain.

3.3 Complete Negotiation Protocol Model

A global Petri net can now be built in order to model our ne-
gotiation protocol. Petri sub-nets that correspond to agents
have been defined. The virtual medium still needs to be cho-
sen. Modeling the protocol and performing validation tests on
a real application (with more than two agents) does not de-
pend on the type of virtual medium. When there are very few
communicating entities the loosely structured model whose
complexity is O(m · n2) links is bearable (see figure 1). On
the other hand, for simulation reasons, when agents are com-
plex and numerous there is a need for the simplest possible
medium (i.e., bus type medium).

For space reason, no example of a final Petri net is shown
here. But let us just mention that with a perfect virtual
medium (the loosely structured one) places for getting and
storing messages prior to their reading and storing by the
agent, like P:S-propose, P:S-modify, etc. (see figure 5) be-
long in fact to the medium. Indeed, as shown in figure 1, the
medium contains one place per agent and per type of message
received. With a bus type medium, those places also belong
to the medium and are duplicated in each of its boxes (see
figure 2 and 3).

What is the theoretical significance of this complete nego-
tiation protocol modeling? A protocol is a language L whose
vocabulary V is the set of possible messages. V ∗ denotes the
set of V ’s elements combinations, i.e., the set of all message
sequences. The language L associated with the protocol is a
sub-set of V ∗. Given these definitions, we are building an au-
tomata A1 by means of a Petri net, and whose language L(A)
is such that L(A) ⊆ L. In fact L(A) is the restriction of L to
a special case where n communicating entities are concerned.
However, L(A) can be viewed as a good approximation for L.
The protocol validation can thus be carried out with the n
communicating entities.

4 Protocol Pre-Validation

4.1 Theoretical Approach

Performing a protocol pre-validation boils down to convey-
ing expected services and then check whether there is ade-
quacy between those services and the ones the protocol really
supplies. Needless to mention those services correspond to a
verification of general properties that should characterize any
protocol. Those properties have nothing to do with the appli-
cation’s semantic. We will call these elementary services.

Figure 6 explains the theoretical approach for verifying pro-
tocol properties. The first step is to go through a formal mod-
eling of the protocol given in figure 4. This has been done in
the previous section. Let us now convey the expected elemen-
tary services as far as our negotiation protocol. This amounts
to check whether it satisfies general properties necessary to
any protocol [5, 2].

• The first property one may wish is that the global protocol
model, represented as a Petri net, be bounded. Indeed, a
not bounded model means the protocol leads to a process
with an infinite number of states.

• The second property is that the global protocol model be
quasi-livable. If such a property is satisfied, all the model’s
transitions are fireable starting from the initial marking.
This ensures all protocol’s messages are used.
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• Thirdly, it is important to know whether the protocol leads
to deadlocks and if so what they are. Obviously in case
of a negotiation protocol, all markings associated with a
model’s deadlock4 (or sink state) must contain a token in
each of the agents’ “End” state.

• The last property one may wish to see satisfied is that the
protocol’s model must enable ending with the desired sink
state situations. In other words, the negotiation process
infered by the protocol must end.

Formal modelling

Comparison

Identification of
the expected
elementary services

Protocol’s
pre-validity

Protocol

actually provided
elementary services
Identification of the

Study of the
model properties

Figure 6. Principle of protocol pre-validation

This analysis being done let us express the expected ele-
mentary services:

(a) The negotiation process leads to a finite number of states.
(b) Every kind of protocol message is used.
(c) Every kind of sink state infered by the protocol corresponds

to the end of the negotiation process.
(d) The negotiation process always reaches one of these sink

states situations.

A number of other properties can be subjected to verifica-
tion. However, these are specific to negotiation.

Having discussed the theoretical issues of a protocol’s pre-
validation principles, we will now detail more computational
aspects

4.2 Use of a Simulation/Validation Tool

Editing the Petri nets that model negotiation protocols and
analyzing certain general properties related to the net’s struc-
ture have been carried out by means of a software tool [11].
Among other things, this tool allows for a graphical repre-
sentation of Petri nets, their simulation, and the search for
properties. In order to check on these properties, this soft-
ware conducts an analysis of the net by means of its states;
the state of a Petri net being given by its marking. At first,
the software sets up the graph of reachable markings, i.e., the
list of states the net can reach and the sequences of fireable
transitions to go from one state to another.

The graph of markings may be infinite and therefore cannot
be built. It is thus necessary to build the coverability graph
which is some condensed version of the graph of markings.
The purpose of such a graph is to obtain a sub-set of states
that gives enough information on the set of reachable states,
especially when it is infinite [3].

Subsequently, seeking properties consists in examining the
coverability graph according to a procedure specific to each
of the properties.

4 A deadlock is a marking such that no transition is enabled.

4.3 Properties and Validity

Properties of the Petri net that model our negotiation proto-
col are given in the appendix of this article. In this section we
discuss the properties found and infer the elementary services
actually provided by the protocol.

1. The net is bounded. This implies that (1) this Petri net
leads to a finite number of states. In other words, the
negotiation process thus modeled has a finite number of
states. Furthermore, there is no infinite sequence of tran-
sitions in this net. This does not help us identify the final
states of these sequences. On the other hand, it implies that
(2) the negotiation process does not enter cyclic or
infinite sequences but always reach a terminal state.

2. In the final Petri net that model our negotiation protocol
with three agents, we have made several hypotheses in order
to restrict the number of reachable states (for a simulation
purpose): agent 1 is the only one to send a proposal (agents
2 and 3 cannot “propose”: T:propose-2, T:propose-3),
agents 2 and 3 can only send modifications (agent 1 do
not “modify”: T:modify-1), and agent 1 is the only agent
allowed to end the negotiation process (agents 2 and 3
do not “report end”: T:report-end-1, T:report-end-2).
Consequently, agent 1 does not receive and therefore read
any “propose” message (T:R-propose). Indeed, messages
are not sent to the sending agent even when in broadcast
mode.
Thus, the only non quasi-live transitions are those six tran-
sitions. In particular, to each forbidden transition in an
agent there corresponds an equivalent transition in a neigh-
bor agent that is not forbidden and quasi-live. Had we not
precluded some transitions on purpose, all would have been
quasi-live. Thus, (3) the protocol leads to negotiation
processes in which no message is unused.

3. The expression of the terminal states with the coverabil-
ity graph shows that the terminal markings have a com-
mon feature: none have a mark in place P:init-x and all
have a mark in place P:end-x. In other words, the three
agents reach their internal state “end” when the net is in a
terminal state. Thus, (4) all the net’s terminal states
correspond to the end of the negotiation process.

4. Places P:init-x, P:opinion?-x et P:end-x are in mutual
exclusion (i.e, it is impossible to have more than one mark
in those places) and actually, there is always one mark in
either of these places. Thus, (5) at one time, agents
(modeled in figure 5) have a unique internal state,
and are never in a state different from “init”, “opin-
ion?” and “end”.

All four expected elementary services (given in section 4.1)
are achieved: conclusion (1) implies service (a) is achieved,
conclusion (2) and (4) implies services (c) and (d) are
achieved, and conclusion (3) implies service (b) is achieved.

5 Concluding Remarks and Future Work

In this article we described an approach that formalizes and
partially validates interaction protocols for multiagents sys-
tems once protocols have been designed. This means that one
needs first to identify the agents’ behavior and define the state
transition graph of the interaction protocol. Once this is done,
we have seen

1. how to build a Petri sub-net model for the agents,
2. which virtual medium to chose in order to link the agents,
3. how to build a complete Petri net for modeling the entire

protocol, and
4. what it takes to seek such a Petri net’s properties, by means

of a software tool capable of simulations.

Usually the issue of interaction in MAS is almost exclu-
sively tackled from a Speech Acts theory perspective. But the
approach we have taken in this paper stems rather from the
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Distributed Systems’ domain. Very few attempts have been
investigated in this way (let us mention [13] though). We hope
this paper will participate in offsetting this general tendency.

As far as future development, several domains need further
work. One deals with the nature of properties to be verified.
We have only touched on rather general properties that one
wants to find in any interaction protocol. Those properties
do not depend on the application. We are interested now in
expressing and verifying semantic properties that are proper
to the protocol given an application.

Appendix

Here is the file produced by PAPetry software for the seek-
ing of properties in the Petri net modeling our interaction
protocol.

+=======================================+
COVERING GRAPH

P. FRAISSE and C.JOHNEN
+=======================================+
1 - Diagnosis
2 - Unbounded places
3 - Non quasi-live transitions
4 - Home states
5 - Live transitions
6 - Termination
7 - Fireable sequence from initial state
8 - Reachable state
9 - Expression of a state

10 - Mutual exclusion
11 - Print the net
12 - End of program
*****************************************
Your choice: 1

The net admits 9000 states
It is bounded.
It does not admit infinite firing sequences.
*****************************************
Your choice: 2
All the places are bounded.
*****************************************
Your choice: 3

Non quasi-live transitions:
T:modify-1 T:report-end-1 T:R-propose-1
T:propose-2 T:report-end-2
T:propose-3 T:R-report-end-3
*****************************************
No home state.
*****************************************
Your choice: 5
No live transition.
*****************************************
Your choice: 6
There are 1194 terminal components.

Component 1
States 18

(...)

Component 1194
States 8977

*****************************************
Your choice: 10
Enter groups of place names separated by a comma,
Enter a semicolon to end.

P:init-1,P:opinion?-1,P:end-1;

There is mutual exclusion and a group is always marked
*****************************************
Your choice: 10
Enter groups of place names separated by a comma,
Enter a semicolon to end.

P:init-2,P:opinion?-2,P:end-2;

There is mutual exclusion and a group is always marked
*****************************************
Your choice: 10
Enter groups of place names separated by a comma,
Enter a semicolon to end.

P:init-3,P:opinion?-3,P:end-3;

There is mutual exclusion and a group is always marked
+=======================================+

INITIAL MARKING
+=======================================+
Place P:init-1, color black: 1
Place P:init-2, color black: 1
Place P:init-3, color black: 1
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